Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформационные свойства полимеров. Ориентация

    Деформационные свойства кристаллических полимеров зависят эт предварительной ориентации, проводимой в процессе переработки, холодной вытяжки и т. д. Однако можно подобрать условия, в которых влияние этого фактора сводится к минимуму. [c.253]

    Надмолекулярные структуры и кристаллические образования, которые могут присутствовать в блочных полимерах в довольно больших количествах (70—90% у ПЭ, 95—98% у политетрафторэтилена и даже до 100% у полимерных монокристаллов), влияют на характер релаксационных процессов. Главной особенностью деформационных свойств полимеров, находящихся в стеклообразном состоянии, является их сильная зависимость от величины прилагаемой нагрузки. Причем, если при малых напряжениях характер изменения физических свойств объясняется линейной теорией вязкоупругости, то при высоких напряжениях необходимо использовать нелинейную теорию [4]. С учетом основных процессов молекулярной релаксации деформацию стеклообразных полимеров можно описать, используя пятиэлементную модель (рис. II. 14), отдельным элементам которой соответствует конкретный физический смысл. Так, пружина с модулем Ео описывает идеально упругую составляющую деформации, связанную с деформацией валентных углов и изменением межатомных расстояний. Элементу Кельвина Ех — т] приписывается молекулярный процесс, связанный с подвижностью боковых привесков основной полимерной цепи. Если полимерный материал подвергается внешнему воздействию в температурном интервале, где реализуется такой релаксационный процесс, то это может привести к ориентации [c.169]


    Заканчивая описание деформационных свойств предварительно ориентированных стекол, еще раз подчеркнем благотворное влияние ориентации на эти свойства, и особенно на снижение хрупкости. Известно, что блочные образцы полистирола не деформируются при комнатной температуре и разрушаются хрупко. Но если эти же образцы предварительно ориентировать при более высоких температурах (выше Tg), то хрупкость заметно снижается. Такие образцы способны к большим вынужденно-эластическим деформациям при низких температурах. Опыты подтверждают вывод о том, что ориентация приводит к снижению хрупкости. Одновременно становится очевидной правильность схемы хрупкого и нехрупкого (вынужденно-эластического) разрушения полимеров, изложенной выше. [c.158]

    Несомненно, рассмотренные эффекты должны оказать влияние и на характер разрушения адгезионных соединений. Ориентационное упрочнение полимера при механическом нагружении адгезионного соединения приводит к тому, что разрушение происходит за пределами ориентированного слоя и имеет, таким образом, когезионный характер. Визуально такое разрушение может иметь вид адгезионного, отя в действительности на поверхности подложки после разрушения соединения находится тончайший слой полимера. По-видимому, это обстоятельство связано с тем, что толщина слоя полимера, упрочняющегося при нагружении адгезионного соединения за счет ориентации, мала. Таким образом, причиной когезионного разрушения адгезионных соединений могут являться особенности деформационно-прочностных свойств полимера в адгезионном соединении. Разумеется, процесс ориентационного упрочнения полимера в нагруженном адгезионном соединении имеет релаксационную природу и зависит не только от структуры полимера и энергия возникших межфазных связей, но в значительной степени определяется кинетическими параметрами. Именно поэтому характер разрушения адгезионных соединений очень часто меняется при изменении скорости процесса разрушения. Рост скорости, как правило, приводит к переходу когезионного разрушения в смешанное, а затем в адгезионное. [c.160]

    Деформационные свойства полимеров. Ориентация [c.158]

    Ясно, что кристаллические участки нельзя рассматривать просто как твердые частицы инертного наполнителя. Будучи связаны с аморфными частями множеством проходных молекул, опи приобретают роль зажимов , скрепляющих подвижные цепи и в той или иной мере структурируют полимер в целом. Поэтому деформационные свойства аморфно-кристаллических полимеров сильно зависят от степени кристалличности. При весьма низких ее значениях такие полимеры еще мало отличаются от обычных линейных аморфных полимеров, но с ростом этой величины они все более приобретают свойства, присущие эластомерам (см. главу VI). Пластические деформации для такого состояния не характерны, что же касается высокоэластических деформаций, то уровень их тем ниже, чем больше степень кристалличности. При высоких ее значениях полимер становится жестким, и в практике ТМА для него обычно деформируемость принимают равной нулю, как и для застеклованных образцов. Однако при достаточной величине действующих усилий в них может развиваться своеобразный вид больших деформаций, заключающийся во взаимном перемещении не отдельных макромолекул либо их сегментов, а элементов надмолекулярной структуры — кристаллитов и более крупных образований [59]. Растяжение таких образцов часто происходит с формированием характерной шейки — утоненного участка с высокой степенью ориентации кристаллитов. [c.114]


    Во-вторых, при вытяжке возникает анизотропия свойств полимера из-за изменения характера молекулярной ориентации, вследствие чего возрастает жесткость в направлении растяжения. Это наиболее общее явление, присущее как аморфным, так и кристаллическим полимерам. (Следует подчеркнуть, что теории механической анизотропии свойств, рассматривавшиеся в разделах 10.6 и 10.7, относятся к конечному состоянию ориентированных материалов и неприменимы для объяснения эффекта деформационного упрочнения.) [c.298]

    При сравнении механических свойств изотропного полиамида и анизотропного, деформированного в различных направлениях, выяснилось, что анизотропный полимер при деформации в направлении, перпендикулярном к направлению ориентации , ведет себя подобно изотропному. В этом случае, так же как при деформации изотропного полиамида, график зависимости усилия от удлинения имеет три характерных участка, возникает шейка и свойства полимера изменяются скачком. Кроме того, во всем диапазоне исследованных температур характер изменения деформационных кривых совершенно одинаков для изотропного полиамида и анизотропного полиамида при -деформации. Такое совпадение данных позволило нам провести тш а-тельное систематическое исследование поведения полиамида в широком интервале температур на анизотропной пленке, приготовленной в производственных условиях и являющейся достаточно однородной как но толщине, так и по составу. [c.295]

    Механические свойства студней представляют боль-шой интерес по двум причинам. Во-первых, студнеобразное состояние системы в процессе переработки полимера является промежуточным или даже конечным состоянием. Поэтому необходимо знать такие механические характеристики студней, как прочность при сжатии и растяжении, деформационные свойства, а также модули сдвига и растяжения. В некоторых случаях, особенна при формовании волокон из растворов полимеров, необходимо знать и составляющие суммарной деформации образующегося студня, поскольку это связано с возможностью ориентации полимера в волокне. [c.121]

    Полимеры характеризуются наличием свободных объемов в области проходных молекул [9]. Прочностные же и деформационные свойства зависят в основном от состояния, концентрации и ориентации наиболее слабых мест материала, а именно областей проходных молекул. Паи-более вероятно, что пластификатор и электропроводящий наполнитель заполняют при кристаллизации свободные объемы в смеси, оказывая тем самым влияние на прочностные и деформационные свойства. [c.105]

    При одинаковой степени вытяжки физические свойства различных полимеров изменяются неодинаково. Наибольшие изменения характерны для поликарбоната, меньшие — для поливинилхлорида, полиметилметакрилата и полистирола Детальное исследование диаграмм растяжения предварительно ориентированных стеклообразных полимеров показало что их деформационные свойства определяются в основном ориентацией звеньев макромолекул. Последняя характеризуется величиной двойного лучепреломления. [c.157]

    Возможность достижения максимальной прочности путем повышения ориентации полимера в волокне ограничена из-за резкого понижения эластических свойств волокон при повышении степени ориентации. Вопрос о деформационных свойствах волокон будет рассмотрен далее. Здесь же укажем, что существует определенный максимум на кривой эластической работоспособности волокна (произведение прочности на эластическую часть удлинения). Как видно из рис. 12.8, для поликапроамидного волокна этот максимум лежит при кратности вытяжки около 3, за пределами которой [c.286]

    Вернемся теперь к рассмотрению скачкообразного изменения свойств полиамида при его деформации. Подробное исследование обеих модификаций полиамида, получающихся при 1 -деформации на участке //, показало еще более убедительно, что изменение свойств кристаллических полимеров происходит скачком и что обе модификации весьма своеобразно отличаются друг от друга. Это различие двух модификаций кристал,лического полимера весьма замечательно обе модификации анизотропны и обладают совершенно одинаковыми свойствами, но направления ориентации в исходной и конечной модификациях взаимно перпендикулярны. Поскольку обе модификации образуются в одном и том же образце, то при оценке их механических свойств в некотором избранном нанравлении (например, вдоль образца) возникает столь же резкое отличие механических характеристик, как при оценке свойств одной и той же модификации при ее - и ] -деформации (см. таблицу). Однако следует обратить внимание на то, что это изменение свойств достигается не поворотом образца как целого, а путем перестройки расположения всех молекул в процессе растяжения. При этом следует заметить, что если растягивать полиамид до различных удлинений, соответствующих участку II деформационной кривой, то получается переменное соотношение между протяженностью исходного и вновь образующегося ( шейка ) материала. [c.296]

    Ориентация оказывает значительное влияние на механические свойства кристаллических полимеров " . На рис. 98 представлены деформационные кривые для предварительно ориентированного полиамида, испытанного в направлении ориентации. Из рисунка видно, что ориентированные кристаллические полимеры обладают более высоким значением разрывного напряжения и значительно меньшим относительным удлинением по сравнению с деформацией в направлении, перпендикулярном ориентации (см. стр. 237). С понижением температуры величина деформации уменьшается, а разрывная прочность закономерно увеличивается. Предварительно ориентированный образец полиамида хрупко разрушается только три —170°С. [c.241]


    Приведенные данные позволяют предположить, что различия в структуре и свойствах слоя полимера должны влиять на характер разрушения адгезионного соединения и адгезионную прочность. Применительно к изучаемой системе, когда СТГ может образовывать хорошо выраженный модифицированный слой (на границе с металлом) либо слабо выраженный (на границе с ПМ), можно представить два различных механизма расслаивания. В тех случаях, когда адгезив (СТГ) обладает хорошо выраженным модифицированным слоем с транс-кристаллитной структурой, расслаивание адгезионных соединений, по-видимому, будет сопровождаться развитием больших деформаций, чем в отсутствие такого слоя. Это связано с тем, что транскристаллитный слой в силу особенностей своего строения (ориентация кристаллитов в поперечном направлении к плоскости расслаивания) препятствует развитию микродефектов при расслаивании адгезионного соединения. Поэтому в данном случае реализуются большие деформации адгезива в зоне контакта с подложкой, и в общее усилие расслаивания относительно больший вклад вносит деформационная слагаемая. В тех случаях, когда адгезив не имеет хорошо выраженного транскристаллитного слоя и преобладающей структурной единицей являются сферолиты, характер деформации н развития микродефектов при расслаивании может оказаться иным, так как наличие сферолитов в зоне контакта с подложкой облегчает возникновение трещин. Особенно легко микродефекты возникают в зоне контакта сферолита с подложкой. В этом месте в поле действия механических сил концентрируются напряжения, что и облегчает прорастание трещин. Уместно отметить, что в работе [144] наблюдали значительное повышение разрывного удлинения полимерных пленок, обладающих хорошо выраженной столбчатой структурой модифицированного слоя. Эти данные подтверждают справедливость высказанного предположения о зависимости адгезионной прочности от структуры граничного слоя полимера. [c.105]

    Сопоставление различных принципиальных методов формования волокон и разновидностей этих методов еще раз свидетельствует о том, что существенно важным для процесса формования является соотношение между скоростью отверждения (нарастания вязких свойств) и скоростью проведения деформационных процессов с целью ориентации полимера. Очевидно, основной задачей в области исследования механизма формования искусственных волокон должно являться изучение кинетики этих процессов и выявление образующихся при этом фибриллярных структур. [c.204]

    Заканчивая рассмотрение практических методов оценки свойств волокон по деформационным кривым, следует привести еще один вид испытаний — определение прочности и удлинения волокон при разрыве в мокром состоянии. О причине снижения прочности волокон из полимеров с гидрофильными группами (ОН-группы в целлюлозных волокнах, СОКН-группировки в цепи макромолекулы полиамидов) при увлажнении уже говорилось в связи с обсуждением вопроса о влиянии ориентации на прочность. Здесь следует лишь обратить внимание на изменение характера деформационной кривой при увлажнении, что продемонстрировано на примере вискозных волокон (рис. 12.18). Как видно из сопоставления кривых 2 и 2, для мокрого волокна очень слабо выражена квазиупругая часть кривой. Низкие начальные модули и большие необратимые удлинения при относительно невысоких нагрузках, обусловлены тем, что увлажненное волокно находится в состоянии, более близком к температуре стеклования, чем сухое волокно, в результате чего предел вынужденной эла- [c.302]

    Характеристиками деформационных процессов являются напряжения, деформации и время (скорость). Указанные характеристики находятся в определенной взаимосвязи, обусловленной механическими свойствами деформируемого материала. Ориентация растворов и расплавов полимеров осуществляется путем одновременного развития деформации двух видов обратимой высокоэластической и необратимой деформации течения. [c.229]

    Количественной характеристикой диэлектрических свойств пластмасс служит диэлектрическая проницаемость в, под которой понимают отношение емкостей электрического конденсатора, заполненного диэлектриком и без заполнения (помещенного в вакуум). Диэлектрическая проницаемость зависит от частоты электрического тока. Это обусловлено тем, что элементы структуры полимера — звенья молекулярных цепей, атомные группировки и т. п.—ориентируются в направлении приложенного электрического поля. В результате деформационной и ди-польной поляризации, происходящей под действием внешнего поля, последнее в диэлектрике ослабляется. Поскольку указанный эффект связан с условиями ориентации элементарных диполей, то он зависит от частоты поля. При высокой частоте поля ориентация диполей за время полупериода колебаний не успевает развиться и значение диэлектрической проницаемости мало. С понижением частоты успевает произойти частичная ориентация элементарных диполей. При этом как только она начнет осуществляться, значение е также начнет возрастать, достигая максимума, который соответствует предельно возможной ориентации. Естественно, что повышение температуры способствует увеличению подвижности структурных элементов, что проявляется в увеличении е (действительной части комплексной величины е). На рис. 2.20 изображены температурные зависимости диэлектрической проницаемости поливинилхлорида при различных частотах [60, с. 143]. [c.92]

    Каргиным и Соголовой вскрыта природа и закономерности деформационных свойств кристаллических полимеров, влияние на 1гх прочность ориентации, структуры и релаксационных свойств полимерных молекул. Каргиным и Козловым с сотр. широко изучено струк-турообразование в полимерных системах, в частности показано, что в кристаллических полимерах наблюдается полиморфизм, существенно влияющий на механические и другие свойства полимеров. [c.66]

    Исследование механических свойств полиамида при растяжении в направлении ориентации показало, что при этой деформации свойства полимера существенно отличаются от свойств изотропного и анизотропного (при 1 -деформации) полимера какно характеру деформационной кривой (рис. 3), так и по поведению в широком интервале температур. [c.295]

    П. полимерных материалов тесно связана с их деформационными свойствамп. Разрыв полимеров в большинстве случаев происходит в орпептированном состоянии, полученном либо предварительно (напр,, в В0Л0К1ШСТЫХ материалах), лпбо возникающем в процессе испытания на разрыв. Даже в хрупком состоянии П. полимера может сильно изменяться в зависимости от степени предварительной вытяжки. Предварительно ориентированный полимер представляет собой высокопрочный аш1зо-тропный материал. Основным фактором упрочнения полимера является молекулярная ориентация независимо от того, находятся ли волокна в кристаллическом или аморфном состоянин (см. Механические свойства полимеров). [c.195]

    Существование в линейных полимерах сшитой структуры, образованной вторичными узлами различного происхождения — диполь-дипольным взаимодействием боковых полярных групп, а также перехлестами и переплетениями макромолекул, обнаруживают Кувшинский с сотр. [98—100] при изучении деформационных свойств линейных полимеров. Эти узлы нестабильны и способны разрушаться, цепи в зацеплениях могут проскальзывать и выходить из зацеплений. При растяжении линейных полимеров одновременно происходит два процесса — растяжение цепей и распад локальных связей. Первый процесс вызывает рост степени ориентации и напряжения в образце, а второй — выход цепей из зацепления и спад напряжений. [c.39]

    Известно [121], что механические свойства полимеров при прочих равных условиях зависят от скорости деформации. Это было показано на примере полиизо-бутнлена п каучуков [122—125], эпоксидов [126] и полиэфиракрилатов [127]. Зависимость деформационно-прочностных свойств полимеров от скорости деформации обусловлена изменением числа, природы и соотношения связей внутри н между надмолекулярными структурами, участвующими в процессе дефор.мации и разрушения пространственной сетки. Перераспределение связей в системе в зависимости от скорости приложения нагрузки оказывает существенное влияние на морфологию и размер надмолекулярных структур и характер образуемой ими сетки. Исследованию структурных превращений в процессе деформации полимеров посвящено небольшое число работ, выполненных главным образом для линейных и кристаллизующихся полимеров. Так, при растяжении натурального каучука и СКБ-30 первоначальная ленточная структура разрушалась, причем из Л0ИТ вытягивались пачки-цепей [128]. После ориентации нолиметилметакрила-та удалось наблюдать волокнистую структуру [129], в то время как обычный полиметилметакрилат имеет доменную структуру [130]. Предполагают [131], что влияние скорости нагружения и скольжения на износ полиэтилена, политетрафторэтилена, поликапролактама и фенолоформальдегидов обусловлено изменением морфологии надмолекулярной структуры в контактном слое полимера. [c.155]

    Эти расчеты, однако, весьма условны. Теория предполагает ряд допушений, в первую очередь, равновесность высокоэластической деформации. При растяжении линейных полимеров за квазиравновесное (динамическое равновесие) может быть принято только состояние стационарного течения. Кроме того, при вычислениях N и Мс часто используется общая, а не высокоэластическая деформация. Тем не менее использование такого подхода (или измерение напряжений) вместе с оценкой степени ориентации позволяют охарактеризовать состояние полимера и прогнозировать его деформационные свойства, так как подразумевает определение не только ориентации, но и того, каким образом эта ориентация была создана. [c.256]

    Приведенные экспериментальные данные и результаты теоретических оценок касались ПЭВП, который является наиболее гибким и поэтому легче всего поддается ориентации по сравнению с другими полимерами. Однако аналогичные эффекты, как этого и следовало ожидать, наблюдались и для остальных полимеров. Для понимания причин, вызывающих изменение свойств, достигаемое регулируемым формированием структур, необходим детальный анализ деформационных и температурных воздействий, которым подвергается полимер в процессе переработки. Такой анализ стал проводиться лишь сравнительно недавно, хотя в течение последних 30 лет исследовалась роль надмолекулярных структур, морфологии и порядка в кристаллических и аморфных полимерах в равновесных условиях. Понимание характера равновесной морфологии позволяет правильно оценить потенциальные возможности, которые дает регулирование структур. [c.47]

    Ориентация оказывает значительное влияние на мехаш ческие свойства кристаллических полимеров Иа рис. 103 представлены деформационные кривые для предварительно ориентированного полна (ида, ислыта шого /г орнентации. Из р> сунка [c.232]

    Направленное изменение надмолекулярной структуры полимеров мо/ксг осуществляться различными путями. Во-первых, структуру можно изменять нод воздействием соответствующей температуры и деформационной обработки [7—9]. В качестве примера можно привести ориентацию полимерных нленок, закалку экструзионных и литьевых изделий. В ряде случаев быстроохлаи, даемое изделие обладает высокой механической прочностью. Однако этот метод регулирования механических свойств используется лишь для тонкостенных изделий. В толстостенных изделиях часто наблюдается неоднородность структурных образований, что ведет к появлению разного рода микродефектов, вызывающих значительный разброс показателей физико-механических свойств готовых изделий и снижающих их надежность. Второй путь изменения надмолекулярной структуры материала в изделии — введение в полимер перед переработкой или в процессе переработки небольших количеств различных веществ, которые могут иметь самую разнообразную природу. Вследствие этого различается механизм их воздействия на полимерный материал [10]. [c.416]

    Большинство исследователей считает, что на поверхности частиц активных наполнителей происходит адсорбция молекул каучука и определенная их ориентация, способствующая упрочению полимера. Большое значение придается также прочностным свойствам структурной сетки, на важную роль которой в поведении резины указывают многие данные по диэлектрическим свойствам, деформационным испытаниям и др. Не по,-теряли интерес и результаты опытов Штамбергера, наблюдавшего желатинирование бензиновых растворов мастицирован-ного каучука при введении в них газовой сажи [584]. Пейн [585] установил, что суспензии сажи в углеводородах (пасты) при концентрации дисперсной фазы 30% характеризуются модулем сдвига порядка 10 дн1см . Однако попытки уточнения вклада различных взаимодействий (наполнитель — наполнитель, полимер — наполнитель и полимер — полимер) в характеристике прочности системы встречают большие трудности. [c.135]


Смотреть страницы где упоминается термин Деформационные свойства полимеров. Ориентация: [c.92]    [c.232]    [c.232]    [c.142]    [c.64]   
Смотреть главы в:

Высокомолекулярные соединения -> Деформационные свойства полимеров. Ориентация




ПОИСК





Смотрите так же термины и статьи:

Деформационные свойства

Ориентация в полимерах



© 2025 chem21.info Реклама на сайте