Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергии и времена жизни п,п- и я,я-состояний

    Атом любого элемента следует рассматривать как систему, способную возбуждаться и переходить в новое состояние, определяемое квантом поглощенной энергии. Это состояние атома создает новое расположение электронов, переход которых на следующий подуровень или уровень означает поглощение энергии, а возвращение в исходное состояние — релаксация — сопровождается выделением энергии. Время жизни возбужденного атома чрезвычайно мало (10 —10 с), однако если атом, находясь в возбужденном состоянии, образует новые связи (вступает в химическое соединение), то в таком случае это состояние атома может сохраняться неопределенно долго. При больших энергиях возбуждения полученное соединение будет иметь свойства окислителя (например, перманганат калия, хлорная кислота и т. д.). [c.54]


    Другим видом дефектов в кристалле является экситон, представляющий собой нейтральное возбужденное состояние электрона до уровня, энергия которого ниже энергии ионизации. В ковалентном или ионном кристалле экситон можно рассматривать как слабо связанные между собой электрон зоны проводимости и дырку, образующие в целом нейтральный центр, который тем не менее не находится в основном состоянии (если бы это было так, электрон должен был вернуться в валентную зону и рекомбинировать с дыркой). Это состояние в известной степени аналогично возбужденному состоянию атома водорода, в котором электрон и протон еще остаются связанными. В молекулярных кристаллах экситон также представляет собой локальное электронное возбужденное состояние, возникающее в результате возбуждения одной молекулы. Экситоны могут двигаться в твердом теле за счет диффузии связанной пары электрон —дырка или за счет переноса молекулярного возбуждения от одной молекулы к другой. Экситоны могут иметь значительное время жизни, по истечении которого они переходят в состояние с более низким уровнем энергии время жизни является характеристическим для (нестабильных) частиц. [c.68]

    Все фотохимические реакции так или иначе идут через электронно-возбужденное состояние. Каждое возбужденное состояние имеет определенные энергию, время жизни и структуру. Эти свойства могут несколько изменяться при переходе от одного состояния к другому. Кроме того, возбужденное состояние по своей химической природе отличается от основного, и следует ожидать, что оно будет вести себя иначе. Для того чтобы понимать фотохимические процессы, необходимо иметь сведения об энергии, времени жизни и структуре электронно-возбужденных состояний. [c.15]

    Время жизни возбужденного состояния по отношению к испусканию света часто можно определять в терминах кинетики процесса первого порядка. Если испускание является единственным способом рассеивания энергии возбужденного состояния, то величина, обратная константе скорости исчезновения этого состояния, называется естественным временем жизни возбужденного состояния. Необходимо отличать естественное время жизни состояния от дей- [c.15]

    На основе одних только спектральных данных можно построить подробную диаграмму состояний молекулы. На такой диаграмме будут показаны энергия, время жизни и заселенность состояний и Ту. Такая информация позволяет значительно упростить интерпретацию фотореакций и даже предсказывать наиболее вероятные пути фотохимических превращений. [c.92]


    Радиационная защита. Определяющим является требование, чтобы перенос энергии успел произойти за время жизни состояния, с которого происходит распад молекулы (10 °— 10 з сек.). Распад ароматических молекул происходит при их возбуждении на верхние уровни, поэтому попытки ингибировать [c.93]

    Для иона нафталина существует 2 = 256 возможных состояний спина протона, которые могут дать в спектре ЭПР группу сигналов из 25 отдельных линий (рис. 6.5). Спин электрона в данном ионе взаимодействует с одной определенной из 25 конфигураций спина протона этому взаимодействию соответствуют каждый раз различные частоты. При каждом переходе спиновое состояние протона изменяется по закону случая, и, таким образом, электрон может взаимодействовать либо с прежним спиновым состоянием, либо с каким-то отличным от прежнего. Среднее время жизни состояния, определяющего энергию сверхтонкого взаимодействия, наиболее мало для внешних линий спектра, и, следовательно, эти линии уширены больше, чем внутренние. [c.283]

    Переходы 51- Г1 (интеркомбинационная конверсия) не сопровождаются излучением, поскольку для них требуется изменение спина. Эти переходы могут происходить в результате соударений, поскольку уровни 5] и Тх близки по энергии. Излу-чательные переходы Г1 5о такл е запрещены, и, кроме того, вероятность их осуществления за счет столкновений мала. Поэтому на уровне может происходить увеличение населенности. Чтобы вызвать непрерывную генерацию, в раствор красителя надо добавить специальный тушитель триплетных состояний (например, кислород), который существенно уменьшит время жизни состояния Г]. В противном случае в системе [c.51]

    Спиновые ограничения иа систему триплет О + триплет О3 делают возможной только одну из четырех ориентаций, в то время как для дублет N0 + триплет О допустима одна ориентация из двух. Заметим, что для любого из образующихся возбужденных электронных состояний время жизни будет меньше, чем для основного состояния, так как их энергия Е должна быть меньше. [c.276]

    В сильных кристаллических полях дублет 5=1/2 состояния имеет низшую энергию. Поскольку в состоянии отсутствует спин-орбитальное взаимодействие и поскольку вблизи пего нет дублетных состояний, время жизни электронного спина велико, что часто позволяет регистрировать спектры ЭПР с узкими линиями при температуре жидкого азота и комнатной температуре. [c.244]

    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]

    В случае РФС наблюдаемая полуширина линии (полная ширина на половине высоты) значительно вьппе, чем в случае УФС. Фотоионизация электронов оболочки приводит к возбужденным состояниям, время жизни которых значительно короче, чем в случае УФС, поскольку время жизни пропорционально —энергии фотоионизационного перехода. Данные по поглощению и испусканию рентгеновских лучей [33] показывают, что присущая внутренним атомным уровням щирина линий снижается с уменьшением атомного номера и может быть порядка [c.335]


    Передачу энергии от сенсибилизаторов с низкой энергией возбуждения в триплетное состояние предложено [36] называть невертикальной. В работе [36] рассмотрена возможность передачи энергии на уже возбужденную молекулу олефина. Триплетная молекула сенсибилизатора при невертикальном переносе имеет значительное время жизни и успевает претерпеть 10 —10 столкновений с молекулами олефина, отобрав при-этом такую молекулу, для которой возможен вертикальный переход. Невертикальный перенос энергии возможен, если олефин образует так называемый фантом-триплет , у которого угол между я- и л -орбиталями составляет я/2 или я. Отмечалось выше (см. также рис. 4,а), что у такого фантом-триплета энергия возбуждения ниже, чем у обычного. [c.70]

    Перенос энергии, происходящий между молекулами на расстоянии, значительно превышающем их диаметры столкновения. Скорость переноса по этому механизму не должна лимитироваться диффузией и поэтому не должна зависеть от вязкости даже при переходе от жидких растворов к твердым. Для этого механизма тушение возбужденной молекулы D молекулой А не связано с диффузией или непосредственной встречей молекул за время жизни возбужденного состояния.. Электронные системы молекул D и А можно рассматривать как механические осцилляторы, которые способны колебаться с общей частотой v. Колеблющиеся электрические заряды молекул D и А будут взаимодействовать друг с другом как два диполя. Когда молекула А оказывается вблизи молекулы D, имеется определенная вероятность того, что прежде чем испустить фотон, молекула D передаст свою энергию возбуждения акцептору А. Константа скорости переноса энергии описывается уравнением [c.86]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Обратный переход из метастабильного в возбужденное состояние затрудняется необходимостью обращения спина и затраты энергии, равной разности энергетических уровней E2- =E2 — E . Последняя может производиться только из запаса тепловой энергии твердого вещества. Не удивительно, что глубокое охлаждение замораживает этот переход (переход 4—2, рис. 40). Более вероятным становится переход 3—4 (рис. 40), в результате которого испускается квант /lvз, наблюдается фосфоресценция, длящаяся секундами. Хотя число возбужденных атомов крайне мало (10 % от общего числа атомов) и лишь около 1% их переходит в метастабильное состояние, благодаря тому, что время жизни последнего в 10 раз больше, чем время жизни возбужденного состояния, число атомов, находящихся в метастабильном состоянии, в 10 раз превышает число возбужденных атомов, т. е. достигает величину порядка 10- % от общего числа атомов. А. Н. Теренин обратил внимание на то, что метастабильное состояние во многих случаях может и не проявляться путем фосфоресценции, поскольку последняя связана с особыми, не всегда реализуемыми условиями. Представляя собой состояние валентной ненасыщенности, метастабильное состояние имеет существенное значение для фотохимического и, вообще, химического поведения вещества, в том числе, вероятно,и каталитического. [c.128]

    Изменения внутренней энергии при заполнении состояний Ззг, Зхз, 354 и 355 равны соответственно +387, 4-337, —357 и —441 см 1. Переход оптически запрещен для гелия и резрешен для неона. Измерения поперечного сечения дают значение 4Х Х10 1 см2. Если это значение справедливо, то обмен энергией при 300 К очень эффективен в среднем только одно столкновение из 6,8 имеет достаточную кинетическую энергию для компенсации увеличения внутренней энергии. Время жизни состояния Не(2 5о) даже в чистом гелии незначительно, поэтому точно измерить скорости дезактивации трудно. [c.301]

    Атом любого элемента следует рассматривать как систему, способную возбуждаться и переходить в новое состояние, определяемое квантом поглощенной энергии. Это состояние атома создает новое расположение электронов, переход которых на следующий подуровень или уровень означает поглощение энергии, а возвращение в исходное состояние — релаксация — сопровождается выделением энергии. Время Жизни возбужденного атома чрезвычайно мало (10 — 10 с), однако если атом, находясь в возбужденном состоянии, образует новые связи (вступает в химическое соединение), то в таком случае это состояние атома может сохраняться неопре- [c.53]

    В твердых р-рах время жизни молекулы в триплетном состоянии определяется гл.обр. константами скорости излучат. интеркомбинац. перехода Т, -> Хо и безызлучат. электронно-колебат. переноса энергии на сравнительно высокочастотные колебания связей С—Н, О—Н и т. п. в этой же молекуле или в молекуле р-рителя. Поэтому квантовый выход фосфоресценций ф, лишь в неск. раз меньше квантового выхода ф, образования триплетных состояний Фя < ф, = где т -время жизни состояния Х . В дейте- [c.616]

    Большинство ядерных реакций протекает в две стадии. Сначала происходит захват бомбардирующей частицы ядром мишени и образование промежуточног. возбужденного ядра (см. рис. 3 и 8), которому бомбардирующая частица передает всю свою энергию. Время жизни такого ядра очень мало и составляет 10 - -10 сек. Вторая стадия связана с тем, что из возбун --денного ядра вылетают нуклоны, подобно молекулгг.т жидкости при испарении, энергия которых превышает среднюю энергию всех нуклонов в ядре. При этом испаряющиеся частицы уносят с собой значительную часть энергии возбужденного ядра, которое остается либо в слабовозбужденном состоянии, способном к радиоактивному распаду, либо вообще в невозбужденном, [c.30]

    Результаты, полученные в этой работе, свидетельствуют, что характер диссоциации молекулярных ионов определяется в первую очередь тем временем, которое имеется у иона для того, чтобы в результате процессов внутримолекулярной перегруппировки в нем могли возникнуть различные возможные конфигурации атомов, присоединенных к углеродной цепи. Если ион образуется в относительно низком энергетическом состоянии, между ним и другими близко лежащими энергетическими состояниями с большой вероятностью будут происходить многочисленные переходы, энергия активации которых, по-видимому, мала. Окончательное распределение атомов между такими конфигурациями будет приближаться к статистическому нри увеличении времени жизни молекулярного иона. Если в акте ионизации ион приобретает более высокую энергию, время жизни иона весьма мало и преддиссоциативное распределение атомов сильно отличается от статистического. [c.388]

    Ядерная спиновая релаксация. Существует процесс, называемый спин-решеточной релаксацией, который позволяет восстановить нарушенное больпмановское распределение ядер по уровням энергии. Время жизни ансамбля идентичных ядер (в отсутствие облучения) в любом из двух состояний — верхнем или нижнем — характеризуется временной постоянной Г] или временем спин-решеточной релаксации. При облучении ядер (т. е. в момент, когда больцмановское распределение нарушено) время Т определяет промежуток времени, который требуется для того, чтобы ядерные спины экспоненциально вернулись к больцмановскому распределению. Через промежуток времени, равный Т, первоначальная ядерная намагниченность сохраняется на 36,8% (т. е. 1/е) возвращение к равновесному распределению на более чем 99% требует интервала времени БГ,. (Мы пока не касаемся влияния двойного резонанса на ансамбль спинов, в частности ядерного эффекта Оверхаузера, который будет рассмотрен ниже.) [c.19]

    Перекиси (в частности, перекись бензоила), 2,2-азобисизобути-ронитрил и геминальные хлор- и бромнитрозосоединения при фотовозбуждении распадаются с образованием соответственно алкоксильных, алкильных и галоген-радикалов. В результате происходит свободнорадикальное инициирование деструкции полимеров за счет отрыва возникшими радикалами водородного атома от макромолекул. Так, в частности, сенсибилизируется фотодеструкция цис-1,4-полиизопрена. Многие ароматические конденсированные углеводороды (нафталин, антрацен и т. п.) являются сенсибилизаторами деструкции полимеров вследствие образования синглетного кислорода. Так, нафталин ускоряет фотоокисление полиметилметакрилата, а антрацен — полистирола и 1,4-полибутадиена. Эти же сенсибилизаторы могут действовать и по механизму переноса энергии от их высших возбужденных состояний к полимеру эффективная фотодеструкция полиэтилена в присутствии фенаитрена, например, объясняется Т—Г-поглощением последнего (время жизни -состояний около 3 с) и переносом избыточной [c.183]

    Из теории электромагнитного излучения следует, что вероятность перехода на высший уровень с поглощением энергии внешнего магнитного поля равна вероятности стимулированного полем перехода на низший уровень. Далее теория предсказывает, что вероятность спонтанного перехода из состояния с высокой энергией в состояние с низкой энергией в области радиочастот ничтожна. Таким образом, если группа ядер существует в виде двух равнонаселепных спиновых состояний, то вероятности перехода на высший уровень (поглощение энергии) и на низший (испускание энергии) одинаковы. Однако при обычных условиях в магнитном поле всегда имеется небольшой избыток подчиняющихся больцмановскому распределению ядер на низшем спиновом уровне (в обычных условиях больцмановский фактор составляет приблизительно 0,001 %). Именно этот, очень небольшой, хотя и конечный, избыток ядер на низшем спиновом уровне приводит к наблюдае.мому поглощению энергии в радиочастотной области спектра. Без этого небольшого избытка не существовало бы явления ядерного магнитного резонанса. При длительном поглощении радиочастотного излучения существовавший вначале на низшем уровне избыток ядер может уменьшиться. Соответственно уменьшится и интенсивность сигнала поглощения, который при определенных условиях может свестись к нулю. Такое явление называется насы-п ением при этом населенности обоих спиновых уровней уравниваются. В отсутствие эффективного механизма, инициирующего переходы между ядерными уровнями энергии, время жизни ядра на верхнем или нижнем уровне было бы чрезвычайно большим. [c.71]

    Так как время жизни состояния может быть сокращено также и другими факторами, особенно в результате межмо-лекулярного и внутримолекулярного переноса энергии, то информацию о химических реакциях получают из рассмотрения влияния на форму линий таких параметров, как температура, концентрации реагентов или pH. Редко бывают удобны для этой цели оптические спектры, поскольку они будут уширяться только от очень быстрых реакций. Однако ушире-ние линий в спектре комбинационного рассеяния иона три-фторацетата в присутствии трифторуксусной кислоты было приписано протонному обмену в ионных парах [21]. Существуют трудности в количественной интерпретации результатов [22]. Поэтому данный метод не нашел широкого применения. [c.146]

    Основной экспериментальный подход состоит в том, чтобы, изучая определенные физические параметры (люминесцентные, парамагнитные) специально внедренных во внутрь белка низкомолекулярных соединений, получить характеристику подвижности окружающей их среды, т. е. характеристику внутримолекулярной подвижности белка. Люминесцентные методы позволяют измерять внутримолекулярную подвижность белка, изучая, как зависит от температуры положение максимума люминесценции введенной в белок метки максимума либо собственной люминесценции триптофана белка. При поглощении кванта света люминесцирующей молекулой один из двух л-электронов переходит на возбужденный синглетный уровень 51 (рис. 9.1), а вся молекула при этом переходит в синглетное возбужденное состояние. При переходе в возбужденное состояние запас колебательной энергии молекулы кратковременно повышается, а затем за время 10 "- 10" с происходит диссипация колебательной энергии и релаксация на нижние колебательные подуровни того же самого электронного состояния 51. В возбужденном состоянии 51 молекула живет т = 10 - 10 с, после чего она может вновь вернуться на основной уровень 5о либо с испусканием кванта флуоресценции, либо безызлучательно, рассеивая в тепло энергию электронного возбуждения. За время т существования состояния 51 спин электрона на уровне 51 может изменить свою ориентацию на противоположную. Тогда он станет параллельным спину оставшегося -ранее спаренного с ним п электрона. В этом случае происходит переход молекулы в три-плетное состояние 51 —> Г, в котором спины электронов на 5о-и Г-уровнях параллельны (рис. 9.1). Переход в основное состояние Г —> 5о теперь также требует переориентации спинов вновь на антипараллельную. Поэтому вероятность Г -> 5о перехода мала, а время жизни состояния Т велико по сравнению с состоянием 51 и составляет 10" - 10 с и [c.101]

    Состояние связанной воды (энергия связи, подвижность) определяет специфику процессов структурообразования и массообмена в дисперсных материалах. Исследование диэлектрических свойств торфа низкой влажности свидетельствует, что связь молекул воды с сорбентом не является жесткой [215]. К тому же выводу можно прийти, анализируя данные калориметрического определения теплот смачивания торфа водой. При поступлении первых порций воды в материал выделяемая теплота составляет около 67 кДж/моль. Время жизни молекулы воды на активном центре, в соответствии с формулой т = = тоехр (—Е1ЯТ) (где Е — энергия связи молекул сорбата с сорбентом), в этом случае примерно равно 10 с, а при наличии лишь одной водородной связи тжЗ-10 2 с, т. е. молекулы сорбированной воды могут с частотой 10 —10 с отрываться [c.67]

    Переходя к твердому состоянию, мы в значительной степени уменьшаем ширину резонансных линий по сравнению с тем, что показано на рис. 15.1. В твердом состоянии доплеровское уширение становится пренебрежимо малым и имеет величину около 10эВ для у-квантов с энергией 100 кэВ и излучателей с массовым числом 100. Полная ширина линии на ее полувысоте дается с помощью принципа неопределенности Гейзенберга как А =/г/т = 4,5610 10 = 4,6710 эВ, или 0,097 мм/с (для Ре). Ширина линии—величина бесконечно малого порядка по сравнению с энергией источника 1,410 эВ. Времена жизни возбужденных состояний мессбауэровских ядер лежат в интервале от 10 до 10" ° с, что ведет к ширине линий большинства ядер от 10 до 10 эВ. Этот вопрос обсуждается в работах [1—5], в которых более подробно рассматривается МБ-спектроскопия. [c.287]

    Энергия перехода молекулы этилена в первое синглетное С стояние близка к 640 кДж/моль для других олефинов она нескол ко ниже. Следовательно, возбуждение молекулы олефина пёрев дет ее на относительно высокий энергетический уровень. Энерп перехода этилена из основного в первое триплетное состоян составлят 344 кДж/моль для других олефинов эта энергия ниж Следует также отметить, что время жизни синглетных состоят (10 Ч-10 с) значительно ниже времени жизни триплетных с стояний. Малое время жизни синглетов исключает и химичесю изменение молекулы в этом состоянии. [c.66]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (IX.15), то ширина линии была бесконечно малой. Однако энергия уровня ие есть точно зафиксированная величина. Неопределенность в энергии уровня б связана со временем жизни частицы Ат на соответствующем уровне соотношением неопределенностей ЕАх Ь, где Ат определяется величинами 7] и Гг. Ширина линии определяется величиной ЬЕ (рис. 80), и она тем больше, чем меньше Дт. Таким образом, малые времена жизни возбужденного состояния приводят к ушнрению спектра. С другой стороны, очень большие времена жизни также вызывают уширение спектра вследствие насыщения. [c.235]

    Согласно принципу неопределенности Гейзенберга АхАЕ=/г, время жизни в данном энергетическом состоянии влняст па определенность зиачения энергии в этом состоянии. Следовательно, от величины Т должна зависеть ширина резоиаисной линии. Поглощенная энергия может передаваться частицами не только за счет теплового движения, но и за счет так называемого спин-спинового взаимодействия. В ядерном магнитном резо 1аисе такое взаимодействие обычно наблюдается у связанных друг с другом частиц с магнитным енином. На каждый магнитный момент ядра действует не только постоянное магнитное поле Яо, но и слабое локальное ноле Ялок, создаваемое соседними магнитными ядрами. Магнитный диполь на расстоянии г создает поле для протона это поле равно 14 Э на расстоянии 1 А. С ростом г напряженность поля Яло быстро падаст, так как существенное влияние могут оказывать только ближайшие соседние ядра. По величине разброса локального поля Ядок при помощи уравнения резонанса мол<но найти разброс частот ларморовой прецессии  [c.256]

    I. в низкочастотной области это зондирование является прямым, позволяя определить подвижность соответствующего элемента структуры как целого или время его жизни. Нетрудно видеть, что для флуктуационных структур это, в принципе, означает возможность существования двух резонансных линий, или полос, на релаксационном спектре. Если время жизни п достаточно велико, то можно найти некоторое характеристическое время Лч < Т1 смещения флуктуационного элемента как целого в дискретоподобном состоянии. При Та = Т1 и достаточно больших энергиях [порядка < Гаг в формуле (1.18)] произойдет резонансное поглощение энергии, связанное с рассасыванием флуктуации. [c.54]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Если молекула диамагнитного вещества (молекулы в основном состоянии, которое синглетно, не имеют неспаренных электронов 5 = 0) может иметь возбужденное триплетное состояние (два неспаренных электрона приводят к суммарному электронному спину 5=1), время жизни которого больше характеристического времени метода, то можно регистрировать спектр ЭПР молекул в этом состоянии, как для обычных парамагнитных частиц. В магнитном поле происходит зеемановское расщепление триплетного состояния на три подуровня, как показано на рис. П1.8, а. Два возможных по правилу отбора Д/П5 = 1 перехода, также указанных на рисунке, происходят с одинаковым изменением энергии (т. е. частотой V или значением индукции В постоянного поля), и в спектре ЭПР будет наблюдаться один сигнал. [c.63]

    Энергия, полученная от радиоизлучения, может передаваться спиновой системой окружения, например, в виде фононов решетки, и такой процесс называется, как уже говорилось в гл. I, спин-решеточной релаксацией (Т ). Время жизни т верхнего состояния уменьшается также из-за индуцированного испускания и при этом, как следует из принципа неопределенности бЕАх Н, возрастает неопределенность энергии состояния и происходит уширение линии (рис. 111.10, а, б). Существует, кроме того, механизм спин-спиновой релаксации (Та), определяемый беспорядочным распределением полей ядерных и электрон- [c.65]


Смотреть страницы где упоминается термин Энергии и времена жизни п,п- и я,я-состояний: [c.228]    [c.228]    [c.18]    [c.71]    [c.185]    [c.66]    [c.27]    [c.43]    [c.614]    [c.210]    [c.76]    [c.70]    [c.139]    [c.129]    [c.139]   
Смотреть главы в:

Фотохимия -> Энергии и времена жизни п,п- и я,я-состояний




ПОИСК





Смотрите так же термины и статьи:

Время жизни

Электронно-возбужденные состояния, энергия время жизни

Энергия состояния



© 2024 chem21.info Реклама на сайте