Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяка образованию

    Методы разделения веществ путем распределения их между газовой и конденсированной фазами во многих случаях позволяют достигнуть очень совершенного разделения. Если происходит выделение в газовую фазу, то можно снова извлечь нужные нам соединения из газовой фазы и их проанализировать. Так, например, пропуская выделяющийся мышьяковистый водород вместе с газом-носителем через нагретую стеклянную трубку, можно осадить весь мышьяк в виде мышьякового зеркала (металлического мышьяка) на стенке нагретой трубки и далее каким-либо методом количественно определить содержание мышьяка. Образование мышьякового зеркала происходит благодаря разложению при нагревании нестойкого АзНз по реакции [c.66]


    Для более тонкой очистки газа от мелкой пыли используются электрофильтры. В современных электрофильтрах газ очищается до содержания 0,05—0,1 г пыли на 1 м газа. Однако даже такая тонкая очистка в электрофильтрах недостаточна для контактного способа производства серной кислоты. Для окончательного освобождения газа от оставшихся частиц пыли и более полного отделения АзаОз и селена, являющихся сильными контактными ядами, необратимо отравляющими контактную массу, применяют очистку в промывных башнях и мокрых электрофильтрах. Последние называются так потому, что в них выделяются мельчайшие капельки воды, в которых растворены триоксиды серы и мышьяка. Образование мельчайших капелек (тумана) в газе происходит при увлажнении и охлаждении его до 30—50°С. После очистки от ядов газ осушают в сушильных башнях 93— 95%-ной серной кислотой. Подготовленный таким образом газ подается турбокомпрессором в контактное отделение для окисления диоксида серы. [c.258]

    При наличии в полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дырочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве примеси имеются атомы мышьяка (45 4рЗ). При образовании связей с окружающими атомами кремния атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора 2 2р ) приводит к валентной ненасыщенности атомов 51, т. е. усиливает у полупроводника дырочную проводимость. [c.118]

    Решение. В ходе реакции окисляются и мышьяк, и сера степень окисленности мышьяка повышается от +3 ло +5, а серы — от —2 до +6. При этом одна молекула АзгЗз расходуется ла образование двух ионов АвО и трех ионов 50  [c.169]

Рис. 6-3. Массы элементов, соединяющихся друг с другом при образовании указанных соединений. Диаграмма позволяет предсказать, например, что 25,0 г мышьяка должны соединяться с 35,5 г хлора или 16,0 г серы. Это подтверждается экспериментом. Мы- Рис. 6-3. <a href="/info/17542">Массы элементов</a>, соединяющихся друг с другом при образовании <a href="/info/410107">указанных соединений</a>. Диаграмма позволяет предсказать, например, что 25,0 г мышьяка должны соединяться с 35,5 г хлора или 16,0 г серы. Это подтверждается экспериментом. Мы-

    Удаление мышьяка основано на образовании тугоплавких соединений As—Al. Одновременно с мышьяком удаляется остаточное железо и частично медь и сурьма, а также интерметаллические соединения с алюминием. Алюминий вводится в черное олово при температуре не выше 500—600 °С. [c.41]

    Один из наиболее распространенных и эффективных методов устранения отходов — их сжигание. Оно сопровождается образованием диоксида углерода, воды и золы, а также наносящих наибольщий ущерб окружающей среде вредных компонентов, таких, как окислы серы, азота, галогены и тяжелые металлы (ртуть, мышьяк, селен, свинец, кадмий и др.). Если газообразные продукты процесса сжигания отходов содержат повышенные концентрации вредных примесей, то для снижения их выбросов в атмосферу до требуемых стандартами норм необходима вторичная обработка, включающая дожигание, промывку или фильтрацию продуктов сгорания [51]. [c.137]

    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]

    Я. Берестневой и В. А. Каргиным был исследован процесс образования некоторых золей при получении их методом химической конденсации. Были изучены золи кремневых кислот, сульфида мышьяка, гидроокиси алюминия, металлического золота и др. В результате было показано, что образование коллоидной частицы [c.531]

    В прямогонных бензинах содержатся небольшие количества органических соединений, имеющих в своем составе хлориды (обычно хлор) и некоторые металлы (свинец, медь, мышьяк). При гидроочистке соединения, содержащие металл и хлор, разрушаются, металлы отлагаются на поверхность катализатора, а хлористый водород удаляется при отпарке. Возможно также образование хлористого аммония (взаимодействие хлористого водорода с аммиаком), который осаждается в теплообменниках и холодильниках системы гидроочистки. [c.30]

    При современных промышленных методах подготовки и гидроочистки сырья для каталитического риформинга из него удаляют почти все элементы (медь, свинец, мышьяк и др.), которые являются яда.ми для алюмоплатинового катализатора. В сырье остаются лишь незначительные количества серу- и азотсодержащих соединений, реагирующих в условиях процесса с образованием соответственно сероводорода и аммиака. [c.93]

    Адсорбционная связь, посредством которой яд удерживается на контакте, весьма специфична, а химическая природа образования таких связей зависит от типов электронной конфигурации и в катализаторе, и в яде. Примером специфической адсорбции ядов может служить почти каждый каталитический процесс. Так, при окислении SO2 соединения мышьяка и другие яды энергично [c.63]

    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]


    Обесцинкованию способствуют 1) высокая температура, 2) неподвижность растворов, особенно в случае кислых сред, 3) образование пористых неорганических осадков. Латуни, содержащие 15 % 2п и менее, обычно не подвергаются обесцинкованию. Выше также отмечалось, что обесцинкование так называемых а-латуней (до 40 % 2й) можно уменьшить, введя в сплав олово и несколько сотых процента мышьяка, сурьмы или фосфора. [c.332]

    Число углеводородов жирного ряда (алифатических углеводородов) чрезвычайно велико. Их многообразие обусловлено способностью атомов углерода соединяться между собой с образованием цепей, причем это свойство в столь сильной степени не присуще ни одному другому элементу и проявляется в гораздо меньщей мере лишь у некоторых элементов, расположенных в периодической системе вблизи от углерода (например, у кремния, азота, фосфора, мышьяка). [c.25]

    Коррозионная стойкость свинцово-сурьмяного сплава повышается при наличии у него мелкокристаллической структуры. Образованию такой структуры способствуют быстрое охлаждение металла при литье, термическая обработка и присутствие в металле некоторых примесей. Такие примеси могут служить модификаторами (регуляторами кристаллизации). Выполняя функции центров кристаллизации, они способствуют образованию мелкокристаллического сплава. В этом случае на его поверхности образуются более плотные защитные пленки, закрывающие межкристаллитные прослойки и вызывающие пассивирование металла. Модификаторами могут быть примеси серебра, серы, фосфора и др. В производстве сплава модификатором является сера в чистом виде (0,03%) или в виде эбонита. При отливке тонких решеток для некоторых типов стартерных аккумуляторов представляет практический интерес добавление в свинцово-сурьмяный сплав небольших количеств серебра и мышьяка. [c.76]

    К вредным примесям относятся соли меди (0,01 г/л), мышьяка (0,001—0,005 г/л), сурьмы (0,001—0,01 г/л), свинца и нитраты, приводящие к образованию губчатых осадков, а также некоторые органические вещества скипидар, ацетон, клей и др. Удаление примесей металлов с более электроположительным потенциалом достигается путем проработки предварительно подкисленного электролита постоянным током при низкой плотности тока. Для удаления вредных органических примесей применяется проработка электролита постоянным током в электролизере со свинцовыми анодами (при отсутствии в растворе хлор-иона) при а = 5—10 А/дм , обработка перекисью марганца, активированным углем и т. д. [c.381]

    Кадмий Мышьяк Образование налета Образование налета Проба по Маршу Сульфид кадмия Проба по Маршу Мышьяковоаммониевая соль магния 0,03 рг [c.210]

    Л8 (п,7). Мишень (СНз)2А800Н (СНз)2 АзООЫа. 1) Какодиловую кислоту подвергают облучению медленными нейтронами в урановом ядерном реакторе и затем обрабатывают ее концентрированной соляной кислотой. Для восстановления имеющегося в небольшом количестве пятивалентного мышьяка прибавляют к раствору однохлористую медь (на 0,75 г какодиловой кислоты рекомендуется добавлять 7,5 мл концентрированной соляной кислоты и 0,4 г однохлористой меди). После этого, при нагревании до 110° в токе воздуха, отгоняют треххлористый мышьяк, образованный радиоактивными атомами Аз и стабильными Аз , получившимися в свободном состоянии вследствие изотопного обмена или разложения материнского вещества. Отгонка производится в азотную кислоту или в охлаждаемую льдом воду. [c.36]

    Найденный метод получения третичных арсинов является не только принципиально новым, но и по простоте своего проведения — наиболее доступным из известных методов синтеза соединений такого типа. В отличие от реакции с триацетатом мышьяка [ , образование геминальных димышьякорганических соединений в этом случае было лишь побочным процессом, а в основном арсенирование происходило по новому направлению (1). [c.1478]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    Абсорбционный мышьяково-содовый способ основан на окислении сероводорода кислородом с образованием элементарной серы. При поглощении сероводорода щелочным мышьяково-содовым раствором образуются тиосоедннения мышьяка, в которых кислород за(ме,щен серой. При последующем окислении раствора воздухом (регене рация) протекает обратная реакция с выделением элементарной серы. [c.46]

    Интересной в этом отношении является изученная Шиловым самопроизвольная реакция окисления трехокиси мышьяка бромноватой кислотой. Чтобы реакция окисления трехокиси мышьяка бромноватой кислотой была возможна, необходимо присутствие в системе бромистого водорода. При иод-кисленпи смеси КВрОз и АзгОз слабой кислотой реакция практически не идет. Только при большой концентрации водородных ионов оказывается возможным образование бромистого водорода по реакции [c.192]

    При 583,2 К AsHsfr) разлагается с образованием твердого мышьяка и газообразного водорода. Во время реакции давление изменялось следующим образом (давление паров мышьяка во внимание не принимается)  [c.344]

    В начале в раствор переходят одновременно цинк и медь в пропорции, соответствующей составу сплава. Ионы меди затем вторично выделяются из раствора, а образовавшийся осадок меди ускоряет электрохимическую коррозию латуни, как добавочный катод. В результате в раствор переходят ионы цинка, и с течением времени обесцинкование распространяется так глубоко, что приводит к образованию сквозных поврежде11ий латуни. Для уменьшения обесцинкования латуней сплав дополнительно легируют небольшими количествами олова, никеля, алюминия, а чаще всего мышьяка, порядка 0,001—0,012%. Возможный механизм влияния мышьяка — увеличение перенапряжения вторичного выделения меди. [c.253]

    Катодные ингибиторы влияют на скорость катодной реакции коррозионного процесса. К ним относятся активные восстановители, связывающие кислород и уменьшающие его содержание в растворе ( например, сульфид натрия или гидрозин), защищающие вещества, уменьшапцие поверхность катода за счет образования пленок труднорастворимых соединений ( например, Са(НСО ) или п ЗОц ), а также вещества, затрудняющие катодную реакцию коррозии металла ( катионы тяжелых металлов, например, вИсмута и Мышьяка), Ингибиторы смешанного действия замедляют как анодцую, таи и катодную реакции процесса корроаии. К этой группе ингибиторов относятся полифосфаты и силикаты. [c.53]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикпслоты. Однако гетероноликислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH = 1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота илн кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]

    Различаются три типа дезактивации кобальт-молибдено-вых катализаторов. Временная дезактивация наблюдается в присутствии в газе некоторых примесей, удаление которых восстанавливает первоначальную активность. Образование углерода может быть названо полуперманентной дезактивацией, так как начальная активность может быть восстановлена путем регенерации. Постоянная (перманентная) дезактивация происходит при спекании поверхности или в результате потери молибдена при регенерации, или в присутствии некоторых веществ, например мышьяка, образующего в процессе гидрогенолиза неактивные соединения. В последнем случае необходима загрузка свежего катализатора. [c.79]

    Соединения железа, никеля и ванадия вредны для катализаторов крекинга тем, что промотируют нежелательное образование водорода и кокса. Соединения никеля и ванадия часто присутствуют в высококипящих фракциях многих сьфьевых масел и иногда попадают в сырье для каталитического крекинга. Интересно, что окисные алюмокобальтмолибденовые, алюмоникельмолибденовые и алюмоникельвольфрамовые катализаторы способны удалять эти металлы, вероятно, за счет адсорбции на окиси алюминия. В табл. 11 представлены данные по удалению соединений мышьяка и свинца на алюмокобальтмолибденовом катализаторе, а результаты табл. 12 показывают, что большая часть мьпиьяка концентрировалась в верхней части слоя катализатора. [c.249]

    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    При наличии В полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дь[рочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве нримсси имеются атом[,1 мьпиьяка (4.s 4p ), При образовании связей с окружаю1и,ими атомами кремния As Sp ) атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора (2s 2p ) приводит к валентной ненасыщенности атомов Si, т, е. усиливает у полупроводника дырочную проводимость (рис. 69). В зависимости от преобладания того или иного вида проводимости различают полупроводники л-типа и полупроводники /)-ти1га. [c.109]

    Треххлористый мышьяк реагирует при нагревании с ацетиленом и безводным АзС1з в качестве катализатора с образованием высокотоксичного отравляющего вещества—люизита (поражает легкие и кожу открыт Льюисом)  [c.81]

    Тем же самым объясняется и интенсивное синее окрашивание, которое дают ликопин и все прочие каротиноиды с концентрированной серной кислотой (или с трихлоруксусной кислотой, треххлористым мышьяком, треххлористой сурьмой и т. д.). По-видимому, это окрашивание обусловлено образованием неустойчивых карбониевых солей. [c.855]

    Еще более однозначными явились опыты Пирсона и Порселла [24, 25], изучивших фотораспад того же ди-п.пропилкетона в струе при давлении в 2 мм рт. ст. В этих условиях также можно было ожидать образования пропильных радикалов. И действительно, с помощью зеркал из мышьяка, сурьмы, теллура, свинца и ртути, помещаемых на расстоянии до 35 см от освещаемой зоны, были констатированы активные осколки, возникающие при распаде. Продукт их взаимодействия со ртутным зеркалом реагирует с бромистой ртутью, образуя н.пропилбромистую ртуть. Этим самым было доказано наличие радикала Н.С3Н,. Далее было найдено, что в трубке диаметром в 8 мм (и при комнатной температуре) полу-период распада составляет 2,3-10 сек., а в трубке с диаметром в 11,2 мм [26] достигает 4 10 сек. [c.104]


Смотреть страницы где упоминается термин Мышьяка образованию: [c.33]    [c.147]    [c.44]    [c.204]    [c.48]    [c.276]    [c.277]    [c.427]    [c.421]    [c.504]    [c.509]    [c.515]    [c.14]    [c.118]    [c.95]   
Аналитическая химия мышьяка (1976) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте