Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Развитие оптической связи

    РАЗВИТИЕ ОПТИЧЕСКОЙ СВЯЗИ [c.4]

    Сегодняшние успехи в развитии систем связи дают возможность выявлять, передавать и анализировать изображения объектов контроля и главные их характеристики через спутники, по телевидению, радио, кабелю, волоконно-оптическим проводам, по телефону. Уровень содержания информации возрастает с использованием систем выпрямления изображений, с применением цвета и других форм усиления изображения — любой из нас вспомнит при этом успехи телевидения, прошедшего за сравнительно недолгий срок путь от малоформатных черно-белых экранов до больших цветных. [c.40]


    Развитие оптических сенсоров стало возможным с появлением оптических волокон для видимого диапазона. Недавние достижения связаны с расширением спектрального диапазона, включающего волоконно-оптические сенсоры в УФ-, ближнем и среднем ИК-диапазонах. Помимо волоконно-оптических сенсоров представляют интерес также сенсоры на основе планарной оптики. [c.505]

    Наиболее серьезные требования к однородности толщин пленок предъявляются в производстве оптических покрытий [147]. По этой причине техника, удовлетворяющая этим требованиям, была развита в связи с осаждением многослойных диэлектрических покрытий. Были разработаны методы, основанные на идее, что распределение, идентичное распределению от кольцевого испарителя, может быть получено либо вращением эксцентрично расположенного испарителя напротив неподвижной подложки, либо вращением подложки напротив эксцентрично расположенного испарителя. Поскольку вращение испарителя имеет определенные экспериментальные трудности, связанные с токонесущими вводами и контролем температуры, то более предпочтительным является вращение подложки. В последнем случае можно одновременно получать однородное покрытие на нескольких подложках, расположенных на равном расстоянии от центра. [c.88]

    Дальнейшее развитие молекулярного спектрального анализа неразрывно связано с развитием оптических приборов. Основным направлением в развитии оптического приборостроения является создание высокоавтоматизированного, чувствительного и удобного в работе оборудования. Эта проблема в значительной мере решена для инфракрасной спектроскопии. Но широко распространенный у нас спектрометр СФ-4, основной прибор [c.136]

    Оптическую микроскопию в отраженном свете применяют для исследования микроструктуры материалов, размер характерных деталей в которых имеет порядок нескольких долей микрометра. Наибольшее развитие оптическая микроскопия получила при решении металловедческих задач ( металлографические микроскопы), хотя ее применение не ограничивается этими задачами. Применение оптической микроскопии при больших увеличениях (в несколько сотен крат) для исследования микроструктуры материалов затрудняется малой глубиной резкости (зависящей от длины волны используемого излучения), в связи с чем исследования обычно проводят на тщательно отшлифованных с последующим травлением образцах. Травление образцов необходимо для выделения границ зерен (поскольку протекает на них с большей скоростью). Травление также позволяет наблюдать некоторые протяженные дефекты (например, выходы дислокаций на поверхность зерна). [c.244]


    VI. Успехи в развитии оптических методов тесно связаны с достижениями лазерной техники, и в особенности лазерно-доплеровской анемометрии (см., например, [10, 15, 17, 18]). Основная ценность таких методов состоит в возможности выполнения точных измерений скорости вблизи стенки, когда применение других способов диагностики потока является проблематичным. Другое достойнее 10  [c.58]

    Важнейшим фактором в развитии оптических систем и кабелей связи явилось появление оптического квантового генератора—лазера. Лазерные системы работают в оптическом диапазоне волн. Если при передаче по кабелям используются частоты около мегагерц, а по волноводам—гигагерцы, то для лазерных систем используются видимый и инфракрасный спектры оптического диапазона волн (сотни терагерц). [c.5]

    В заключение можно отметить, что спектральное уплотнение открывает широкие возможности увеличения мощности оптических трактов и развития сетей связи. [c.65]

    Особое внимание во многих странах (Япония, США, Англия, Франция) уделяется развитию подводной связи по оптическим кабелям. Здесь используются в первую очередь такие достоинства ОК, как малые габариты и масса, большие длины трансляционных участков и высокая пропускная способность оптического тракта. [c.255]

    Волоконно-оптический и симметричный электрический кабели подсистемы внешних магистралей вне зданий прокладываются в большинстве случаев в телефонной канализации. Подземная канализация данной разновидности представляет собой совокупность трубопроводов, шахт, колодцев и иных смотровых устройств, предназначенных для прокладки (затягивания) кабелей связи в образуемые ею каналы, монтажа этих кабелей и их последующего эксплуатационного обслуживания [41]. Применение этого вида инженерных сооружений обеспечивает возможность развития сети связи без вскрытия уличных покрытий и производства земляных работ. Использование метода прокладки в кабельной канализации обеспечивает наиболее благоприятные условия эксплуатации за счет наличия эффективной защиты от внешних механических воздействий, отсутствия резких суточных и годовых изменений температуры и значительного снижения вибрационных нагрузок. [c.84]

    Развитие количественных методов анализа исторически тесно связано с созданием новой измерительной техники. Так, возможность разложения света в спектр обусловила появление разнообразных и чрезвычайно ценных оптических методов анализа, дальнейшая разработка которых продолжается и, в настоящее время. В свою очередь, применение этих методов в количественном анализе вызвало необходимость точных электрических способов измерения интенсивности светового потока. Изучение закономерностей электрических процессов и создание точных приборов для измерения силы тока и напряжения стало основой возникновения и развития электрохимических методов анализа. Затем появились термические методы, анализа, основанные на точном измерении температуры с помощью термоэлементов и термисторов, и радиохимические методы анализа, в которых осуществляется чувствительная регистрация радиоактивных излучений. [c.254]

    Правило октантов. Одно из наиболее важных проявлений оптической активности связано с внутренне симметричным хромофором, например С = 0, который находится в асимметричном окружении. Большой экспериментальный материал для производных циклогексанона позволил сформулировать правило октантов, нашедшее очень широкое применение и развитие для других классов соединений. Оно связывает знак эффекта Коттона с положениями замещающих групп по отношению к карбонильной группе. На рис. Х.2 показано расположение четырех октантов, задаваемых плоскостями А, В и С, пересекающихся в точке на связи С = 0. Плоскость А является плоскостью симметрии цикла. В плоскости В находится карбонильная группа с двумя атомами углерода цикла Са и Сб- Плоскость С перпендикулярна плоскостям А и В, пересекает связь С = 0 и выделяет четыре октанта, называемых задними. Проекция со стороны карбонильной группы на задние октанты позволяет удобно представить влияние заместителей на знак вращения. Так, аксиальные и экваториальные заместители у атома 3 приводят к отрицательному эффекту Коттона, а у атома 5—к положительному. Экваториальные заместители у атомов [c.205]

    Стекло широко и издавна используется в качестве прозрачного материала для зданий, различных автомашин и т. п., а также в качестве важнейшего материала при изготовлении оптических приборов микроскопов, телескопов, перископов, оптических прицелов и др. Применение таких приборов во многом обусловило прогресс в развитии ряда естественных наук (биологии, астрономии) и различных областей техники, в том числе военной. В настоящее время на основе применения тонких стеклянных волокон создаются новые, более эффективные средства связи. [c.233]


    Все это привело к тому, что изучение особых точек в молекуле (пространственной конфигурации вокруг асим-метрически.х атомов илн двойных связей) уступило место изучению пространственного строения всей молекулы в целом. Потеряло свое исключительное значение и определение оптической активности оно стало лишь одним из многих методов исследования стереохимии вообще. Современная стереохимия обязана своим развитием широкому использованию физико-химических методов исследования. [c.86]

    Среди оптически активных ароматических соединений видное место занимают бензольные соединения с одним или несколькими асимметрическими атомами в боковой цепи. Соединения такого типа встречаются в природе (миндальная кислота, фенилаланин, эфедрин, адреналин и др.), а также получены синтетическим путем. Их общей особенностью является наличие бензольного хромофора. Ввиду важности такого рода соединений изучению оптически активных веществ с бензольным хромофором уделяется большое внимание. Возможности для подобного изучения появились в связи с развитием спектрополяриметрического метода исследования, позволяющего получать данные о характере кривых дисперсии оптического вращения и кругового дихроизма в области поглощения ароматического ядра. [c.504]

    Глубокий анализ теории строения молекул, а также путей и перспектив развития этой теории имеется в книге В. М. Татевского [131. Экспериментальные данные о сильных химических взаимодействиях есть во многих учебниках, монографиях и справочниках по химии. Экспериментальные исследования слабых химических взаимодействий широко развернулись лишь в последнее десятилетие. Это вызвано успехами оптических, рентгенографических, радиофизических, термодинамических, акустических и многих других методов изучения вещества. Информация о слабых химических взаимодействиях между молекулами пока еще неполна и порой противоречива. Основная трудность состоит в том, что ни один из экспериментальных методов не является универсальным, т. е. дающим во всех случаях надежное и исчерпывающее знание свойств слабых химических связей. Такие сведения могут быть получены, как правило, лишь с помощью нескольких независимых методов. [c.55]

    Повышения интенсивности рассеянного света можно добиться с помощью достаточно интенсивных световых потоков или мощных лазеров. Качество регистрации рассеянных квантов можно повысить, имея совершенное оптическое и электронное оборудование. Применение лазеров стимулировало развитие этой, уже ставшей классической, области спектроскопии. Лазеры не только повысили чувствительность спектроскопии обычного (спонтанного) комбинационного рассеяния, но и стимулировали развитие новых методов, основанных на вынужденном, например на антистоксовом, комбинационном рассеянии, носящем название когерентного антистоксового рассеяния света (КАРС) или, в частности, резонансного комбинационного рассеяния (РКР). При возрастании интенсивности падающего лазерного излучения становится значительной интенсивность рассеянного стоксового излучения. В этих условиях происходит взаимодействие молекул одновременно с двумя электромагнитными волнами лазерной vл и стоксовой V т = Vл — v , связанных между собой через молекулярные колебания с VI,. Такая связь (энергетическая) между излучением накачки и стоксовой (или антистоксовой) волной может привести к интенсивному поляризованному излучению на комбинационных частотах, другими словами— к вынужденному комбинационному рассеянию. Причем в этих условиях оказывается заметной доля молекул, находящихся в возбужденном колебательном состоянии, и в результате на частотах Гл + VI, возникает интенсивное антистоксово излучение. [c.772]

    Развитие технической диагностики связано с широким применением автоматизированных систем обработки информации в рентгенографии, рентгенотелевидении, тепловидении, звуковидении, оптической и акустической голографии, вычислительной томографии и в других современных методах диагностирования. [c.29]

    В дальнейшем химия и промышленное производство оптических отбеливающих веществ быстро развивались. Было синтезировано большое количество оптических отбеливающих веществ, принадлежащих к различным классам ароматических и гетероциклических соединений с развитой системой сопряженных двойных связей. К 1963 г. мировой ассортимент оптических отбеливающих веществ уже включал свыше 200 различных наименований с общим выпуском свыше 7000 т в год. [c.201]

    Учение об оптических свойствах коллоидных и микрогетерогенных систем является одним из основных разделов коллоидной химии. Оптические свойства золя определяются свойствами коллоидных частиц, поэтому, изучая оптические свойства системы, можно установить размер, форму и строение частиц,, не видимых в обычный микроскоп. С помощью ультрамикроскопических наблюдений коллоидных систем удалось проверить основные молекулярно-кинетические представления, долгое время носившие гипотетический характер изучение оптических свойств способствовало количественному толкованию таких процессов, как диффузия, броуновское движение, седиментация, коагуляция. Наконец, ввиду того,, что космическая пыль, туманы, облака и тончайшие взвеси твердых частиц в морской и речной водах являются коллоидными и микрогетерогенными системами, сведения об оптических свойствах этих систем имеют и весьма важное практическое приложение в астрофизике, метеорологии, оптике моря. Вождение самолетов и кораблей в тумане, фотографирование с помощью инфракрасных лучей также имеют непосредственное отношение к оптике коллоидных систем. Эта область науки сделала значительные успехи в последние годы в связи с развитием авиации, астронавтики и т. д. [c.33]

    Термодинамическая теория капиллярности Гиббса положила начало громадному числу исследований как экспериментального, так и теоретического плана, направленных на выяснение структуры межфазных поверхностей. В научном плане важной частью этих исследований являются бинарные системы жидкость—жидкость. В таких системах возможно измерить поверхностное натяжение и его производные по температуре и давлению, а также изучить диффузность межфазной поверхности оптическими методами. Теоретическая интерпретация этих результатов с использованием статистико-механических моделей различной степени приближения была развита рядом авторов и мы упомянем некоторых. Важно отметить, что все такие исследования требуют обращения к термодинамике, т. е. к методам Гиббса, как только мы доходим до связи теоретических моделей с наблюдениями, которые могут быть сделаны в лаборатории. [c.64]

    Аналитическая химия тесно связана с физикой. Химический анализ в значительной мере базируется на успехах спектроскопии (оптической, рентгеновской, радиочастотной), ядерной физики и других разделов физики. Многие методы анализа совершенствуются главным образом под влиянием постоянного развития соответствующих разделов физики и на базе прогресса в приборостроении. [c.12]

    Таким образом, в заключение можно сказать, что многие методы разделения энантиомеров с помощью ЖХ хорошо подходят для прямого контроля энантиомерной чистоты или энантиомерного состава лекарственных средств данного типа. Они будут играть все большую роль в связи с развитием производства оптически чистых соединений и проведением фармакокинетических исследований. [c.196]

    Современное интенсивное развитие спектрополяриметрии непосредственно связано с исследованиями природных соединений, к которым обратилась органическая химия и молекулярная биология. Развитие спектрополяриметрии вызвано тем, что для характеристики вещества стали применять дисперсию оптической активности (и в особенности АДОВ и КД), а не ограничиваться, как это делалось раньше, значением удельного вращения для одного значения Отметим, что первые систематические исследования дисперсии оптической активности провел [c.303]

    Развитие оптических систем связи вызывает потребность в компактных оптически эффективных источниках. Преимуществами нентафосфатов La—Nd по сравнению с известными оптическими материалами с добавками неодима являются  [c.104]

    До недавнего времени средами, пригодными для изучения фосфоресценции при комнатной температуре, считались лишь некоторые неорганические стекла с низкой температурой плавления, из которых описанная выше система с борной кислотой, по-видимому, является наилучшей. Однако стекло с борной кислотой легко портится, оно хрупко и гигроскопично, а тонкие образцы его легко трескаются, если они не отожжены с принятием необходимых мер предосторожности. Высокая температура (240°), требующаяся для получения этих стекол, не позволяет их использовать для многих соединений, претерпевающих термическое разложение. Стекло плохо пропускает ультрафиолетовый свет (поглощение становится очень сильным ниже 3500 А). Оптические свойства стекол оставляют желать много лучшего, гигроскопичность приводит к постепенно усиливающейся мутности образцов. Кроме того, стекло с борной кислотой не поддается механической обработке и полировке. В поисках материала с лучшими свойствами мы вводили некоторые ароматические вещества в различные полимеры полиметилмета-крилат, полистирол, аллилдигликолькарбонат и различные сополимеры этих соединений. Обычные полимеры с линейной цепью проявляют свойства, сходные со свойствами жидких сред фосфоресценция в них отсутствует, если образец не охлажден до низких температур. Однако те образцы, у которых имеются развитые поперечные связи, проявляют способность к сильной фосфоресценции даже при комнатной температуре и при более высоких температурах [146]. В случае хризена, пицена, 1,2 5,6-дибензан-трацена и трифенилена в полиметилметакрилате с поперечными связями можно визуально наблюдать триплет-триплетное поглощение, обусловливающее появление определенной окраски при сильном освещении. Ясно, что микроскопическая жесткость имеет большее значение для дезактивации возбужденных состояний, чем макроскопическая жесткость. Возможность появления фосфоресценции хорошо коррелирует с температурой фазового перехода в стекле, при котором нарушаются поперечные связи, закреплявшие возбужденную молекулу растворенного вещества в трехмерном ящике и способствовавшие ее устойчивости. С другой стороны, у пластиков без поперечных связей макроскопическая жесткость обусловлена переплетением длинных полимерных цепей на микроскопическом же уровне могут иметь место частичное поступательное движение и вращение, приводящие к дезактивации триплетного состояния при соударениях по такому же механизму, как и в жидких средах [209]. [c.86]

    Конкретное содержание представлений этих ученых имеет ныне только исторический интерес. В дальнейшем строгая теория оптической активности была развита Борном, Озееном, Куном, Кирквудом, Эйрингом и М. В. Волькенштейном (Молекулярная оптика. М., Гостехиздат, 1951, гл. II). Необходимо подчеркнуть, что в свете современных знаний о природе оптической активности открытия Л. А. Чугаева не только не утратили своего значения, но, напротив, стали особенно важными. Дальнейшее развитие исследования связи между оптической активностью и химическим строением, несомненно, будет основываться, с одной стороны, на современной физической теории явления, с другой — на фундаментальных работах Л. А. Чугаева.  [c.551]

    В рамках развития принципов феноменологического подхода к сложному веществу разработано новое научное направление - неатомарный недискретный подход к спектрам вещества разработаны принципы феноменологической электронной спектроскопии. Последняя дает возможность прогноировать свойства всех веществ на основе установленного нами закона квазилинейной связи свойств и оптических характеристик поглощения. По сравнению с классической, феноменологическая спектроскопия имеет ряд преимуществ, т.к. позволяет получать любую информацию о структуре и физико-химических свойствах веществ, рассматривая их спектр как единое целое, без выделения характеристических частот в спектрах отдельных компонентов. [c.101]

    В рамках развития принципов феноменологического подхода к сложному веществу разработано новое научное направление - неатомарный недискретный подход к спектрам вещества разработаны принципы феноменологической электронной спектроскопии. Последняя дает возможность прогноировать свойства всех веществ на основе, установленного нами, закона квазилинейной связи свойств и оптических характеристик поглощения. По сравнению с классической, феноменологическая спектроскопия имеет ряд преимуществ, т.к. позволяет получать любую информацию о структуре и физи- [c.107]

    В 1954 г. в связи с интерпретацией опытов Дерягина и Абрикосовой (см. ниже) Лифшиц предложил новую, более общую теорию вандерваальсовой компоненты силы притяжения двух полубеско-нечных фаз с плоскопараллельным зазором между ними, которая позднее, в 1959 г., была распространена Дзялошинским, Лифши-цем и Питаевским на общий случай тонкого слоя между разными полубесконечными фазами. Применив метод, развитый Рытовым (1953 г.), Лифшиц представил А[х как результат взаимодействия флуктуационных электромагнитных полей, простирающихся за границами фаз. Рассмотреть здесь эту теорию невозможно, поскольку она исключительно сложна в последнем ее варианте используются методы квантовой электродинамики. Ее конечные формулы содержат еще недостаточно экспериментально исследованные оптические функции частоты для различных фаз. В простейшем предельном случае достаточно тонкой свободной пленки для А получается зависимость, обратно пропорциональная третьей степени /г, а энергия взаимодействия между двумя молекулами, согласно этой теории, уменьшается как шестая степень расстояния. Это совпадение с изложенной выше молекулярной трактовкой вопроса дает основание предполагать, что лежащее в основе теории Лифшица представление о флуктуационном электромагнитном поле фазы как целого является более общим выражением модельного представления Лондона о флуктуационном диполе (и соответст- [c.176]

    Строгого правила отбора для До колебательных переходов, как и в оптической электронной спектроскопии, в фотоэлектронных спектрах нет, и часто наблюдается хорошо развитая колебательная структура полос. Она видна, например, на рис. 1.5, где приведен фотоэлектронный спектр бромоводорода. Соответствующий более низкому значению энергии I дублет интенсивных узких пиков без колебательной структуры относится к ионизации с несвязывающей орбитали Вг и обусловлен спин-орбитальной связью (см. гл. VI 2.2). Полоса при более высоких энергиях / относится к ионизации со связывающей орбитали и расстояния между пиками ее структуры соответствуют частоте валентного колебания v(H—Вг) ионизованной молекулы. В ФЭС также справедлив принцип Франка —Кон дон а, т. е. наиболее вероятны вертикальные переходы. [c.145]

    Уже в теории химического строения Бутлерова постулировалось (и было доказано) существование определенной последовательности химической связи атомов, которая была названа им химическим строением. Бутлеров в 1863 г. весьма определенно высказывался в пользу того, что развитие методов исследования в будущем позволит определить пространственное распЬложение атомов в молекуле, т. е. геометрическую структуру или ее строение (не путать с химическим строением ). В 1874 г. Вант-Гоффом была выдвинута стереохимическая гипотеза, согласно которой четыре водородных атома в метане (или их заместители) расположены в вершиназс тетраэдра, в центре которого находится атом углерода. Эта гипотеза позволила объяснить особый вид изомерии, названный оптической изомерией. Гипотеза Вант-Гоффа была подтверждена структурными исследованиями молекул и лежит в основе стереохимической теории (теории пространственного расположения атомов в молекулах) органических соединений [к-9]. [c.172]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    С помощью эллиптического отверстия образуют струю в форме эллиптического цилиндра под действием сил поверхностного натяжения, стремящихся придать струе форму цилиндра с круговым сечением, и инерционных сил устанавливаются поперечные колебания струи— большая и малая оси эллипса поочередно меняются местами. Теория, развитая Рэлеем, а затем Бором и Сатерлендом, позволяет связать длину волны на поверхности струи, определяемую экспериментально оптическими методами, с поверхностным натяжением жидкости. Сопоставление полученных таким образом значений поверхностного натяжения с результатами определения их статическими или полустати-ческими методами позволяет сделать выводы о скорости установления равновесной структуры поверхностных слоев, кинетике адсорбции и т. д. [c.41]

    Одна из гл. ирактнч. целей С.— развитие всех видов стереопапраил. синтеза (см. Асимметрический синтез), в т. ч. оптически активных соед., важных для медицины, с. х-ва и др. отраслей в связи с их биол. активностью. В пром-сти наиб, важное значение приобретает каталитич. получение энантиомерных продуктов (см. Асимметрический катализ). [c.544]

    Возникновение стереоспецифического анализа орг. в-в во 2-й пол. 20 в. связано с развитие.м хро.матографич. методов. Для разделения энантиомеров чаще всего предварительно проводят р-цию между анализируемыми в-вами и оптически активными реагентами с образованием диастереомеров, к-рые затем разделяют. методами газо-жидкостной или высокоэффективной жидкостной хроматографии на колонках с оптически активны.ми неподвижными фазами. [c.403]

    Спектроскопические методы получили быстрое развитие после ори-гинальньгх исследований М.М. Кононовой и Н.П. Бельчиковой, выяснивших четкую связь между оптическими свойствами гуминовых кислот и условиями их образования, что позволило разработать эффективные показатели при решении экологических задач. Природа поглощения света гуминовыми кислотами и оценка получаемых результатов даны в серии работ Д.С. Орлова. [c.244]

    С развитием биотехнологии возрастает интерес к использованию ферментов и микроорганизмов как катализаторов химических превращений. Особый интерес в этом плане представляет возможность проведения реакций с высокой степенью стереоселективности с целью получения оптически активных соединений. И хотя уже накоплен большой практический опыт применения ферментов и клеток в этих целях, область приложения и потенциальные возможности метода намного шире. В частности, результаты микробиологических реакций трудно предсказуемы, и в этой связи практически всегда требуется мелкомасштабный скриннинг. Такие исследования раньше тормозились из-за отсутствия необходимого метода контроля за прохождением стерео-селективной реакции. Теперь с развитием хиральной хроматографии появилась возможность определять очень простым способом точный энантиомерный состав в пробах, взятых в любой момент прохождения ферментативной реакции. Площадь хроматографического пика измеряется электронным интегратором, связанным с детектором, что позволяет следить за прохождением реакции и ее стереохимией на пробах очень небольшого объема. [c.210]

    Применение новых композиционных материалов является важны.м факторо.м в решении таких фундаментальных экономических проблем, как ограниченность природных ресурсов, недостаток стратегических материалов, поддержание темпов экономического развития и роста производительности труда, сохранение конкурентоспособности на мировом рынке. Первая из этих проблем может быть проил.тюстрирована на примере меди. Спрос на этот металл продолжает оставаться стабильным, о чем свидетельствует тот факт, что даже очень бедные медью рудные месторождения все еще эксплуатирутотся. Однако, как электропроводящий металл медь вытесняется, например, композитами на основе алюминия и полимеров. В про.мьшшенности средств связи медь считается устаревшим материалом и ей на смену приходят оптические волокна. [c.13]


Смотреть страницы где упоминается термин Развитие оптической связи: [c.32]    [c.177]    [c.93]    [c.10]    [c.492]    [c.207]    [c.71]   
Смотреть главы в:

Оптические кабели Конструкции характеристики производство и применение Изд2 -> Развитие оптической связи




ПОИСК







© 2024 chem21.info Реклама на сайте