Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение соединений серы методами

    Для отделения соединений серы от мешающих элементов и разделения серы в различных степенях окисления используют методы адсорбционной, ионообменной, распределительной и газовой хроматографии. [c.56]

    Метод носителя применяется в тех случаях, когда в результате ядерной реакции из одного элемента образовался радиоактивный изотоп другого химического элемента. Для разделения к смеси изотопов прибавляют относительно большое количество стабильного изотопа того элемента, который необходимо выделить. Эта добавка называется носителем. Так, для выделения ничтожных в массовом выражении количеств радиофосфора, образующегося при облучении серы нейтронами по реакции 8 (л, р) Р , к сере добавляют некоторое количество стабильного изотопа Р , а затем проводят обычные химические манипуляции разделения соединений серы и фосфора. Очевидно, что весь Р будет отделен вместе с введенным стабильным фосфором. [c.94]


    Методы газовой (ГХ) и газо-жидкостной хроматографии (ГЖХ) успешно применяются для отделения и разделения многих соединений серы. Разделение смесей серусодержащих ионов на различных твердых носителях методом ГЖХ рассмотрено в работе [60]. [c.145]

    Отделение мышьяка от сурьмы отгонкой его из солянокислого раствора (стр. 303) проходит вполне удовлетворительно, если только температура пара удерживается ниже 108° С. Прекрасно проходит отделение германия от сурьмы кипячением с соляной кислотой и хлором (стр. 304). Хлорид сурьмы (III) может быть отогнан и полностью отделен от меди, свинца, молибдена и других элементов в сернокислом растворе, если прибавить немного серы, нагреть приблизительно до 200° С и пропустить через раствор ток пара, получаемого при кипячении разбавленной (1 1) соляной кислоты или обработкой соляной кислоты концентрированной серной кислотой, добавляемой по каплям. Для предотвращения образования мало летучего соединения сурьмы (V) необходимо присутствие восстановителя, например серы. (Метод отгонки, в котором последовательно отгоняются мышьяк, сурьма и олово, описан на стр. 96.) [c.321]

    Показано, что при дистилляции H N при пониженном давлении в присутствии ацетата цинка разложения ферроцианида не происходит [8]. Дистилляция при пониженном давлении из буферных растворов с pH = 5,2 — 5,8, содержащих соль цинка, рекомендована для- отделения цианидов в присутствии ферри- и ферроцианида [9]. Соли свинца вводят для подавления отгонки сульфидов и других летучих соединений серы. Возможна отгонка с паром при различных условиях свободных и комплексных цианидов из промышленных образцов [10]. Методы дистилляции применяют при анализе разных образцов, в том числе биологических материалов [1Ц. [c.73]

    Сульфиды — соединения серы с металлами и электроположительными неметаллами — ЭгВ , где п — степень окисления элемента Э. Степень окисления серы в сульфидах равна —2. Важнейшим сульфидом является сероводород. Это токсичное вещество с неприятным запахом. Сероводород входит в состав природного газа некоторых месторождений, поэтому разрабатываются экономически оправданные методы отделения сероводорода от других газов с получением водорода и серы. Сульфиды металлов, являясь солями слабой сероводородной кислоты (Кд1,298=0,87-Ю ), подвергаются гидролизу, приводящему к увеличению pH среды  [c.257]


    Термическое растворение представляет собой мягкую форму химического преобразования угля. При взаимодействии с раст-ворителем-донором водорода часть органического вещества угля переходит в раствор и после отделения твердого остатка обычно представляет собой высококипящий экстракт угля, освобожденный от минеральных веществ, серо-, кислород- и азотсодержащих соединений и других нежелательных примесей. Для повышения степени конверсии угля в раствор может подаваться газообразный водород. В зависимости от типа исходного угля, растворителя и условий процесса методом термического растворения могут быть получены продукты различного назначения. [c.74]

    Х арланской нефти, содержат значительное количество сераорганических соединений, которые мешают дальнейшему исследованию. Сераорганические соединения удаляли окислением перекисью водорода в уксуснокислой среде с последующим отделением окисленных сернистых соединений методом адсорбционной хроматографии на силикагеле. Очищенные ароматические углеводороды характеризуются более низкими значениями плотности и показателя преломления. Содержание серы в них снизилось до 0,05%. [c.29]

    Ступень предварительной очистки предотвращает сильное загрязнение, забивку и коррозию оборудования следующих стадий поточной схемы. На стадии обезвоживания происходит мгновенное испарение масла при давлении, близком к атмосферному, что позволяет отвести сверху колонны воду и пары легких углеводородов. Отделение газойля ведут под вакуумом. Важнейшая стадия процесса — метод компании СЕР для удаления катализаторных ядов (фосфор- и кремнийсодержащих соединений) из масляного дистиллята. На последней стадии происходит отделение масла в тонкопленочном испарителе. Остаток ТПИ используют как битумный разбавитель. [c.300]

    Настояш,ая монография составлена по обш,ему плану серии монографий, издаваемых Институтом геохимии и аналитической химии им. В. И. Вернадского АН СССР. В ней значительное место уделено теоретическому введению — описанию аналитически важных свойств плутония и его соединений на этой основе далее изложены методы определения, методы отделения и анализ примесей в плутониевых материалах. [c.5]

    Окислительные методы заключаются в проведении реакций каталитического окисления сероводорода до элементарной серы или каталитического окисления меркаптанов до дисульфидов восстановительные методы — в восстановлении сернистых соединений при взаимодействии их с водородом (гидрирование) или с водяным паром (гидролиз), а также в гидрировании диоксида углерода до метана. При восстановлении сернистых соединений все они превраш аются в сероводород. После проведения любых каталитических процессов очистки от сернистых соединений требуется последующее отделение продуктов каталитических превращений, например, после каталитического гидрирования газ направляют на очистку от сероводорода. [c.97]

    На этом свойстве основано применение ВРз с НР в качестве средства для обессеривания нефтепродуктов с целью приготовления высококачественных керосинов и смазочных масел из нефтей низкого качества, богатых сернистыми соединениями, а также для очистки других природных высокомолекулярных продуктов [43—47]. Экстракция проводится путем энергичного перемешивания нефтепродуктов с жидким фтористым водородом под давлением фтористого бора [41 ] и отделения экстрактного слоя от углеводородного. Обычно этим средством, наряду с серосодержащими соединениями, экстрагируется в основном и ароматика (экстрактный слой содержит 71—97% ароматических соединений), которая отделяется путем нагревания, так как летучие ВРз и НР легко отгоняются. Для экстрагирования рекомендуют применять 10—29% НР от объема нефтепродукта. Степень удаления серы зависит от количества применяемого ВРз. Но обычно она бывает достаточно полной. Например, описанным методом содержание серы можно уменьшить с 0,85 в исходном сырье до 0,11 % в рафинате, или с 2,26 до 0,30% серы в рафинате. При этом, наряду с удалением серы, происходит и осветление продуктов, так как и окрашенные продукты отделяются в экстракционный слой. [c.347]

    Отделение мешающих ионов отгонкой легколетучих соединений [14, 88, 122]. Этот метод основан на том, что определяемая примесь переводится в химическое соединение, в виде которого и отгоняется от основного компонента. Например, сера часто выделяется в виде сероводорода, мышьяк — в виде мышьяковистого водорода и т. д. Возможен и обратный вариант, когда в легколетучее соединение переводится основной компонент, а примеси остаются в нелетучем остатке. Этот способ широко используется при анализе полупроводниковых материалов, например германия [123,124] (удаление Се в виде тетрах лорида), кремния [125] (удаление 81 в виде тетрафторида), олова (удаление Зп в виде тетрахлорида), селена, теллура, иода и др. [c.59]


    В соединениях сера проявляет валентность от —2 до +6. На практике приходится определять серу в различных степенях окисления. Все фотометрические методы определения серы требуют предварительного ее отделения. Методы отделения серы зависят от характера соединения,, в виде которого находится сера в анализируемом образце, а также от состава образца. Чаще других для отделения серы применяются методы дистилляции ее в виде сероводорода или сернистого ангидрида. Отгонку сероводорода проводят в токе инертного газа (аргона, азота или двуокиси углерода), чтобы предотвратить окисление сероводорода кислородом воздуха. Выделение сероводорода из растворов не представляет трудностей. Для этого обычно подкисляют раствор хлористоводо-оодной кислотой и пропускают газ-носитель. При анализе твердых веществ необходимо иметь в виду, что не все сульфиды растворяются в хлористоводородной кислоте. Так, стали, закаленные при температуре выще 1200 °С, содержат много РегЗз, которое мало растворяется в этой кислоте, и результаты анализа получаются заниженными. [c.189]

    Для очистки экспанзерного газа или газа из отделения регенерации раствора моноэтаноламина от соединений серы, являющихся крайне нежелательными примесями, применяются те же методы, что и для очистки от них азотоводородной смеси (см. главу II Очистка газов ). [c.258]

    Наиболее важными методами отделения серы являются дистплляцион-ные методы. Кислородсодержащие соединения серы восстанавливают до сероводорода, который уносится потоком инертного газа (например, азота) в приемник, куда наливают раствор, содержащий ионы цинка или кадмия [1, 21 (см. ниже Метод с применением метиленового голубого ). Перед определением сульфидной серы сероводород отгоняют из подкисленного раствора. [c.351]

    Тюрк и сотр. [64] отбирали пробы в емкости из нержавеющей стали объемом 1 л. Затем в эти емкости нагнетали очищенный воздух ПОД давлением 3,1 кг/см и отбирали в хроматограф пробу объемом 5 мл с помощью газового крана-дозатора. Для отделения гексафторида серы от других компонентов воздуха применяли две колонки, соединенные последовательно первая размером 100x0,6 см, наполненная силикагелем, и вторая (такого же размера), наполненная активированным углем. Колонки были установлены в хроматограф модели 810 фирмы Perkin Eimer с детектором по захвату электронов, разделение проводили при 120 °С. В качестве газа-носителя использовали очищенный азот со скоростью 60 мл/мин. Было найдено, что при прямом вводе проб воздуха в хроматограф (без предварительного концентрирования) чувствительность определения гексафторида серы достигает 10 %. При более низких концентрациях приходилось вымораживать гексафторид серы в дозирующей петле газового крана-дозатора. При концентрациях SFe иже Ы0 % определение, по-видимому, возможно с применением предварительного концентрирования. Описано применение такого метода для исследования факельного разряда. [c.128]

    Полное количественное отделение полициклических ароматических углеводородов от неуглеводородных компонентов не может быть осуществлено ни одним из известных физических и химических методов. По этой причине ароматика в газойлях и смазочных маслах включает ароматические углеводороды и неуглеводородныс компоненты, выделенные вместе с углеводородами. Несомненно, что неуглеводородные компоненты, присутствующие в высококипящих продуктах, являются по существу ароматическими, т. е. атомы кислорода, серы или азота в этих соединениях связаны с ароматическим, возмоншо полициклическим кольцом. С этой точки зрения термин ароматпка>> в применении к тяжелым нефтяным фракциям, по-видимому, является законным. [c.27]

    Известны следующие методы, основанные на равновесии этих типов выделение определяемых элементов Б виде летучи соединений с кислородом, например воды, диоксида углерода, серы в виде 802 или 50з) выделение элементов в виде летучих соединений с галогенами, например отгон]<а АзС1з, СгСЬ, ОеСи, 8ЬС1з и др. выделение элементов в виде летучих соединений с водородом, например АзНз и др. метод газовой хроматографии, в котором некоторые неорганические вещества переводят в газообразное состояние, например кремний, германий, мышьяк, олово, бериллий определяют в виде летучих гидридов после их отделения от многих элементов, не образующих летучих соединений с водородом. [c.27]

    Реагент, равномерно меченный изотопом 8, удобно приготавливать он обеспечивает высокую чувствительность анализа. Однако ввиду относительно короткого периода полураспада изотопа " 8 (87 дней) требуется непрерывно в течение анализа измерять радиоактивность порции этого радиореагента. Чтобы избежать дополнительных измерений, можно применять изотоп но при этом его необходимо вводить только в группу —С(8)—8— с тем, чтобы не возникало затруднений при отделении сероуглерода от обработанного образца. Возможные эффекты, связанные с применением изотопа необходимо оценивать до анализа. Данный метод применялся для определения меркаптановой серы в пробах некоторых белков величиной порядка 10 мкг. Анализу этим методом могут мешать соединения, способные окислить диэтилдитио-карбаматный анион в щелочном растворе до тетраэтилтиурамди-сульфида. [c.357]

    Исследовано влияние различных факторов на микроопределение сернистых соединений методом ГЖХ с применением пламеннофотометрического детектора, чувствительного и селективного к этим соединениям [1577]. Наибольшая селективность разделения наблюдается при использовании в качестве неподвижной фазы 3,р -оксидипропионитрила. Наибольшей адсорбцией на колонке обладают меркаптаны и сульфиды, меньшей — дисульфиды и тиофены. Для определения общего содержания серы в различных смесях рекомендуется пирогидрирование пробы в кварцевой трубке при 1000 С. После отделения продуктов пирогидрирования от Н2 на колонке с порапаком Q сероводород определяют на пламеннофотометрическом детекторе. [c.146]

    Основная проблема заключается в том, как прикрепить субстрат к полимеру в химии ароматических углеводородов и алифатических соединений это делают с помощью функциональной группы (схемы 2 и 4), такой, как карбоновая кислота или амин, что может ограничивать выбор субстрата в альтернативном методе используют бесследную связку, такую, как силан, который может быть удален, например, при отщеплении водорода от места прикрепления, но этот метод не очень удобен. В этом смысле гетероциклы имеют преимущества Прикрепление к носителю может быть осуществлено с помощью методов [3], подобных описанным выше, а также с помощью кольцевого гетероатома, особенно атома азота в азолах [4] (схема 1) или гетероатома в случае образования гетероциклического кольца на конечной стадии процесса [5] — часто бывает легко проводить реакцию таким образом, чтобы конечная стадия циклизации (образование гетероцикла) сопровождалась одновременным отделением конечного продукта от носителя (схема 3). Атом серы представляет собой удобную связку при синтезе гетероциклов, поскольку он используется как уходящая группа (даже лучше после превращения в сульфоксид [6] или сульфон [7]), что способствует отделению от носителя (схема 5). Для полного обсуждения реакционной способности гетероциклов, использованных в приведенных примерах, следует обращаться к предьщущим главам. [c.673]

    При анализе тантала высокой чистоты используют метод распределительной хроматографии в системе 100%-ный ТБФ — 1М ПР + 1МНК0зна колонке пористого фторопласта-4 [107]. Электрохимическое отделение основы проводят при определении Сг и других примесей в металлической меди и ее соединениях [23]. Электрохимическое концентрирование Сг, Мп, РЬ, Ре, В1, Т1, Мо, 8п, V, С(1, Си, N1, Со, Ag на графитовом неподвижном катоде применяют при анализе природных вод [212]. Химико-спектральные методы определения Сг и других примесей используют также при анализе чистого мышьяка [808], гипса и ангидрита [683], серы высокой чистоты [379], кадмия и цинка высокой чистоты [450, 451], арсенида галлия [302], едких щелочей [227], винной кислоты [335]. [c.89]

    В монографии, являющейся очередным томом серии Аналитическая химия алементов приведены общие сведения о кадмии, его распростраяениости в природе, формах нахождения, применения, физических, химических и физико-химических свойствах. Дается характеристика важнейших неорганических и органических соединений кадмия, используемых в аналитической химии. Приведены методы отделения и определения кадмия (химические, физические и физико-химические), а также методы определения примесей в нем. Наиболее современные и надежные,методы представлены в виде [c.255]

    При измерении оптической плотности, однако, не всегда удается соблюдать принцип максимального приближения кюветы с сорбентом к окощку детектора из-за конструктивных особенностей приборов, например, при использовании отечественных однолучевых приборов серии СФ-4 — СФ-16 [16]. Наиболее удобен из отечественных приборов для измерения светопоглощения ионообменников КФК-3. Высокая линейность электрических характеристик и стабильность работы фотометра КФК-3 позволили [29] разработать оригинальный метод измерения А на однолучевом приборе, при котором также соблюдается принцип равенства световых потоков при двух длинах волн, заключающийся в следующем. Устанавливают нуль прибора при X (окрашенное соединение при этой длине волны не поглощает), изменяют длину волны на > 2 и записывают показания прибора, которые принимают за поправку на изменение длины волны. Затем в кюветное отделение помещают кювету с сорбентом и записывают показания А при /Чпа и X . В канале сравнения должна находиться металлическая перфорированная пластинка, пропускание которой практически не зависит от длины волны. Измеренные таким образом значения оптической плотности с погрешностью до 1 % совпадают со значениями, полученными на двухлучевом спектрофотометре Хитачи-124 по методу [1]. [c.335]

    В неорганическом анализе дистилляционными методами отделяют мышьяк, сурьму и олово в виде галогенидов, хром — в виде Сг02СЬ, осмий и рутений — в виде тетраоксидов. При определении кремния в силикатах его отделяют в виде 51р4. Серу в форме сульфитных и сульфидных ионов обычно выделяют в виде ЗО2 и Н2З после подкисления анализируемого раствора. Галогены можно отогнать из водного раствора в виде свободных элементов (часто после селективного окисления) и галогеноводородов. Из трудно-плавящихся веществ примеси металлов можно выделить в элементарном виде нагреванием при высокой температуре. Наоборот, в легколетучих веществах, (например, кислотах) содержание металлов определяют после полного или частичного отделения основного вещества дистилляцией. Примером использования рассматриваемых методов для очистки веществ служит дистилляция воды — стандартная операция в практике аналитических лабораторий. Методом сублимации можно хорошо очистить иод или некоторые органические соединения (например, 8-гидроксихинолин). [c.80]

    Сущность этих методов разделения состоит в том, что для эффективного разделения используют большую летучесть одного из компонентов системы — определяемого либо мешающего. Например, малые количества германия в различных материалах определяют после предварительной его дистилляции из солянокислой среды в виде СеС14. Для отделения следов кремния его выделяют в форме летучего 31р4 из сильнокислой среды в присутствии НР. Мышьяк и серу часто определяют в ряде материалов после их предварительного отделения в виде соответ-ствующил водородных соединений — НгЗ и АзНз. Содержание в металлах таких элементов, как углерод, сера, водород, можно найти путем прокаливания раздробленной пробы в атмосфере кислорода, в которой они превращаются соответственно в СОг, 50г и НгО. Определение воды в различных твердых образцах часто сводится к их нагреванию при температуре выше 100 °С, после чего содержание воды находят по разнице в массе пробы до и после нагревания. Используют Также методы непосредственного ее определения после удаления воды в виде водяного пара. [c.401]

    Молекулярный вес серу-, азот- и кислородсодержащих соедияений обычно бывает близок к молекулярному весу углеводородов, которым они сопутствуют. По разнообразию в строении они не уступают углеводородной смеси. Их многочисленностью и близостью строения углеводородных радикалов к строению основного углеводородного состава нефтепродуктов объясняются трудности, возникающие при отделении неуглеводородных примесей (особенно сер нистых и азотистых соединений) от основной углеводородной части топлив или масел. В настоящее время уделяют большое внимание разработке рациональных методов разделения. [c.186]

    Известны специальные методы, которые применяются только для данных гетероатомных компонентов нефтей и не имеют общего характера, хотя некоторые из этих методов с небольшими видоизменениями применяются к нескольким или ко всем гетеро-атомным соединениям. К числу таких методов относятся микрогидрогенизация и микрокулонометрическое определение серы и азота, соединенное с хроматографическим разделением этих гетероатомных соединений, а также ионообменная хроматография на смолах, применяющаяся для отделения кислых и основных компонентов нефти. [c.251]

    Методика группового I анализа к предусматривает определение сероводорода, серы, меркаптанов, дисулт.фидов, сульфидов и остаточной серы (тиофаны, тиофены и другие неизвестного строения) путем последовательного их отделения групповыми реактивами и определения общей серы ламповым методом до и после удаления каждой группы сернистых соединений. Анализ ведется по следующей схеме. [c.173]


Смотреть страницы где упоминается термин Отделение соединений серы методами: [c.30]    [c.16]    [c.306]    [c.240]    [c.34]    [c.13]    [c.447]    [c.12]    [c.563]    [c.173]    [c.447]    [c.111]    [c.864]   
Аналитическая химия серы (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения

Серы соединения



© 2025 chem21.info Реклама на сайте