Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сравнение лабораторий

    Для большинства ранее проводившихся определений молекулярного веса углеводородов применялись простые формы криоско-пического метода (понижение температуры замерзания [348—353]). Было использовано много растворителей, но для лучших из них точность определения составила 1—2 %. Эбулиоскопические методы (повышение температуры кипения) обычно более быстрые и такие же точные [354—358]. Наконец был сделан обзор но сравнению этих двух методов в нескольких различных нефтяных лабораториях. Низкие молекулярные веса обычно определяют по методам плотности паров [359—360]. Все эти методы дают ряд средних молекулярных весов, определяемых [c.206]


    При выборе исходных компонентов можно пользоваться методом распознавания, облегчающим анализ литературных данных. После выбора компонентов возникает задача исключения части из них и определение оптимального соотношения остальных. Для решения этой задачи эффективно применение симплекс-решет-чатых планов. Симплекс-решетчатый план позволяет дать оценку каталитической смеси п компонентов, реализовав (1/2)(п—1)х X (п—2) композиций, но его применение следует рассматривать лишь как первый этап определения оптимального состава, поскольку сравнение производится при фиксированных (и не обязательно оптимальных) условиях приготовления и испытания. Уже на этой стадии целесообразно использование данных ранее выполненных кинетических исследований для придания катализатору эффективной пористой структуры и механической прочности. Сегодня известны и хорошо отработаны в лабораториях методы, позволяющие создавать катализаторы заданной структуры и пористости, регулируя режимы смешения, синерезиса, формования, сушки, активации. Предполагаемая величина константы скорости необходима для расчета структуры катализатора, исключающей диффузионные затруднения. [c.292]

    Исследование влияния изменяющихся свойств суспензии на величину постоянных фильтрования, определяющих скорость этого процесса, следует выполнять в первую очередь в лаборатории независимо от того, изучается ли новый или уже осуществляемый в промышленности процесс разделения суспензии. В данном случае выбор способа определения указанных постоянных не вызывает особых затруднений. Это объясняется тем, что здесь речь идет только о сравнении величин постоянных фильтрования, например удельного сопротивления осадка, полученного при разделении суспензий с различными свойствами. При этом полное соответствие найденных таким образом в лаборатории постоянных фильтрования их действительным значениям в производственном процессе не играет решающей роли. При таких исследованиях можно выбрать относительно простой способ определения и использовать имеющееся в лаборатории фильтровальное оборудование, например нутч с горизонтальной фильтровальной перегородкой, на которую помещается исследуемая суспензия. Иногда можно [c.118]

    В некоторых комнатах химических лабораторий поверхность стенок вытяжных шкафов облицовывают керамическими плитками. Из-за некачественного крепления этого отделочного материала, а также в результате действия химически агрессивной среды отдельные плитки иногда отваливаются. Это особо опасно во время проведения в вытяжном шкафу работ, связанных с нагревом легковоспламеняющихся и горючих жидкостей, так как падающая плитка может разрушить колбу, и находящаяся в ней жидкость, попадая на раскаленную поверхность электронагревательного прибора, воспламеняется. Поэтому перед проведением работ в вытяжных шкафах, облицованных керамическими плитками, необходимо проверить надежность их крепления к поверхности стены, особенно в верхних ее частях. Характерным признаком плохого крепления плиток является то, что они несколько выступают по сравнению с облицованной стенкой, а также неоднородный звук при простукивании стены. [c.12]


    В том случае, когда для проведения исследований необходимо увеличить количество легковоспламеняющихся жидкостей (в сравнении с разрешенным к хранению в лаборатории), руководитель работ должен получить письменное разрешение руководителя лаборатории, согласованное с пожарной охраной. Для безопасного ведения таких работ должна быть предварительно составлена инструкция по рабочему месту. [c.18]

    Тепловые расчеты процесса лабораторной перегонки проводят редко, поскольку в данном случае затраты энергии по сравнению с полупромышленными или промышленными установками весьма незначительны. Обычно в лабораториях перегонку проводят при большем или меньшем избытке тепла, а фактическую потребность в электрической энергии регулируют с помощью дополнительных сопротивлений. В лабораторной практике газ до сих пор еще применяют при дистилляции по методу Энглера, при аналитических разгонках, как средство обогрева масляных, песочных бань и бань с металлическими теплоносителями. Применения открытого газового пламени для нагревания избегают при перегонке веществ с высоким давлением паров ввиду возможной опасности перегрева жидкости, растрескивания аппаратуры или взрыва. В настоящее время предпочтение отдают электрическому обогреву при помощи закрытых колбонагревателей или нагревательных устройств, в которых электрическая спираль защищена слоем изоляционного материала. Для достижения невысоких температур применяют инфракрасное излучение (в видимой и невидимой частях спектра), которое обладает всеми преимуществами радиационного обогрева 232]. Применение токов высокой частоты для нагревания в лабораторных условиях находится еще только в стадии проверки. [c.175]

    В лаборатории процессы дистилляции и ректификации проводят как при периодическом режиме работы колонны, так и при непрерывном режиме. Необходимость повышения пропускной способности установок приводит к применению полунепрерывных и непрерывных методов работы. В специальных случаях можно применять метод парциальной конденсации, который при правильном использовании обладает определенными преимуществами по сравнению с другими методами перегонки. [c.234]

    Для сравнения описанного метода с обычно применяемым в аналитических лабораториях весовым методом было определено содержание сульфокислот обоими методами. Полученные данные подтвердили удовлетворительную сходимость результатов. [c.776]

    Поляризационные диаграммы называемые иногда диаграммами Эванса,—это графики зависимости потенциала от логарифма тока или плотности тока. Впервые они были предложены У. Р. Эвансом из Кембриджского университета (Англия), который продемонстрировал полезность таких диаграмм для предсказания коррозионного поведения металлов [8]. Для получения поляризационной диаграммы берут исследуемый электрод ( рабочий электрод), электрод сравнения и вспомогательный электрод, обычно платиновый. Изображение электрохимической ячейки вместимостью 1 л, которая широко используется в коррозионных лабораториях, представлено на рис. 4.6. В ячейку помещен барботер для деаэрации раствора или насыщения его газом. [c.59]

    Согласно исследованиям, проведенным Национальной физической лабораторией в Великобритании, агрессивность почвы по отношению к черным металлам можно оценить, измеряя сопротивление грунта и потенциал платинового электрода в грунте по отношению к насыщенному каломельному электроду сравнения [8]. Почвы, имеющие низкое удельное сопротивление (<2000 Ом-см), агрессивны. Те грунты, потенциал которых при pH = 7 был низким (<0,40 В или, для глины, <0,43 В), представляют собой хорошую среду для существования сульфатвосстанавливающих бактерий, а значит, также агрессивны. В случаях, не относящихся к этим двум, критерием агрессивности служит влагосодержание грунты, содержащие более 20 % воды, агрессивны. [c.183]

    Относительно сравнения и обобщения экспериментальных результатов, полученных на различных образцах (пленки или волокна) различными методами (ИК-поглощение или ЭПР) или в различных лабораториях, следует сделать общее замечание. Если такие относительные характеристики, как влияние [c.229]

    В общем случае химическим или бактериальным превращениям биопроб способствует наличие воды. Поэтому в некоторых методиках перед хранением проб рекомендуется их сушка. Однако она необратимо изменяет биологическую матрицу. Так называемую сухую массу, как правило, применяют лишь для сравнения данных, полученных в разных лабораториях, поскольку при сушке на состав образца влияют температура, вид биологического материала и природа определяемых компонентов Так, большая часть ртути теряется при сушке то же наблюдается для МЫШЬЯК и селена Более предпочтительна лиофилизация, в ходе которой биологический материал изменяется меньше [c.203]

    В полярографии используют ртутные капающие электроды и электроды сравнения с большой поверхностью ртути. Кроме того, в процессе работы ртуть накапливается на дне электролизера. Необходимо помнить, что пары ртути являются опасным ядом для организма. Однако при тщательном выполнении инструкции и аккуратной работе возможность заражения воздуха лаборатории сводится к минимуму. [c.163]


    После отбора пробы гигроскопичного вещества для анализа эту пробу хранят в хорошо закрытой склянке. Обычно для анализа берут воздушно-сухой образец, причем одновременно с пробой для полного химического анализа отбирают пробу для определения гигроскопической воды. Определив содержание гигроскопической воды, рассчитывают содержание абсолютно сухого вещества в пробе, взятой для полного анализа. После окончания полного анализа процентное содержание отдельных компонентов рассчитывают чаще всего по отношению к навеске абсолютно сухого образца. Это облегчает установление формулы вещества или его химического характера облегчается также сравнение результатов-анализа различных лабораторий, технические расчеты и т. д. [c.110]

    Пар по сравнению с жидкостью обогащен тем компонентом, который при данной температуре имеет большее давление насыщенного пара. Если пар сконденсировать и вновь подвергнуть перегонке, то произойдет дальнейшее обогащение его летучим компонентом. Многократно повторяя испарение и конденсацию, добиваются требуемой степени очистки летучего компонента. Одновременно происходит обогащение исходной жидкости менее летучим компонентом. В лаборатории дробную перегонку осуществляют в стеклянных приборах, снабженных дефлегматорами — трубками с насечкой, которая способствует охлаждению проходящего внутри пара и частичной конденсации его. Процесс перегонки [c.22]

    Фракционная перегонка заключается в многократном повторении процессов испарения и конденсации. В результате отдельного этапа такой перегонки испаряется лишь небольшая часть имеющейся жидкости, а образующийся пар в дальнейшем конденсируется. Конденсат (как и пар, из которого он получен) в соответствии с первым законом Коновалова отличается по составу от неиспарившейся жидкости и представляет собой жидкость с большим относительным содержанием одного из компонентов по сравнению с его содержанием в неиспарившейся жидкости. При последующем частичном испарении конденсата образуется пар с еще большим относительным содержанием этого компонента. Этот пар тоже конденсируется, а затем опять испаряется и т. д. В результате каждого испарения отдельной фракции меняется и состав жидкости, которая обогащается хуже испаряющимся компонентом. На производстве и в лаборатории фракционная перегонка, осуществляемая автоматически и непрерывно, называется ректификацией. В результате фракционной перегонки происходит постоянное изменение состава как неиспарившейся части фракции, так и конденсата. Следовательно, заданный раствор можно разделить на чистые компоненты. Однако в случае образования азеотропного раствора состав пара и жидкости одинаков, поэтому при его испарении или конденсации состав не изменяется. Вследствие этого не всякий компонент можно выделить из заданного раствора путем перегонки. [c.196]

    Физическая основа иного качества явлений космического масштаба по сравнению с наблюдаемым в лаборатории состоит, возможно, в том, что в космосе основным видом взаимодействия является гравитация, играющая второстепенную роль в случае малых масс. Так, сила гравитационного взаимодействия между протоном и электроном в атоме водорода составляет всего лишь 4-10 от силы кулоновского притяжения, удерживающего электрон в атоме. С другой стороны, сила тяготения, как считается, может достигать в космических объектах такой величины, что свет не в состоянии ее преодолеть и объект перестаёт светиться — это явление возникает как следствие гравитационного коллапса. Из всего сказанного важно понять, что второй закон термодинамики не является абсолютным принципом и теряет смысл и для систем, содержащих малое число частиц, и для систем космического масштаба. [c.193]

    Потенциал электрода может быть измерен не толь ко по отношению к стандартному водородному электроду, но и по отношению к другим электродам, называемым электродами сравнения (потенциал которых известен по отношению к водородному электроду). Такими электродами сравнения могут быть хингидронный, хлоридсеребряный и др. Хлоридсеребряные электроды изготовляются промышленно, но легко могут быть приготовлены, как и хингидронные, в лаборатории. [c.340]

    Экспериментальный лак П-45 (концентрированный органозоль металлополимера) обладает высокими магнитными и электроакустическими свойствами, легко регулируемыми благодаря изменению состава металлополимера и технологических параметров его получения и нанесения. По сравнению с промышленным лаком ЛМП-35 он проявляет повышенное адгезионное взаимодействие с используемыми на предприятиях и в лаборатории подложками. [c.253]

    Задача интенсификации развития химии как науки и производства имеет ряд существенных особенностей по сравнению с задачами интенсификации других отраслей общественного производства. В общем случае ускорение научно-технического прогресса и рост производительности труда в химической промышленности происходят по всем пяти компонентам, которые, по К. Марксу, составляют производительные силы общества, а именно за счет совершенствования 1) специальных знаний и общей культуры че-ловека-труженика, 2) орудий труда, т. е. техники, 3) научных исследований, результаты которых материализуются в форме новой техники и технологии, 4) использования в производстве сил природы, т. е. естественных источников сырья, и 5) форм и методов организации производства. Но в отличие от научно-технического прогресса в других отраслях промышленности, в интенсификации химического производства особую роль играют первый и третий из названных компонентов, ибо именно они призваны обеспечивать своего рода разведку путей развития по существу всех остальных видов производства. В самом деле, например, для максимального повышения экономической эффективности различных видов специального и общего машиностроения, приборостроения и энергетики революционизирующее значение имеют 1) снижение массы и пространственных габаритов машин на единицу мощности 2) использование недефицитных видов сырья без снижения качества продукции 3) механизация и комплексная автоматизация производственных процессов на основе электроники, электротехники, квантовой электродинамики, теории информации и т. д. И, как видно, все эти факторы зависят в первую очередь от успехов химии, от качества разработанных в лаборатории и созданных в промышленности материалов. Ведь снижение массы машин на единицу мощности или поиск недефицитных видов сырья — это задача почти чисто химическая, причем теоретическая, поисковая. И в этой поисковой, разведочной роли состоит основная особенность интенсификации развития химии как науки и производства. [c.225]

    При помощи квантометра МФС-3 в экспресс-лаборатории анализировали состав латуни марки ЛС-62 по ходу плавки. Спектры возбуждали в дуге переменного тока. Время экспозиции порядка 30 сек задавали временем накопления электрического заряда на конденсаторе канала линии сравнения, которой служила для всех элементов линия спектра меди. Регистрограмма результатов последовательных измерений относительных интенсивностей линий [c.129]

    Взвешиванием называют сравнение массы данного тела с массой гпрь, масса которых известна и выражена в определенных ед 1Н1 цах (.иг, г, кг). Весы являются важнейшим прибором в хил1пческо11 лаборатории, так как почти ни одна работа в ней пе обходится без определения массы того или иного вещества или тары, в которую помещают взвешивае.мое вещество. [c.82]

    Различные фильтровальные перегородки, независимо от использования их в дальнейщем для разделения суспензии с определенными хара стеристиками, отличаются рядом свойств, из числа которых здесь кратко рассмотрены проницаемость по отношению к чистой жидкости, задерживающая способность по отношению к твердым частицам известного размера и распределение пор по размерам. Эти свойства исследуются в лаборатории, служат для сравнения фильтровальных перегородок и учитываются при их выборе. [c.375]

    Шнейдер и др. [122, 122а] в лаборатории Национального исследовательского совета Канады использовали свою модификацию метода Барнетта и провели широкое исследование р—и—Г-СБОйств целого ряда веществ. В их работе с гелием при температурах до 1200° С были получены, вероятно, самые точные высокотемпературные р—V—Г-данные по сравнению с известными, данными для любого другого вещества. [c.103]

    Прибор Скотт-Блейра легко воспроизвести в любой лаборатории и в этом заключается его большое преимущество по сравнению с другими приборами, применявшимися для этой цели. Однако сверка результатов, полученных 1 этом и других приборах, показала, что в приборе Скотт-Блейра зачастую наблюдается зависимость получаемых результатов от размеров капилляров. Следовательно, значения, иолучаемые в этом приборе, являются лишь весьма 1 [ рибл и к енн ыми. [c.711]

    В лаборатории катализаторов и адсорбентов ГНИ и ВНИПИ газопереработки были проведены исследования по разработке отечественного титаноксидного катализатора для получения серы методом Клауса. Результаты сравнения показали, что испытуемый титаноксидиый отечественный катализатор по своим свойствам не уступает лучшим зарубежным аналогам типа СК8-31. По ряду свойств, в частности гидролизующей активности и прочности, отечественные катализаторы уступают. [c.66]

    Из низкокипящих ароматических углеводородов особое анима-ние уделяется бензолу. Так, в США, где нормы содержания бензола в воздухе, по сравнению с СССР, были менее строгими, по предложению OSHA с ноября 1977 г. предполагалось снизить допустимую концентрацию бензола в воздухе в 10 раз (примерно с 34,8 до 3,48 мг/м ), а длительность работы при концентрации 17,4 мг/м не допускать более 15 мин [4]. Эти ограничения распространяются и на исследовательские и учебные лаборатории. В связи с этим целесообразно в ряде лабораторных работ заменять бензол на толуол и ксилолы [6], которые менее опасны, чем бензол. Правда, санитарные службы ряда фирм и отдельные специалисты [4, 6, 7] оспаривают необходимость ужесточения требований, считая недостаточно обоснованным положение о канцерогенном действии бензола. [c.321]

    Каломельный полуэлемент давно используется в лабораториях как стандартный электрод сравнения. Он состоит из металлической ртути, находящейся в равновесии с ионами Hg2 , активность которых определяется растворимостью Hg2 l2 (хлорида ртути, или каломели). Реакция в полуэлементе протекает по следующей схеме  [c.43]

    Кроме того, было предложено упростить и унифицировать методы оценивания точности измерений. На практике часто трудно разделить составляющие погрешности на систематические и случайные. Суммирование этих составляющих строго в соответствии с правилами математической статистики требовало принятия допущений о виде законов распределения, справедливость которых можно было обосновать лишь умозрительно. Поэтому регламентация на уровне международных метрологических организаций простого и универсального квазистатистического методов суммирования, применимых ко всем видам измерений, всем типам данных и используемых при измерениях, существенно облегчила бы практическую деятельность измерительных лабораторий, сняла бы с них бремя поиска наилучшего метода и доказательства его правильности, и в то же время создала бы объективную основу для сравнения результатов разных лабораторий. [c.258]

    При определении суперэкотоксикантов в жидких средах в последнее время все большую роль играют методы, совмещающие отбор проб и концентрирование 156-59]. Их очевидное преимущество заключается в уменьшении массы и объема проб, которые необходимо доставлять с места отбора в лабораторию К тому же в этом случае обеспечивается хорошее усреднение результатов и увеличиваются возможности анализа за счет высоких коэффициентов концентрирования, сокращения числа подготовительных стадий и времени на их выполнение (в 7-8 раз по сравнению с классическим вариантом). Следует заметить, что термин пробоотбор очень часто в литературе употребляется для обозначения именно таких комбинированных методов В них, в частности, широко П1)именя-ются сорбенты типа полимерных смол, порапаков и тенакса (табл 5. 4) Для обогащения следовых компонентов, содержащихся в воде, последнюю пропускают через колонку с сорбентом Сорбция в динамических условиях не требует сложной аппаратуры и позволяет концентрировать определяемые вещества из больших количеств воды. Основная задача заключается в выборе соответствующего сорбента и оптимизации условий его применения, обеспечиваюшдх количественное извлечение суперэкотоксикантов. Например, 2,4-дихлор- и 2,4,5-трихлорфеноксиук-сусные кислоты при концентрациях порядка 20 мкг/л хорошо адсорбиру- [c.185]

    В аналитической практике отечественных лабораторий наиболее широко эффект Шпольского используется для идентификации и количественного определения бенз(а)пирена [18]. Это относится и к профамме фонового мониторинга природных объектов. Для целей мониторинга ПАУ создан банк спектров при 77 К, который опубликован в виде атласа 27 . На основе проведенных исследований рафаботаны высокочувствительные и селективные методы определения ПАУ и их гфоизводных в многокомпонентных природных и техногенных системах в воздухе, почве, растениях, атмосферных осадках, природных и сточных водах, донных отложениях, горных породах, минералах, нефтях, высокотемпературных пиролизатах, отработанных газах автомобильных даигателей, саже и т д. Предел обнаружения в однокомпонентных растворах для разных соединений находится в диапазоне от 0,01 до 1 нг/мл. Дл[я огфеделения ПАУ в последнее время применяют метод единого стандарта, который базируется на сравнении спектров люминесценции анализируемых рас- [c.252]

    С целью выяснения причин расхождения и факторов, влияющих на него, была исследована воспроизводимость результатов юпределения пористости, для чего привлекались данные по тем же образцам, полученные по той же методике, но в другой лаборатории и в другое время. Рис. 4 дает картину такого сопоставления пористости. Видно, что и на зтом графике наблюдается довольно значительный разброс точек. Коэфициент корреляции R = 0,95, значения среднеквадратичного отклонения и средней относительной ошибки соответственно / = 1,59%, Р=10,2%. Из этого сравнения видно, что эталонный метод сам по себе характеризуется достаточно высокой степенью погрешности. Разница в относительной ошибке оценки пористости между методами (2,7%) намного меньше, чем относительная ошибка эталонного метода. Это позволяет сделать вывод о том, что пористость метолом ЯМР определяется не хуже, чем обычными методами. [c.107]

    Сравнение данных, приведенных в табл. 2, показывает, что техни-ческий безводный хлористый кальций, часто применяющийся в лабораториях как осушающее вещество, является одним из наиболее слабых осушающих веществ. Количество влаги, остающейся над хлористым кальцием, в 400 раз больше, чем количество влаги, остающейся над прокаленной окисью кальция. Поэтому сушить или сохранять такие осадки, как AljOj, aO, SiO и т. п., над хлористым кальцием совершенно бессмысленно. Конечно, воздух в эксикаторе над хлористым кальцием более сухой, чем в лаборатории, и в короткое время, особенно при хранении в закрытом тигле, такие осадки мало увеличиваются в весе. Однако при длительном стоянии осадки сначала будут поглощать водяные пары из воздуха, находящегося в эксикаторе, затем этот высушенный воздух будет отнимать влагу от лежащего на дне эксикатора хлористого кальция и передавать эту влагу осадкам. Через некоторое время осадки окиси кальция или окиси алюминия начнут сами высушивать хлористый кальций и при этом поглощать влагу. Именно это явление служит причиной многих систематических ошибок в ряде анализов. [c.88]

    При содержани взвешенных веществ менее 3 мг/л определение прозрачности становится затруднительным из-за необходимости применения трубы большей длины. В таком случае определяют величину, обратную прозрачностн, — мутность воды. В лабораториях мутность определяют в мугномере и выражают в мг/л. Само онределени< сводится к сравнению мутности испытуемой воды со стандартами. Устройство мутномера основано на явлении рассеяния света частицами дисперсной фазы. Если эти частицы больше длины световой волны, то рассеяния света происходит из-за преломления н полного внутреннего отражения света частицами. Суммарное рассеяние света показано на рис. 46. Стрелка 5 соответствует направлению луча, претерпевшего при встрече с частицей М преломление в точке А, полное внутреннее отражение в 5 и вновь [c.124]

    Определение pH растворов производят практически во всех химических лабораториях. Для этого измеряют ЭДС элемента, состояцего из индикаторного электрода и электрода сравнения, которые подбирают с учетом их преимуществ и недостатков, а также в соответствии с природой исследуемых растворов. [c.188]

    Определение растворимости при помощи ионселек-тивных электродов. Ионселективный электрод предназначен для количественного определения того иона, на который ион рассчитан. Познакомьтесь с его работой и устройством (см. с. 211). Узнайте, какие электроды (и иономеры) имеются в лаборатории, и в соответствии с этим, выберите соль (или основание) для определения ее растворимости. Растворимость соли не должна быть меньше нижней границы интервала концентрации работы электрода. Как поступить, если растворимость соли превышает верхний предел интервала работы электрода Приготовьте насыщенный раствор выбранной соли. В раствор введите ионселективный электрод и электрод сравнения, которые подсоедините к соответствующим клеммам иономера (рН-метра). Определите концентрацию иона и вычислите растворимость соли. [c.244]

    Хлоридсеребряный электрод сравнения легко изго-товливается самостоятельно. В электродный стаканчик налейте 5—15 мл 1 М раствора хлорида калия и добавьте 1—2 капли раствора нитрата серебра до образования взвешенного в растворе осадка (мути) хлорида серебра. Это и будет насыщенный раствор хлорида серебра. Опустив в раствор проволочку серебра, получаем хлоридсеребряный электрод. Если в лаборатории нет серебряной проволоки, можно воспользоваться ее кусочками, уже припаянными к проводнику из испорченных промышленных электродов (из них же можно извлечь и хлорид серебра). [c.341]

    В любой жидкости, если время воздействия на нее деформирующей силы значительно меньше периода релаксации (пропорционального вязкости), течение за это время не успевает произойти, и жидкость ведет себя как упругое твердое тело. Таким образом, можно было бы, например, ходить по воде, не погружаясь в нее, если бы время каждого шага не превышало периода релаксации для воды, т. е. ничтожно малой величины по сравнению с измеримыми (для воды т] = 0,01, Е = 10 , 0 i=5 Ю- з сек). Однако для более вязких жидкостей периоды релаксации вполне измеримы. Например, для битумов и асфальтов их можно непосредственно измерить. За короткое время действия деформирующих сил такие высоковязкие жидкости ведут себя как истинно упругие тела, подчиняясь закону Гука вплоть до хрупкого разрушения. М. О. Корнфельд в лаборатории академика А, Ф. Иоффе показал, что при быстрых ударах, например при простреле пулей, струя легколетучей жидкости раскалывается хрупко, так, если бы это была стеклянная палочка. При длительно же действующих силах упругие деформации не могут быть обнаружены, так как они, по меткому выражению Я. И. Френкеля, маскируются текучестью жидкости устанавливается вязкое течение с постоянной скоростью деформацил , пропорциональной действующему напряжению сдвига. Коэффициент пропорциональности, обратный вязкости (или периоду релаксации), следует называть текучестью данной жидкости. [c.173]

    Приемы работы. Преимущество химических методов обнаружения перед разработаннымн позднее физико-химическими и физическими методами заключается в том, что первые можно быстро выполнить в любой лаборатории без использования дорогостоящей аппаратуры. Технические приемы полумикро- и микроаналитических методов рекомендуют использовать также и тогда, когда анализируемого материала имеется достаточное количество. По сравнению с обычными макрометодами эти приемы работы требуют намного меньше времени. Кроме того, при этом экономятся дорогие реактивы, энергия и лабораторная площадь. Очень многие реакции обнаружения, используемые в макроанализе, непосредственно пригодны для полумикро- и микроанализа. Однако ряд микрореакций, особенно капельные реакции, можно выполнять только как микрохимические. [c.53]

    Введение относительной интенсивности не меняет вида связи, выражаемой этими формулами, так как интенсивность линии сравнения остается постоянной. Коэффициент самопоглощения имеет примерно тот же физический смысл, что и формулы (12) и (13), его величина остается постоянной только в некотором интервале концентраций, меняясь от единицы при малых концентрациях (отсутствие самопоглощения) почти до нуля для интенсивных линий при высоких концентрациях. Величина и физический смысл коэффициента а в формулах (46)—(47) и (12), (13) различны, так как теперь он определяется не только свойствами аналитической линии и источника света, но и интенсивностью линиисравнения и неизвестной зависимостью между концентрацией определяемого элемента в образце ив источнике света. Поэтому зависимость между 1 7 и концентрацией в образце приходится устанавливать заново каждый раз, в каждой лаборатории, для каждого прибора. Только в отдельных случаях приближенные количественные оценки можно делать на основании данных, полученных в других лабораториях по разработанной там методике и по найденной там зависимости между концентрацией вещества и интенсивностью линий в спектре. [c.258]

    Химические свойства. Атомы водорода намного активнее вступают в химические реакции по сравнению с его молекулами, которые требуют предварительных затрат энергии на распаривание электронов, осуществляющих связь. Атомарный водород способен на холоду восстанавливать многие органические вещества и оксиды металлов, соединяться с серой (в НгЗ), азотом (в N113), фосфором (в РНз) и кислородом (в Н2О2). Водород в атомарном состоянии в лаборатории можно иметь в момент его выделения при действии цинка на кислоту. [c.212]


Смотреть страницы где упоминается термин Сравнение лабораторий: [c.318]    [c.129]    [c.317]    [c.13]    [c.5]    [c.66]    [c.66]    [c.162]    [c.142]   
Статистика в аналитической химии (1994) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Сравнение с данными другой лаборатории



© 2024 chem21.info Реклама на сайте