Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликоген выделение

    Для обеспечения хорошего усвоения пищи необходимо разнообразить ее, а также приправлять различными вкусовыми и пахучими веществами, вызывающими усиленное выделение пищеварительных соков. Существенно важно, что каждый орган человека имеет свой характерный режим питания. Так, мозг для нормальной работы нуждается преимущественно в сахаре, селезенка — в гликогене (животном крахмале) и т. д. В общем можно сказать, что пища только тогда дает максимальный полезный эффект, если она разнообразна по составу и вкусно приготовлена. Вопросом о качестве пищи не следует пренебрегать высокомерное невнимание к еде есть неблагоразумие (И. П. Павлов). [c.580]


    Полисахариды, в частности гликоген, слабо сорбируются на оксиапатите. Этим можно воспользоваться для существенной очистки НК в ходе их выделения от сопутствующего им гликогена (нередко встречающееся использование для этой цели амилазы рекомендовать нельзя — в ней всегда могут оказаться примеси нуклеаз). [c.244]

    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]

    При поедании животными крахмал, а в некоторых случаях также целлюлоза разрушаются, давая снова исходную (+)-глюкозу. Последняя с током крови переносится в печень и там превращается в гликоген, или животный крахмал в случае необходимости гликоген снова может быть разрушен до (+)-глюкозы. (-Ь)-Глюкоза переносится током крови в ткани, где она окисляется в конце концов в двуокись углерода и воду с выделением энергии, полученной первоначально с солнечным светом. Некоторое количество (- -)-глю-козы превращается в жиры, а некоторое реагирует с азотсодержащими соединениями с образованием аминокислот, которые, соединяясь друг с другом, дают белки, являющиеся субстратом всех известных нам форм жизни. [c.931]

    Классическими методами анализа, например метилированием, показано, что гликоген состоит из а-(1- 4)-связанных остатков О-глюкозы, и имеет а-(1,4,6)-связанные точки ветвления. Применение амилолитических ферментов для определения тонкой структуры гликогена показало, что он имеет ветвистое строение (см. рис. 26.3.5, й), причем каждая цепь состоит из 12 остатков D-глю-козы. Столь малая длина цепей в соединении, имеющем молекулярную массу порядка 10 —10 , свидетельствует о высокоразветвленной структуре, вследствие чего молекула гликогена поглощает Иод в еще меньшем количестве, чем молекула амилопектина. Области густого ветвления, устойчивые к действию а-амилазы, распределены по молекуле статистически [160]. С доступностью паракристаллического гликогена стало возможным применение физических методов для более детального изучения его строения 161]. Нахождению в природе, выделению, строению и ферментативному расщеплению гликогена посвящены обзоры [162—164]. [c.257]


    Метод основан на том, что гликоген хорошо растворим в воде и достаточно устойчив в слабокислой среде. Поэтому метод выделения гликогена сводится к механическому разрушению ткани и экстракции гликогена 5%-ным раствором ТХУ. Основная масса белков при процедуре денатурирует и их легко удалить из раствора фильтрованием. [c.122]

    Секреция инсулина из В-клеток островков Лангерганса в кровь представляет собой сложный процесс он идет при участии ионов Са " ", и его последний этап-это выделение в кровь содержимого секреторных гранул, в которых образуются инсулин и С-пептид. Скорость секреции инсулина зависит в первую очередь от концентрации глюкозы в крови-она тем выше, чем выше концентрация глюкозы. Повышение концентрации инсулина ускоряет поступление глюкозы из крови в печень и мышцы, где она в основном превращается в гликоген. При этом концентрация глюкозы в крови падает до нормального уровня, что в свою очередь приводит к замедлению секреции инсулина, скорость которой снижается до нормы. Таким образом, между скоростью секреции инсулина и концентрацией глюкозы в крови сушествует хорошо отлаженная обратная связь. [c.798]

    Животный крахмал, или гликоген, является резервным веществом животных организмов и отлагается преимущественно в печени. Гликоген содержится также в мускульной ткани, причем количества его временно убывают при напряженной мускульной работе, когда сахаристые вещества с выделением энергии превращаются в продукты их обмена. Гликоген растворим в воде, но, в отличие от крахмала, не образует клейстера с раствором иода дает буро-красную окраску, близкую к окраске высших декстринов. При действии кислот гликоген, подобно крахмалу, гидролизуется с образованием мальтозы и -глюкозы. [c.321]

    Аэробный путь. Образовавшаяся молочная кислота диффундирует в кровяное русло и переносится кровью в печень, где подвергается своеобразным превращениям. Можно было бы ожидать, что организм окисляет всю молочную кислоту до двуокиси углерода и воды и в таком виде выводит ее из организма. Однако этого не происходит. В печени молочная кислота превращается в гликоген Это превращение идет с потреблением энергии. Если гликолиз идет с выделением энергии (т. е. образуется АТФ), то процесс, обратный гликолизу, должен идти с поглощением энергии (т. е. с потреблением АТФ). С этой целью, т. е. для снабжения энергией процесса синтеза гликогена, некоторое количество молочной кислоты подвергается окислению до двуокиси углерода и воды. Около 1/6 молочной кислоты окисляется в печени, чтобы обеспечить обратное превращение в гликоген остальных 5/6 молочной кислоты. Окисления незначительной доли молочной кислоты [c.379]

    Гликоген [31,32,33]—важнейший резервный полисахарид животных организмов — содержится во всех органах животных и во многих микроорганизмах (как дрожжи и бактерии). Особенно высоко содержанке гликогена в печени (до 20%) и в мышцах (до 4%). Старыми классическими методами выделения гликогена являются 1) метод Пфлюгера (кипячение животной ткани в растворе крепкого КОН, растворяющего [c.108]

    НО связаны с его молекулами . Отсюда возникла необходимость спасать нативные гликогены при выделении не только от внешних воздействий (действия кислот, щелочей, кислорода воздуха), но и от сопровождающих гликоген расщепляющих его ферментов (извлекают гликогены в присутствии агентов, денатурирующих белок, например сулемы) [35]. [c.110]

    Правовращающий изомер молочной кислоты был выделен из мышц тканей животных и называется мясомолочной кислотой. Имеет большое биологическое значение при спокойном состоянии организма переходит в гликоген — запасное питательное вещество. Гликоген расходуется при интенсивной физической и умственной работе, что вызывает ощущение голода, усталости. Большое накопление (+)-молочной кислоты вредно для организма. [c.156]

    Если отравленную продуктом собственной жизнедеятельности мышцу перенести в атмосферу кислорода, то картина меняется. Начинаются два процесса окисление молочной кислоты, результатом которого являются дополнительное и очень существенное по масштабам выделение энергии, и синтез гликогена. Оказывается, что процессы постепенного превращения гликогена в глюкозу и затем в молочную кислоту во всех своих важнейших стадиях обратимы. Биохимическая машина может работать навыворот и из конечных продуктов опять создавать сырье. Некоторая часть молочной кислоты — конечного продукта гликогенолиза (разложение гликогена) вновь переходит в сырье — гликоген. [c.113]

    Из органических высокомолекулярных соединений построено большое количество биологически и технически важных веществ. К ним относятся вещества, из которых состоят растения и природные волокна,— целлюлоза и другие полисахариды, шерсть, шелк к ним принадлежат также коллаген и эластин, основная часть белков — протеиды и нуклеотиды, гликоген и крахмал, натуральные полипрены — каучук и гуттаперча. Синтетические высокомолекулярные соединения охватывают область пластических масс и синтетических волокон. Химия высокомолекулярных соединений изучает методы синтеза, характеристики и исследования этих веществ, а также превращения природных и синтетических полимеров в их производные. Если учесть значение перечисленных выше соединений, то представляется обоснованным выделение химии высокомолекулярных органических соединений в особую область органической химии. В строении макромолекул полимеров, а также в их химических и физических свойствах и в методах идентификации и характеристики этих соединений имеется столько особенностей, что необходимо самостоятельное рассмотрение этих вопросов. Однако следует учесть, что как для высокомолекулярных, так и для низкомолекулярных органических соединений в основном характерны одни и те же типы связи атомов в молекуле. Таким образом, все законы органической химии в полной мере относятся также и к химии высокомолекулярных соединений. [c.11]


    Гликоген — резервное углеводное питательное вещество животного мира, подобно тому как крахмал играет эту роль в растениях. Он находится в печени и мускулах. Макромолекулы гликогена имеют сферическую форму, вследствие чего вязкость его растворов подчиняется уравнению Эйнштейна (см. стр. 162), а сам полимер не обладает способностью кристаллизоваться. Структура гликогена напоминает структуру амилопектина, но количество разветвлений больше и боковые ветви имеют большую длину при сферической форме макромолекулы в целом. Молекулярный вес гликогена мускулов около 2,5-10 , гликогена печени — около 4,3-10 (Штаудингер). Эти данные дают представление о нижней границе значения молекулярного веса, так как выделение не деструктирован-ного гликогена затруднительно ферменты, находящиеся вместе с гликогеном, вызывают быстрое разрушение гликогена после смерти животного. [c.92]

    Протоплазма живых организмов представляет собой коллоидную систему. В ней содержатся различные лиофильные вещества (белки, гликоген, фосфолипиды), молекулы которых прочно удерживают воду (связанная вода). Когда под влиянием каких-либо причин изменяется структура коллоида, возможно выделение части связанной воды. Это явление носит название синерезиса. Примером синерезиса может служить выделение сыворотки при образовании сгустков крови. [c.120]

    Избыток глюкозы накапливается в организме в виде гликогена, который образуется в результате процесса, называемого гликогенезом. Остатки глюкозы (х= 12—18) конденсируются с выделением молекул воды, образуя гликоген по общей схеме [c.327]

    Определение полисахаридов вообще и сахарозы в частности требует выделения из анализируемого раствора восстанавливающих сахаров (или введения соответствующей поправки) и последующего гидролитического расщепления их до моносахаридов, которые могут быть определены с помощью описанного выше метода определения восстанавливающих сахаров. Если количество восстанавливающего сахара невелико, то вместо выделения его из раствора можно ограничиться введением соответствующей поправки на контрольный опыт. Из веществ растительного происхождения сахарозу можно экстрагировать спиртом [60]. Другие полисахариды могут быть выделены из анализируемых растворов с помощью различных растворителей. Так, например, гликоген обычно экстрагируют из тканей с помощью концентрированного раствора щелочи или трихлоруксусной кислоты. Ниже подробно описан метод экстрагирования и определения сахарозы. Совершенно ясно, что аналогичным путем могут быть определены также другие полисахариды, образующие в результате гидролиза восстанавливающие сахара. [c.231]

    В ходе выделения раствор ДНК, содержащий гликоген, можно перевести в 0,12 М Na-фосфатный буфер и внести на широкую и короткую колонку оксиапатита, уравновешенного тем же буфером (можно пспользовать и стеклянный фильтр с нанесенным на него слоем оксиапатита). Гликоген почти полностью отмывается тем же буфером, а ДНК элюируют 0,4—0,5 М фосфатным буфером. Высокополимерная ДНК очень медленно элюируется с колонки в этом случае очистку удобнее вести в объеме [Graham, 1978]. [c.244]

    Определение активности образующейся фосфорилазы а. Активность фермента измеряют по обратной реакции (синтезу гликогена), сопровождающейся выделением неорганического фосфата. К малеат-ному буферу (0,1 М), pH 6,5, содержащему 0,1 М глюкозо-1-фосфат — 2%-ный гликоген, добавляют равный объем раствора, полученного после киназной реакции. Реакцию проводят 5 мин при 30° С. Останавливают реакцию добавлением реактивов для определения неорганического фосфата. Количество образовавшегося фосфата рассчитывают по калибровочному графику. [c.224]

    Тривиальные названия полисахаридов обычно отражают источник их нахождения в природе так, целлюлоза является основным компонентом клеточной стенки ell — клетка) у растений, а дерматан (обычно в сульфированной форме) впервые обнаружен в дермальном слое кожи. Тривиальные названия могут отражать некоторые свойства выделенного полимера например, английское название star h (крахмал) происходит от слова ster an (придавать жесткость). Для природных полисахаридов одного и того же типа обычно указывают нх происхождение. Так, например, крахмалы из различных растительных источников можно легко различить химическими методами, поэтому в их названиях указывают источник выделения (например, маисовый крахмал). Такие традиционные названия, как целлюлоза, гликоген и амилоза, [c.208]

    Основным резервным полисахаридом животных организмов является гликоген. Он обнаружен в большинстве животных тканей наиболее удобными источниками для его экстракции обычно слу- кат печень или мышечная ткань. Печень человека содержит до 10% гликогена (от сухой массы). В отличие от крахмала выделение и очистка гликогена — непростая задача. По классическому методу ткань нагревали в сильношелочном растворе при 100°С в течение 3 ч для ее растворения и затем осаждали гликоген этанолом. После обнаружения факта щелочного распада (см. разд. 26.3.2.5) была разработана другая методика. При экстракции холодным разбавленным раствором трихлоруксусной кислоты был выделен продукт, молекулярная масса которого была в 10 с лишним раз больше, чем у продукта, полученного традиционным методом [158]. В настоящее время разработаны методы, позволяющие еще надежнее исключить распад в процессе выделения [159] с их помощью можно определить действительную молекулярную массу выделенного полисахарида. Было найдено, например, что молекулярная масса гликогена из печени при общем нарушении процесса отложения в ней гликогена меньше нормальной. [c.257]

    Заслуживает особого внимания применение высокомолекулярных комплексообразователей для выделения полисахаридов. Простейшим примером могут служить комплексы целлюлозы с амилозой или растительными галактоманнанами , образование которых объясняется сходством линейно построенных молекул этих соединений. Некоторые белки образуют нерастворимые комплексы с полисахаридами, например, кон-канавалин-А осаждает гликоген и некоторые другие высокоразветвлен-ные полисахариды . Наиболее избирательным методом осаждения полисахаридов является действие соответствующих антисывороток , применяемое в аналитических и, гораздо реже, в препаративных целях (подробнее об антигенных свойствах полисахаридов и явлении иммунитета см. стр. 518 и 604). [c.485]

    Гликоген является резервным полисахаридом, общим для всех животных организмов, а также некоторых бактерий и дрожжей. Значительным содержанием гликогена отличаются клетки печен и имышц животных. Для выделения этого полисахарида разработано несколько методов экстракция тканей водой , 30%-ным едким кали, трихлоруксусной кислотой или диметилсульфоксидом . [c.540]

    При кратковременном недостатке калорийной пищи организм астично расходует запасные вещества, главным образом жир и леводы (гликоген). При кратковременном избытке пищи ее -вояемость и утилизация уменьшаются, увеличиваются каловые ассы и выделение мочи. При длительном недостатке энергети-"ски ценной пищи организмом расходуются не только резерв- е углеводы и жиры, но и белки, что в первую очередь ведет уменьшению массы скелетных мышц. В результате происходит Щее ослабление организма. [c.197]

    С другой стороны, опыт показывает, что такой декстрановый фон практически не мешает работе с гелями сефадекса. Имеются сведения об успешном разделении олиго- и моносахаридов (см. литературу, приложение XVI). Моносахариды также можно легко разделить на сефадексе 0-10. Что касается высокомолекулярных соединений, то на сефадексе С-75, например, был выделен декстрин из крахмала [92], а на 0-50 — декстрин из различных гликогенов [93] гемицеллюлоза из древесины ели [94] и кислые полисахариды различного происхождения [95, 96] были фракционированы на сефадексе 0-100. [c.224]

    Можно выделить три типа цепочек цепочки А присоединены только через свою полуацетальную группу цепочки В присоединены через полуацетальную группу и свободную ОН-группу у 6-го атома углерода по крайней мере одного остатка цепочки С присоединены только через ОН-группу у 6-го атома углерода и имеют свободную восстанавливающую группу. Относительный размер линейных и сильно разветвленных структур, а также точная длина цепочек неизвестны. Амилопектин сходен с гликогеном, однако последний имеет более разветвленную структуру и более короткие наружные цепочки. Отношение содержания амилозы к содержанию амилопектина обычно колеблется от 1 6 до 1 3, хотя в ряде случаев наблюдалось отношение 3 1, а в крахмале некоторых растений амилоза вообще отсутствует. У восковидной кукурузы, содержание амилозы очень низко в то же время выведены сорта кукурузы с очень высоким содержанием амилозы. Соотношение амилозы и амилопектина изменяется в зависимости от сорта растения, а также в зависимости от того, из какого органа одного и того же растения выделен крахмал. Ряд ученых придерживается взгляда, что in vivo амилоза и амилопектин составляют одно целое. В настоящее время большую поддержку находит представление, что два компонента крахмала являются разными веществами, однако это до сих пор убедительно не обосновано. [c.159]

    Сравнение целлюлозы и гликогена. Практически чистая целлюлоза. Полученная из волокон, окружающих семена растений вида Gossypium (хлопчатник), представляет собой Прочное, волокнистое, совершенно нерастворимое в воде вещество. Гликоген же, выделенный из мыщц или печени, напротив, легко диспергируется в горячей воде, образуя мутный раствор. Несмотря на различие в физических свойствах, оба этих вещества-полимеры, обладающие близкими молекулярными массами и состоящие из остатков D-глюкозы, соединенных 1, 4ч вязями. Какими особенностями строения обусловлены различия в свойствах этих двух полисахаридов Какое биологическое значение имеют особенности физических свойств этих соединений  [c.324]

    Глюкозо- 1-фосфат - конечный продукт реакции, катализируемой гликоген-фос-форилазой (фосфорилазой крахмала), превращается в глюкозо-6-фосфат под действием фермента фосфоглюкомутазы. Этот фермент (он был выделен в чистом виде из многих источников) катализирует обратимую реакцию  [c.458]

    Электронная микрофотография гранул гликогена, выделенных из печени крысы (метод негативного контраста). Эти гранулы, представляющие собой запасную форму глюкозного топлива в печени, называются а-частицами. Они состоят из более мелких р-частиц. Гранулы содержат не только гликоген, но и ферменты, необходимые для его синтеза и расщепления, равно как и ферменты, осуществляющие ре-ципрокную регулящ1ю этих процессов. [c.600]

    У человека известен ряд генетических болезней, связанных с нарушением синтеза или распада гликогена. Одним из первых был описан случай хронического увеличения печени-у 8-летней девочки, у которой наблюдались также различного рода нарушения обмена. Девочка умерла от гриппа. Вскрытие показало, что ее печень была в 3 раза больше нормы в ней содержалось огромное количество гликогена на долю его приходилось почти 40% сухого веса органа. Выделенный из печени гликоген в химическом отношении оказался вполне нормальным, однако, когда кусочек ткани печени гомогенизировали и инкубировали в буфере, этот гликоген так и остался интактным-ни лактат, ни глюкоза не образовались. Когда же к гликогену добавили суспензию, приготовленную из ткани нормальной печени, то очень быстро произошло его расщепление до глюкозы. На основании этой биохимической проверки исследователи пришли к выводу, что у больной был нарушен процесс расщепления гликогена (эту болезнь часто называют болезнью Гирке по имени описавшего ее врача). Сначала предполагалось, что дефектным ферментом была в этом случае глюкозо-6-фос-фатаза, поскольку больная печень не образовывала глюкозы однако отсутствие образования лактата указывало на то, что дефект затрагивал либо гликоген-фосфорилазу, либо дебранчинг-фермент [а(1 - 6)-глюкозидазу]. Позже исследователи укрепились в мнении, что в этом классическом случае была затронута именно а(1 - 6)-глюкозидаза. Вследствие этого в молекулах гликогена, находящихся в печени, могли расщепляться с образованием глюкозы или [c.616]

    При известном постоянстве распределения молекулярной массы гликогенов у нормальных животных при патологии может наблюдаться иная картина. Так, Эрдстром [37] сообщил об уникальном случае при глйкогенозе (близкому к типу У-амилопектинозу ) был выделен гликоген с очень низкой молекулярной массой —8000—15 000. [c.110]

    В настоящее время ясно, что макромолекулярная структура гликогена (подразумевать ли под этим термином схемы Лелуара, Крисман или же явления ассоциации частиц) может играть большую роль в свойствах гликогена. Так, например, Лелуар [68] наблюдал, что фосфоролиз частичковых гликогенов протекает медленнее, чем выделенных старыми методами. Нам удалось наблюдать иной ход р-амилолиза высокомолекулярных гликогенов по сравнению с низкомолекулярными. Эти явления мы изучали в двух вариантах. В одном из них [70] из одного и того же органа (печени кролика) гликогены выделялись новыми щадящими методами (например, фенольной экстрацией) и старыми, жест  [c.122]

    Молекулярные массы амилоз. Как и в отношении гликогенов, представления. о молекулярных массах полисахаридов крахмала в последние годы значительно изменились. Выделение крахмала и его субфракций в присутствии кислорода воздуха, как было показано, вызывает значительную деполимеризацию, что дает заниженные величины молекулярных масс. Оказалось, что степень полимеризации амиЛоз исчисляется не сотнями, а тысячами. Существует два типа амилоз 1) амилозы с относительно низкой степенью полимеризации (порядка 2000), не имеющие структурных аномалий , полностью расщепляющиеся Р-амилазой, и 2) амилозы с большой степенью полимеризации (свыше 6000), которые имеют структурные барьеры для Р-амилазы расщепляемость их может составлять всего 60 %. [c.132]

    Второй проблемой, ждущей разрешения, является вопрос о ферментативном механизме, обусловливающем образование разветвленной структуры молекулы крахмала. Фермент, участвующий в образовании а-(1,6)-связей, впервые был обнаружен Кори и Кори [41 ] в мышцах. Этот фермент, первоначально названный группой Кори фактором ветвления , позднее получил название амило-(1,4,1,6)-трансглюко-зидазы. Он способен совместно с фосфорилазой синтезировать гликоген из глюкозо-1-фосфата. Сходный фермент был выделен Хэуортом и сотр. [83] из клубней картофеля он был назван Q-ферментом. Впоследствии Q-фермент был обнаружен и в других растениях. Его удалось выделить в кристаллическом состоянии [70]. Свойства очищенного Q-фермента были изучены Питом и сотр. [141 ]. При использовании очищенного Q-фермента и фосфорилазы из глюкозо-1-фосфата был получен разветвленный полисахарид, подобный амилопек- [c.153]

    Ранее мы, совместное О. Н. Пономаревой [1], сообщали о выделении из корневищ растения зремуруса Регеля (семейство Lilia eae), произрастающего в Средней Азии и культивируемого в средней полосе, нового полисахарида, названного эремураном. Внимание к этому полисахариду было привлечено вследствие того, что он, подобно гликогену, давал красную окраску с иодом с максимумом поглощения при 5300 A (гликоген печени кролика дает максимум при 5 000 A). Эта окраска, будучи близкой к таковой гликогена по положению максимума, сильно отличается от нее по интенсивности. Эремуран дает растворы высокой вязкости, обладает левым вращением [а]р = —30+2°. [c.56]

    Те же авторы выделили из гликогена изомальтотриозу 15], что привело к представлению о наличии а-1,6-связей не только в точках ветвления молекул, как считалось ранее, но и в ветвях. Выделение из печени полиглюкозидов с высоким содержанием а-1,6-связей [6] также свидетельствует о возможности существования в животном организме полимеров глюкозы с а-1,6-связями не только в. точках ветвления, но и в ветвях [5]. Эти полиглюкозиды, возможно, занимают промежуточное положение между гликогенами и дек-странами [7]. [c.99]

    Образующаяся при гликолизе пировиноградная кислота в результате декарбоксилирования и окисления превращается в уксусную кислоту. В свою очередь уксусная кислота при участии АТФ и фермента ацетилирует сульфгидрильную группу кофермента А. Возникает 8-ацетилкофермент А или так называемая активированная уксусная кислота. Активированная уксусная кислота может превращаться в высшие жирные кислоты, из которых образуются жиры. Эти жиры также могут откладываться в организме. Почти все аминокислоты являются или гликогенными, или кето-генными, т. е. они участвуют в образовании гликогена или жиров. Из гистидина, орнитина, пролина, оксипролина и аргинина может образоваться а-кетоглутаровая кислота, из тирозина и фенилаланина — фумаровая кислота. Окисление глутаровой и фумаровой кислот по цитратному циклу сопровождается выделением энергии, необходимой для организма. Если же энергия в данный момент не нужна, то углеводы и углеродные цепи аминокислот могут превращаться в нейтральные жиры, откладывающиеся в организме. [c.353]

    Методы испытаний другого типа основаны на том, что деятельность коры надпочечников тесно связана с углеводным обменом . Так, после удаления надпочечников резко уменьшается содержание гликогена в пе-чени . Лонг и его сотрудники заметили, что введение активного начала коры надпочечников вызывает повышение содержания углеводов в крови и в печени и одновременно повышает выделение небелкового азота с мочой, т. е. повышает распад белков, сопровождающийся образованием мочевины и других продуктов белкового обмена. Количественные определения показали, что все синтезированные углеводы образовались из белков. Хотя кортикоиды, повидимому, непосредственно влияют главным образом на белковый обмен, имеются некоторые данные, указывающие, что активные начала коры надпочечников способствуют превращению глюкозы в гликоген печени " и могут задерживать окисление глюкозы . Способность гормона содействовать отложению гликогена в печени голодающих адреналэктомированных крыс была использована Рейнеке и Кендаллом- для разработки метода определения активности, развитого затем Ольсеном и его сотрудниками . Активность выражается в гликогенных единицах, содержащихся в 1 мг вещества гликогенная единица произвольно характеризуется как активность 1 у кортикостерона при введении его в четыре приема (с двухчасовыми интервалами) голодающей адреналэктомированной крысе. По этому тесту наибольшей активностью обладают оба соединения, содержащие кислород в положениях И и 17 кортикостерон и его 11-дегидронроизводное несколько менее активны. [c.447]


Смотреть страницы где упоминается термин Гликоген выделение: [c.357]    [c.221]    [c.266]    [c.139]    [c.485]    [c.351]    [c.173]    [c.150]    [c.203]    [c.182]    [c.383]   
Химия углеводов (1967) -- [ c.485 , c.486 ]




ПОИСК





Смотрите так же термины и статьи:

Гликоген



© 2025 chem21.info Реклама на сайте