Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ нуклеофильно-электрофильный

    Для гомогенного катализа можно далее выделить специфический кислотный, специфический основной, общий кислотный, общий основной, нуклеофильный и электрофильный. В специфическом кислотном катализе как катализатор действует простой протон, при специфическом основном — гидроксил-ион. При общекислотном или общеосновном катализе действуют любые соединения кислотного или основного характера соответственно. Ниже различные механизмы катализа показаны на реакции бро-мирования ацетона. При специфическом кислотном катализе [c.192]


    Аналогичная ситуация реализуется, по-видимому, также и в ферментативных реакциях. Взаимодействие с субстратом одной функциональной группы белка может быть усилено за счет участия в реакции какой-либо другой, рядом расположенной группы нуклеофильного или электрофильного характера. Так, например, при гидролизе пептидной связи на активном центре карбоксипептидазы А см. схему на стр. 19) нуклеофильная атака молекулой воды усилена за счет общеосновного катализа со стороны карбоксильной группы остатка 01и-270 (а возможно и под действием гидроксильной группы остатка Туг-248). Общекислотный катализ осуществляет, по-видимому, Туг-248. Кроме того, расщепление пептидной связи субстрата может быть существенно облегчено в результате электрофильной атаки атомом 2п. [c.65]

    Механизм образования дифенилолпропана в присутствии щелочных катализаторов противоположен катализу кислотами. Если роль кислот, как показано выше, заключается в активации электрофильного компонента, то действие щелочных агентов сводится к активации нуклеофильного компонента, т. е. молекулы фенола. Эта активация протекает, вероятно, путем отрыва протона и образования фенолят-аниона [c.93]

    Кислотно-основной катализ можно подразделить на специфический кислотный (катализатор Н3О+), общий кислотный (любая кислота АН, кроме Н3О+), электрофильный (кислота Льюиса), специфический основной (гидроксил-ион), общий основной (любое основание В, кроме ОН ), нуклеофильный (основание Льюиса), общий кис-лотно-основной (катализатор — пара НА и В), электрофильно-нуклеофильный (катали- -ч затор —кислота и основание Льюиса), пуш-пульный механизм, когда на субстрат воздействуют одновременно кислота и основание. [c.173]

    Если нуклеофильный и электрофильные центры находятся в субстрате на оптимальном для взаимодействия расстоянии, то возникает явление внутримолекулярного бифункционального катализа нуклеофильно-электрофильный катализ). Такой катализ наблюдается, например, при гидролизе моноамида фталевой кислоты, скорость которого в 75 800 раз выше скорости гидролиза амида бензойной кислоты. Для реакции предложена схема  [c.213]

    Нуклеофильно-электрофильный катализ [c.283]

    Прежде всего остановимся на кислотно-основном катализе, который известен, по-видимому, наиболее давно и представляет собой простейшую (по крайней мере на первый взгляд) разновидность катализа. Затем будут рассмотрены общий кис-лотпо-основной катализ, нуклеофильно-электрофильный катализ, реакции с участием коферментов, катализ окружением и ионами металлов. Наконец, заключительные главы книги посвящены таким разновидностям катализа, которые имеют более прямое отношение к ферментативным процессам. Речь идет о полифункциональном и внутримолекулярном катализе, а также о катализе путем комплексообразования. В необходимых случаях для иллюстрации изложения привлекаются соответствующие ферментативные реакции и модели ферментов. [c.21]


    Указанные субстраты весьма чувствительны к наличию нуклеофильных агентов (в первую очередь, анионов кислот) и были исследованы с целью доказательства наличия нуклеофильного катализа при электрофильном замещении. В общем виде эти представления были развиты в работе . [c.95]

    Рассмотренный случай нуклеофильного катализа в электрофильном замещении связан, очевидно, с повышением реакционной способности связи С—Hg вследствие ее дополнительной поляризации и с усилением нуклеофильности углерода  [c.104]

    Понятие полифункциональный катализ объединяет все индивидуальные типы катализа, обсуждавшиеся выше. Существует довольно много синтетических полифункциональных катализаторов. Каталитические системы более высокого порядка функционируют в ферментах. В биологических катализаторах сочетаются общий кислотный и общий основной катализ, общий основной — общий основной катализ, а также нуклеофильный-электрофильный и нуклеофильно-общеосновной катализ. С другой стороны, пока неизвестны процессы, в которых бы сочетался электрофильный и общий кислотный катализ. [c.279]

    Примечательно, что одноэлектронный перенос в этом случае происходит именно в ДМФ — специфически сольватирующем растворителе, в котором особенно велика активность анионов в реакциях нуклеофильного замещения (см. [16]) и анионного катализа при электрофильном замещении (см. [3]). [c.23]

    В последние годы исследователи все больше склоняются к мысли о том, что эффективность катализа нуклеофильным или электрофильным реагентами может быть повышена, если применять в качестве катализатора некоторую смесь нуклеофильного и электро-фильного реагентов. Изучение этого явления проводится в нескольких направлениях 1) исследование реакций, в которых субстрат, нуклеофильный и электрофильный реагенты образуют переходное состояние, скорость образования которого определяет скорость реакции, и 2) изучение возможных бифункциональных катализаторов, которые сами обладают обеими функциями — электрофильной и нуклеофильной. [c.104]

    Полифункциональный катализ на мицеллах. Многоцентровая атака субстрата электрофильными и нуклеофильными группами фермента в принципе может привести к существенному понижению свободной энергии активации катализируемой реакции (см. 5 гл. И). Однако, как уже отмечалось, на основании одних только теоретических предпосылок трудно оценить вклад полифункционального катализа в ускорение сложных ферментативных процессов. [c.121]

    Нуклеофильный катализ проявляется в тех случаях, когда 1) катализатор по нуклеофильности превосходит реагент 2) промежуточный продукт (I) более активен, чем исходный электрофильный реагент, и термодинамически менее устойчив, чем конечный продукт. [c.243]

    С обратной картиной, когда лимитирующий участник реакции-субстрат, приходится сталкиваться при катализе кислотами. Кислоты катализируют реакции, как правило, путем перевода одного из субстратов, являющегося основанием, в протонированную форму, т. е. в сопряженную кислоту. Подобно присоединению иона металла, присоединение протона, создавая положительный заряд в определенной области молекулы, повышает ее электрофильные свойства н облегчает реакцию с нуклеофильным компонентом. Например, в кислой среде облегчается гидролиз сложных эфиров кислот, поскольку карбонильная группа протонируется и электронная плотность оттягивается от атома углерода, что облегчает последующее взаимодействие с нуклеофильной молекулой воды [c.313]

    Некоторые довольно разроанениые данные, касающиеся механизмов внутримолекулярного катализа, позволяют считать, что те принципы, которые обеспечивают высокую эффективность общего кислотно-основного и нуклеофильно-электрофиль-ного катализа в межмолекулярных системах, справедливы и для внутримолекулярных систем. Во внутримолекулярных системах общие основания кажутся более основными, общие кислоты — более кислыми, а нуклеофилы — еще более эффективными катализаторами нуклеофильно-электрофильных процессов. При этом, однако, следует постоянно помнить, что внутримолекулярный катализ предъявляет существенно более высокие требования к стереохимическим аспектам, чем межмолекулярный катализ. Следовательно, внутримолекулярный катализ не всегда бывает достаточно эффективным. [c.271]

    Основные научные исследования относятся к физической органической химии. Совместно с О. А. Реутовым установила (1960—1966) закономерности, управляющие реакциями электрофильного и радикального замещения у насыщенного атома углерода изучила кинетику и механизм реакций симметризации ртутьорганических соединений. Открыла и изучила механнзм, сформулировала представления о нуклеофильном катализе в электрофильном замещении (1953—1960). Предложила и обосновала 5 2 как парный механизм электрофильного замещения. Осуществила исследования в области химии карбанионов и амбидепт-иых ионов. Изучила влияние раз-.пичных факторов, определяющих двойственную реакционную способность амбидентных анионов. Открыла ряд новых реакций ртуть-и оловоорганических соединений, [c.46]


    Катализ нуклеофильного замещения апротонными кислотами. В реакциях ацилирования и алкилирования ароматических соединений по Фриделю—Крафтсу имеет место увеличение электрофильности ацил- и алкилгалогенидов, вызванное комплексообразованием с безводным хлористым алюминием в качестве апротонной кислоты. Механизм такого катализа уже был рассмотрен выше. В случае алкилирования алкилгалогенидами каталитический э( х зект вызван резким увеличением активности электроотрицательной уходящей группы вследствие присоединения к ней молекулы апротонной кислоты. Это — частный случай катализа апротонными кислотами нуклеофильного замещения. Например, мягкий центр общей основности у первого атома электроотрицательной уходящей группы способен к взаимодействию с катионами металлов, склонными к комплексообразованию  [c.374]

    Изрестен ряд межфазных реакций серусодержащих субстратов. К ним относятся реакции замещения, в которых атом серы может быть нуклеофильным, электрофильным или выполнять вспо.могательную функцию. Этим методом синтезированы разнообразные тиоэфиры и алкилированы многочисленные карбанионы, стабилизированные атомом серы. Кроме того, в условиях межфазного катализа проведено восстановление дисульфидов и М-тозилсульфинилиминов. В связи с этим общей темой данной главы является синтез и реакции серусодержащих молекул. Для такого подхода характерна некоторая перенасыщенность, но мы надеемся, что этот недостаток может компенсироваться широким выбором интересных реакций. [c.265]

    Выше рассматривалось много примеров ускорения протолиза ртутноорганических соединений под действием галогенид-ионов или других нуклеофильных агентов. Кинетические исследования отчетливо доказывают существование явления нуклеофильного катализа в электрофильном замещении - которое имеет общее значение, особенно для химии металлоорганических соединений. В тех случаях, когда структура металлоорганического соединения обеспечивает достаточную стабилизацию карбаниона, образующегося при гетеролизе связи углерод — металл, нуклеофильный катализ приводит к осуществлению мономолекулярного механизма 5е1 (см. гл. 6). Этим объясняются ранее казавшиеся непонятными случаи, когда довольно устойчивые соединения претерпевают быстрый гидролиз в водном растворе в присутствии, например, галогенид-ионов. Так, в этих условиях подвергаются гидролизу перфторалкильные и перфторарильные производные ртути . В отсутствие кислот, при нейтральном pH происходит разрыв связи углерод — ртуть в а-меркурированных эфирах фенилуксусной кислоты. Кинетическое ис- [c.108]

    Важнейшая роль катализатора в электрофильном ковалентном катализе — облегчение протекания реакции и содействие удалению электронов из реакционного центра. Между электрофильным и нуклеофильным катализом нет резкой границы, поскольку реакции электрофильного катализа часто предшествует стадия, в которой катализатор, чтобы присоединиться к субстрату, действует как нуклеофил [см. уравнения (27) и (28)]. Более того, электрофильный катализ какой-либо реакции соответствует обычно нуклеофильному катализу обратной реакции. Поэтому используемое совершенно произвольное разграничение этих механизмов основано на том, представляет ли собой стадия, которая является наиболее важной для катализа, нуклеофильную или электрофильпую атаку, способствующую протеканию реакции в том направлении, в котором ее обычно записывают. [c.94]

    При участии большего числа нуклеофильных и электрофильных групп возможно большее число их комбинаций. Это разнообразие частных механизмов породило многочисленные теории катализа, которые, однако, отличаются лишь используемыми терминами, как, например эстафетная передача заряда [23] (для механизма д), пушпульное взаимодействие (или же принцип тяни- толкай ) [29, 49, 60] (для механизма е), цепь переноса заряда (или связи) [50]. Термодинамическая же сущность всех этих механизмов одна они стабилизируют переходное состояние реакции за счет более благоприятного распределения электронов между разрываемыми и образующимися связямиГ [c.65]

    Реакция протодемеркурирования арилртутных соединений удобна для изучения механизма электрофильного замещения. Отличительные черты этой реакции — фиксированность реакционного центра, простота атакующего агента и наличие сведений о его природе. Для реакции протолиза, однако, характерен специфический вид катализа — нуклеофильное содействие, которое подробно изучено в работах Реутова с сотр. [1]. [c.439]

    Значительную часть своего обзора, автор посвящает общей теории катализа нуклеофильных реакций производных карбоновых кислот, без которой нельзя понять механизм ферментативного действия. Здесь автор кри- ) тйчески анализирует больщой фактический материал по межмолекулярному и внутримолекулярному кислотному, нуклеофильному и электрофильно-нуклеофильному 5 катализу, кинетике и термодинамике реакций у карбо- пильного атома углерода и рассматривает другие во- I просы. Этот анализ показывает, что каталитическое действие может проявляться как на стадии образова-ния, так и на стадии расщепления промежуточного тетраэдрического продукта присоединения, возникающего при 5к2-реакциях производных карбоновых кислот. [c.6]

    С протонированным субстратом на определяющей скорость стадии [схема (27)], кинетически может считаться общим кислотным катализом, однако по механизму не является им, а скорее совпадает с одним из вариантов нуклеофильно-электрофильяого катализа. С другой стороны, в случае кислотно-основного катализа, заключающегося только в переносе протона, механизм формально совпадает с механизмами общего кислотного катализа. Однако. в реакциях производных карбоновых кислот сопряженное основание может служить нуклеофильным реагентом, что приводит к важным в химическом отношении следствиям. В этом обзоре особое внимание уделяется механизмам катализа, и примеры, подтверждающие схему (27), будут обсуждаться в разделе, посвященном нуклеофильно-электрофильному катализу (раздел V). Рассматриваемые в настоящем разделе типы катализа кинетически соответствуют уравнению (28) и либо протекают по механизму, выраженному схемой (26), либо механизм их еще не установлен. [c.59]

    Электрофильно-нуклеофильный катализ гидролиза эфиров —важное явление. Однако эфиры гораздо более чувствительны к куклеофильной атаке, чем к электрофильной, в то время как амиды подвергаются нуклеофильной и электрофильной атаке в приблизительно одинаковой степеии. Поэтому можно было бы ожидать, что реакции амидов более успешно будут осуществляться с помощью однощременного катализа нуклеофильным и электрофильным реагентами. Эта гипотеза была проверена экопериментально. Некоторые реакции амидов протекают, возможно, путем согласованной атаки двумя катализаторами, другие являются постадийными, включающими прототропное равновесие с последующей определяющей скорость нуклеофильной атакой. В большинстве случаев кинетика соответствует общему кислотному катализу, определение которому было дано ранее. [c.110]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    В синтезе грамицидина 8 участвуют два фермента легкий (М = 100 000) и тяжелый (Л4 = 280 ООО), Синтез начинается иа легком ферменте, который действует также как рацемаза , превращая ь-фенилаланин в о-энантиомер. Нуклеофильная тиольная [руппа легкого фермента атакует активированный фенилаланин (АТР и аминокислота реагируют с образованием ангидрида), образуя (катализ основанием) высокоэнергетическин тиоэфир, ДСп1др —38 кДж/моль (—8 ккал/моль). Различие свойств тио-эфиров и ацильных эфиров связано с гораздо большей степенью делокализации неспаренных электронов кислородом карбонильной группы, чем атомом серы. Такая делокализация понижает электрофильность карбонильной группы. Кроме того, тиольная группа — более хорошая уходящая группа, чем соответствующая гидроксильная. Напомним, что для меркаптана рКа Ю, тогда как для спирта рКа 15 (табл. 2.1). [c.62]

    Если ири нуклеофильном катализе происходит подача электронов от катализатора к субстрату, то при электрофильном катализе происходит оттягивание электронов, или перенос электронной плотности, от субстрата к катализатору. Ионы металлов — отличные электрофильные катализаторы. Электрофильный катализ особенно существен для химии фосфатов, поскольку отрицательные заряды атомов фосфора стремятся оттолкнуть нуклеофилы. Например, синтез 3, 5 -гуанозинциклофосфата (сОМР, разд. 3.4.2) из гуанозинтрифосфата заметно ускоряется в присутствии двухзарядиых катионов металлов (например, Mg2+, Мп2+, Ва2+, 2п=+, Са2+). [c.195]

    Аналогичные соотношения могут быть получены и в случае катализа основаниями, если роль катализатора сводится к тому, чтобы перевести слабо нуклеофильный субстрат 5Н в более нуклеофильную форму 5 , способную реагировать со слабым электрофильным реагентом. В разба1 лепном водном растворе коГгцептрация, S определяется [c.277]

    Необходимо также учитывать, что кислоты и основания заключают Б себе электрофильную (катион) и нуклеофильную (анион) частицы, способные одновременно участвовать в гетеролитнческом процессе и осуществлять таким образом бифункциональный катализ. Например, енолизацию карбонильных соединений могут вызывать как ki g-лот так и основания. [c.242]

    При гетерогенном катализе в качестве катализаторов чаще всего исполь-.зуются смеси твердых веществ, каждое из которых играет определенную роль в стадиях каталитического процесса. Нескомпенсироваиное потенциальное поле и большое число дефектов кристаллической структуры приводят к тому, что на поверхности возникают особые активные центры адсорбции, а также донорные и акцепторные участки (центры), на которых происходит присоеди-ление или отщепление нуклеофильных и электрофильных частиц, протонов и -электронов. Чаще всего используемый в настоящее время катализатор синтеза аммиака имеет состав Ре/КаО/АЬОз. Первой стадией реакции синтеза -аммиака является адсорбция N3 на (1,1,1)-поверхности кубической объемно-центрированной решетки железа. На поверхности катализатора происходит также расщепление Нг на атомы. Адсорбированная и активированная молеку--ла N2 постепенно гидрируется атомарным водородом до промежуточного образования ЫаНб. При последующем присоединении атома водорода связь разрывается и образуется молекула аммиака ЫНз. Другие компоненты катализатора оказывают активирующее и стабилизирующее воздействие на отдельные стадии этого химического процесса. [c.436]

    Электрофильный и нуклеофильный катализ. При электрофиль-иом катализе применяются кислоты Льюиса (А1С1з, ВРз, пС и др.). Примером таких процессов являются реакции Фриделя — Крафтса. Нуклеофильными катализаторами являются, например, пиридин, ароматические амины, имидазол. [c.238]

    Под действием катализатора основного характера в некоторых елучаях возможна активизация субстрата (электрофильной компоненты). Этот тип катализа называется нуклеофильным. Например, ре- [c.242]

    Остальные главы подвергнуты в основном некоторой редакционной переработке и дополнены лишь отдельными, как правило, небольшими, вставками. Так, авторы сочли необходимым ввести в 3 гл, VI представление о нуклеофильном и электрофильном катализе, гл. VH дополнить сведениями о катализе реакций продолжения цепи ионами переменной валентности, В этой же главе при рассмотрении критических явлений в цепных реакциях дается а[1ализ перехода между двумя устойчивыми стационарными режимами в реакции с вырожденным разветвлением цепей в присутствии ингибитора, Гл. VIII дополнена сведениями о катионной и анионной 1юли-меризации. Для, всех трех рассматриваемых типов реакций синтеза [c.5]

    Реакция (VI. 16) представляет собой нуклеофильное замещение при карбонильном атоме С. В данном случае более сильный, чем ароматический амин, нуклеофил — диметиламинопиридин — обеспечивает быстрое превращение хлорангидрида в ацнлдиметиламино-пиридиннй-катион, который благодаря наличию положительного заряда обладает высокой электрофильностью и легко атакуется амином. Такой тип катализа известен как нуклеофильный катализ. [c.322]


Смотреть страницы где упоминается термин Катализ нуклеофильно-электрофильный: [c.449]    [c.426]    [c.185]    [c.810]    [c.114]    [c.91]    [c.67]    [c.294]    [c.173]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ нуклеофильный

Катализ электрофильны

Межмолекулярный электрофильно-нуклеофильный катализ

Электрофильность

Электрофильный катализ нуклеофильного замещения



© 2024 chem21.info Реклама на сайте