Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

алкилирование реакционная способность к нуклеофильному замещению

    Неактивированные винил- и арилгалогениды имеют достаточно низкую реакционную способность для проведения алкилирования с помощью литийорганических соединений. Если алкилирование и идет, то не как нуклеофильное замещение, а по механизму присоединения - элиминирования или через промежуточное образование дегидробензола  [c.246]

    Реакционная способность пиридина в реакциях нуклеофильного замещения настолько велика, что замещению может подвергаться даже сильно основный гидрид-ион Н . Два важных примера подобной реакции — аминирование амидом натрия (реакция Чичибабина) и алкилирование или арилирование при помощи литийорганических соединений [c.1026]


    Синтетически важной реакцией карбанионов является алкилирование карбанионов алкилгалогенидами. Активность алкилгалогенидов обычно изменяется в последовательности иодиды > бромиды > хлориды. Обычно используют метилгалогениды, в случае других алкилгалогенидов с реакцией нуклеофильного замещения часто конкурируют процессы р-элиминирования и переноса протона. Ассоциация ионов может влиять на реакционную способность карбанионов, причем во всех изученных случаях реакционная способность свободных ионов была выше, чем для ионных пар. Кроме того, природа противоиона может влиять на региоселективность [c.561]

    Изменение растворителя систематически меняет нуклеофильную реакционную способность [178] так, что менее поляризуемые (жесткие), сильно сольватируемые ионы становятся более реакционно-способными с уменьшением полярности растворителя. Гидроксилсодержащие растворители из-за наличия водородной связи обычно сильно сольватируют ионы по сравнению с апротонными растворителями. Поэтому для водных спиртов и кислот ряд скоростей подобен, но он значительно изменяется в апротонных растворителях, таких, как ацетонитрил и диметилформамид. Эти изменения иллюстрируются данными для типичных реакций алкилирования и ароматического замещения (табл. 5-23), приведенными в обзоре Паркера [178]. [c.240]

    Циклопентадиенид-анион (1) исключительно легко реагирует с электрофильными агентами, в очень мягких условиях вступая в реакции галогенирования, алкилирования, азосочетания и др. При переходе к пирролу (2) и далее к бензолу (3) легкость электрофильного замещения уменьщается пиридин (4) уже вступает в реакции такого типа в жестких условиях, а соли тропилия (5) до сих пор вообще не удалось ввести ни в одну из электро-фильных реакций. В то же время соли тропилия очень легко взаимодействуют с самыми разнообразными нуклеофильными реагентами водой, алкоголятами и многими другими. Пиридин и тем более бензол вступают в подобные реакции значительно труднее, а соли циклопентадиенид-аниона вообще не реагируют с нуклеофильными агентами. В представленном выще ряду реакционная способность по отношению к электрофильным реагентам уменьшается слева направо, а по отношению к нуклеофильным реагентам — справа налево без всякой видимой связи со степенью ароматичности. [c.38]

    Из таблицы 1 следует, что состав смесей образующихся продуктов зависит от строения и соотношения исходных реагентов. Наибольшую активность в реакциях с ТИБА проявляют 2-моноалкил-замещенные 1,3-диоксоланы 1 и 2. Пока трудно объяснить тот факт, что применение четырехкратного избытка ТИБА в реакции с 2-фенил-1,3-диоксоланом (2) в четыре раза увеличивает долю продукта алкилирования 14 при одновременном снижении общего выхода продуктов расщепления 11 и 14 (табл. 1). Наименьшую активность из всех изученных ацеталей проявил 1,3-диоксолан 16. Наличие двух алкильных заместителей во втором положении снижает реакционную способность кеталей по сравнению с ацеталями, что свидетельствует о более высокой чувствительности процесса к стерическим факторам, чем к изменению электронной плотности на атоме углерода. Очевидно, определяющей стадией процесса является комплексообразование АОС с нуклеофильными субстратами, региоселективность которого зависит от стерических факторов. [c.7]


    В этом разделе основное внимание уделено алкилированию и ацилированию по Фриделю — Крафтсу [25а]. Другие родственные реакции (см. разд. 2.5.6, п. 3) будут рассмотрены более кратко. Во всех этих реакциях образуется новая связь углерод — углерод. Как и в других примерах реакций электрофильного присоединения — элиминирования, ароматические молекулы выступают в роли нуклеофила и. следовательно, другие частицы, которые первоначально являются электронейтральными, подвергаются нуклеофильному замещению. В большинстве рассматриваемых в этом разделе реакций электрофильный компонент обладает недостаточной реакционной способностью, чтобы взаимодействовать со слабонуклеофильным ароматическим компонентом в отсутствие подходящего катализатора. Катализатор увеличивает электрофильность неароматического компонента. [c.346]

    После того как Вудворд и сотрудники [142] показали, что ферроцен ацилируется по методу Фриделя—Крафтса в мягких условиях, были исследованы многие другие реакции замещения. Кроме ряда реакций ацилирования и алкилирования по Фриделю—Крафтсу, были осуществлены сульфирование, меркурирование и металлирование бутиллитием или фенилнатрием. Высокая реакционная способность ферроцена была убедительно показана Хаузером и Линдси [145, 146], которые установили, что он вступает в реакцию аминометилирования. В дальнейшем это было подтверждено превращением ферроцена в ферроценальдегид метилформанилидным методом [147—151] и ацилированием ферроцена в присутствии таких мягких катализаторов, как фосфорная кислота [150]. Бензол не вступает в эти реакции при используемых условиях. Так способны реагировать только те производные бензола, которые имеют сильно активирующие заместители (ОН, ОЯ и т. д.). Столь же высокая реакционная способность ферроцена обнаружена при свободнорадикальном арилировании, которое протекает при действии солей диазония [147, 152—155]. Реакции нуклеофильного замещения в ферроценовом ряду не осуществлены. [c.129]

    Венуто и сотр. [1, 15, 16] изучали алкилирование олефинами замещенных бензолов (например, фенола и анизола), а также гетероциклических соединений (тиофена, пиррола). При алкилировании фенола были получены необычные результаты. Оказалось, что алкилирование фенола этиленом идет в более жестких условиях ( 200° С), чем алкилирование бензола ( 120° С), хотя фенол более чувствителен к нуклеофильной атаке. Кроме того, было установлено, что присутствие фенола подавляет алкилирование бензола. Венуто и Вю [17] считают, что такое обращение реакционной способности бензола и фенола на цеолите ННдУ, активированном в токе кислорода при 550° С, объясняется сильной адсорбцией фенола на катализаторе, которая уменьшает доступность активных центров для слабо-адсорбируемых молекул этилена. Таким образом, адсорбированный этил-катион вступает в реакцию в соответствии с механизмом Ридила, т. е. взаимодействует с молекулой ароматического соединения, находящейся в свободном, а не в адсорбированном состоянии. [c.132]

    До сих пор мы касались лишь кинетической стороны участия ионов и ионных пар в реакциях нуклеофильного замещения. Теперь рассмотрим реакцию, в которой ионная ассоциация влияет на состав образующихся продуктов, а именно, реакцию алкилирования амбидентных систем. Енолят-ионы как типичные представители класса амбидеитных анионов проявляют двойственную реакционную способность в реакциях нуклеофильного замещения, образуя продукты алкилирования как по углеродному, так и по кислородному центрам аниона [20, 21]. Одним из решающих факторов, определяющих направление алкилирования, является тип ионной частицы, которая вступает в реакцию замещения с алкилгалогенидами, алкилтозилатами или иными электрофильными агентами. В ионных парах щелочных енолятов катион электроста- [c.259]

    Связь О—Н в спиртах довольно прочна, хотя она, полярна и кинетически лабильна. Значения энергии гомолитической диссоциации связи (D°) для i—Сгалканолов лежат в пределах 427—436 кДж-моль . Гомолитическое отщепление гидроксильного атома водорода радикалами для первичных и вторичных спиртов в растворе обычно не встречается в этих случаях, как правило, протекает предпочтительно атака по а-атому углерода. С другой стороны, депротонирование с образованием алкоксида легко осуществляется при обработке спирта сильно электроположительным металлом или сильным основанием. Реакционная способность понижается от первичных к третичным спиртам в соответствии с порядком изменения кислотности в жидкой фазе (см. табл. 4.1.4). Гетеролиз связи О—Н также следует за электрофильной атакой по гидроксильному атому кислорода, например при алкилировании и ацилировании спиртов. Вследствие высокой электроотрицательности и низкой поляризуемости кислорода спирты являются только слабыми и относительно жесткими основаниями (см. табл. 4.1.4) и лищь умеренно реакционноспособны в качестве нуклеофилов. Реакции присоединения спиртов к ненасыщенным соединениям обычно требуют участия катализатора или использования активированных субстратов. Нуклеофильность самих спиртов может быть активирована путем (а) превращения их в алкоксиды или (б) путем замещения гидроксильного атома водорода электроположительной или электронодонорной группой. Первый, более распространенный подход, находит применение, например, при нуклеофильном замещении алкилгало-генов, нуклеофильном (по Михаэлю) присоединении к активированным алкенам и при нуклеофильных реакциях присоединения-элиминирования в процессе переэтерификации. Второй, менее популярный подход, включает использование ковалентного средине- [c.60]


    Нуклеофильные реакции гидроксамовых кислот осложнены тремя возможными направлениями замещения [N, (N)—О и (С)=0]. По поводу алкилирования в нейтральных условиях известно лищь, что обработка избытком диазометана приводит к метилированию обоих атомов кислорода (уравнение (211) [392]. Большое внимание уделено изучению алкилирования в основных условиях, когда активной частицей является гидроксамат-анион (131). Его активность по отношению к электрофильным агентам значительно выше, чем у фенолят-ионов той же основности, что приписывается а-эффекту соседнего гетероатома (т. е. электронному отталкиванию неподеленной парой электронов азота, что увеличивает доступность электронов на кислороде). Для объяснения повышенной реакционной способности было предложено и альтернативное объяснение, основанное на внутримолекулярном катализе. Независимо от природы эффекта происходит преимущественное замещение у атома (N)—О гидроксамат-иона с образованием 0-алкилгидроксамата схема (212) . Отсутствие продуктов N-алкилирования кажется неожиданным, однако может быть объяснено в предположении, что гидроксамат-ион существует только й виде частицы, связанной водородной связью (131), где отрицательный заряд частично расположен на обоих атомах кислорода, но не на азоте. Алкилирование обычно проводят обработкой [c.505]

    Во многих интересных системах встречаются агрегаты высокого порядка, но до настоящего времени ни в одном случае не удалось надежно связать их реакционную способность со структурой. Натрий-бутирофенон в диэтиловом эфире существует в основном в виде три-мера, и реакция его алкилирования имеет дробный прорядок по соли, что говорит о доминирующем вкладе в реакционную способность наименее ассоциированных нуклеофильных частиц [575]. Характеристикой этих высоко агрегированных систем является то, что скорость с увеличением радиуса иона металла растет значительно быстрее, чем для ионных пар, приведенных в табл. 3.18 (например, в 1000 раз при переходе от Li+ к К по сравнению с 2). Это также справедливо для гетерогенной реакции M+Y (тв.) + RX (газ.) [125]. Степень агрегации диэтил-и-бутилмалоната натрия в бензоле составляет 40 - 50 [30]. Добавление диполярного апротонного растворителя увеличивает скорость замещения в 1-бромбутане в ряду, совпадающем с рядом способности добавок разделять ионные пары со щелочными катионами [571] см. также работу [297]). Эти сольватируюшие ди-полярные апротонные растворители, как известно, разрушают агрегаты малоната натпия. поэтому кинетически активными частицами должны быть агрегаты меньшего порядка или свободные енолят-ионы. [c.624]

    Галоидалкилы. По своей реакционной способности в качестве агентов алкилирования активных метиленовых соединений различные органические галоидопроизводные можно расположить в такой же ряд, в каком они располагаются и в случае других бимолекулярных нуклеофильных реакций замещения аллил- и бензилгалогениды являются более реакционноспособными, чем > алкилгалогениды [274], которые в свою очередь более активны, чем винилгалогениды [54, 275—277] и арилгалогениды [142, 278]. Подобным же образом в пределах данной алкильной группы йодиды более активны, чем бромиды [34, 37, 40, 142, 234, 279— 281], которые обладают большей реакционной способностью, чем хлориды [282—284], тогда как фториды почти инертны [285]. Ввиду того что весьма активные галоидные соединения благоприятствуют диалкилированию (стр. 137) обычно в тех случаях, когда диалкилирование может явиться серьезной побочной реакцией, рекомендуют выбирать в качестве алкилирующего агента менее реакционноспособный галоидалкил [140, 280], Алкилгалогениды, легко отщепляющие молекулу галоидо-водорода (например, третичные алкилгалогениды), непригодны [c.154]

    Низкую селективность связывают со структурой переходного состояния, близкой к структуре незаряженного радикального о-комплекса типа (141). Однако показано, [354, 355], что при радикальном замещении Заметную, а иногда и решающую роль-играют полярные эффекты. Последнее особенно ярко проявляется, если субстрат или атакующий радикал уже несет заряд,, как, например, при свободнорадикальном алкилировании про-тонйрбванных ароматических азагетероциклов или при аминировании ароматических соединений с электронодонорными заместителями аммониевыми катион-радикалами R2NH+ (см разд. 14.1), Изучение реакционной способности и ориентации, замещения позволяет говорить об злектрофильности или нуклеофильности радикалов, мерой которой может служить значение константы чувствительности р в уравнении Гаммета. [c.122]

    В полученный раствор приливают 1,5 мл иодистого этила, закрывают пробирку резиновой пробкой, сильно встряхивают и оставляют ее на 1 ч в стакане с ледяной водой. Реакционная способность этилгалогенидов в реакциях нуклеофильного бимолекулярного замещения Sn2) меньше, чем метилгалогенидов с HjI реакция алкилирования аммиака идет примерно 15 мин, а с 5H5I — 60 мин. Иодистый тетраэтиламмоний растворяется в спирте значительно лучше,- чем иодистый тетраметиламмоний, поэтому осадка в пробирке не образуется. Для выделения соли прозрачный раствор переливают из пробирки в фарфоровою чашку и упаривают на водяной бане до V5 первоначального объема. После охлаждения жидкости выпадают кристаллы иодистого тетраэтиламмония. Их отфильтровывают, отжимают в фильтровальной бумаге и используют в последующих опытах. В фильтрате содержатся растворимые соли аминов, их также используют в опытах. [c.124]

    Эфиры целлюлозы и сульфокислот представляют интерес прежде всего как исходный продукт для синтеза новых классов производных целлюлозы и дезоксицеллюлозы по реакции нуклеофильного замещения. Резкие различия в реакционной способности сульфонилоксигрупп, расположенных у первичных и вторичных углеродных атомов элементарного звена, по отношению к некоторым нуклеофильным реагентам (в частности. Nal) явились причиной использования эфиров сульфокислот, например п-толуолсульфо-кислоты, для определения положения заместителей в частично замещенных производных целлюлозы и тем самым для определения сравнительной реакционной способности первичных и вторичных ОН-групп в различных реакциях этерификации и О-алкилирования, (стр. 252). [c.357]

    Различные типы азотистых ипритов изучали в лабораторных условиях в отношении скорости алкилирования ими 4-(/7-нитробензил)пиридина, скорости их гидролиза и противоопухолевой эффективности [12]. У ароматических азотистых ипритов скорость алкилирования и гидролиза зависит от основности азота. Реакционная способность резко снижается при замещении циклически.ми электрофильными соединениями в параположении к азоту и повышается при замещении соединениями, освобождающими электроны. Результаты корреляции между противоопухолевой эффективностью и процентом гидролиза или алки-лнрующей активностью показывают, что биологически значимые реакции ароматических азотистых ипритов более близки к 8[ )1 типу реакций сольволиза, чем к 5 2 типу реакций алкилирования. Хотя в лаборатории скорости алкилирования различны для каждого из богатых электронами соединений, относительное влияние на алкилирующие вещества изменений в замещенных группах будет оставаться одинаковым при условии, что реакция идет по типу 5р 2. Был сделан вывод, что ступенью, определяющей скорость биологически значимых реакций, должно быть возникновение переходного состояния, более сходного с сольватированным диполем ион карбония — азот (А-3), чем с комплексом иоп этиленимина —SN2 (А-2) (см. рис. 6). Поскольку это переходное состояние может реагировать с молекулой воды в большей степени, чем с нуклеофильными группами компонентов клетки, было предложено обозначать алкилирующие вещества как такие, которые будут создавать переходное состояние типа А-3, только в непосредственной близости от желательного места воздействия . [c.186]

    Была подробно изучена реакционная способность ферроцена открыты, в частности, реакции замещения в циклонентадиенильные кольца (алкилирование, металлирование, сульфирование, фосфорилирова-ние, дейтерирование, аминометилирование), нуклеофильное замещение галогена в ферроценовом ядре, радикальное замещение (арилирование ароматическими диазосоединениями, взаимодействие с трихлоруксусной кислотой). Были открыты так называемые рикошетные реакции замещения в ферроценовое ядро, идущие с участием атома железа (цианирование). [c.160]

    В число наиболее давно известных и чрезвычайно широко изученных реакций замещения входят процессы замещения галогенов у углеродных атомов [36, 37]. Эта группа реакций является одним из наиболее важных методов химической модификации белков и заключается в алкилировании всех или некоторых нуклеофильных заместителей, содержащихся в молекуле белка, в зависимости от доступности этих заместителей, условий реакции и количества используемого реагента. В табл. VI-5 приводен ряд алифатических и ароматических галогенпроизводных, которые вводились во взаимодействие с белками, а также типичные условия, возможные направления реакций и пути использования этих реакций для исследовательских или промышленных целей. Среди галогенидов обычно наиболее реакционноспособны иодиды, затем — бромиды (обладающие почти столь же высокой реакционной способностью, что и иодиды), хлориды и, наконец, фториды. Этот ряд, однако, может быть обращен для некоторых ароматических соединений, поскольку, как ун е отмечалось, реакционная способность вещества RY зависит как от природы Y, так и от R. [c.335]


Смотреть страницы где упоминается термин алкилирование реакционная способность к нуклеофильному замещению: [c.19]    [c.60]    [c.174]    [c.174]   
Химия гетероциклических соединений (2004) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Нуклеофильная способность

алкилирование замещение

алкилирование нуклеофильное замещение

алкилирование хлор относительная реакционная способность к нуклеофильному замещению



© 2024 chem21.info Реклама на сайте