Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация матрица

    Общие положения такого подхода в принципе не противоречат известным принципам (см. главу 1) о возникновении ячеек самоорганизации в нелинейных неравновесных мембранных системах, поскольку возникающая в матрице неоднородная структура явно удалена от состояния равновесия, если иметь в виду характерные времена релаксации для структурных элементов полимерной матрицы. В известном смысле процессы переноса в таких системах приближаются к кооперативным явлениям, осложненными химическим взаимодействием проникающего вещества с другими компонентами в мембране. Следует заметить, что данные [18], послужившие основой такого рода обобщений, нуждаются в тщательной экспериментальной проверке. [c.104]


    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]

    Процесс упорядочивания сводится к такому перераспределению атомов водорода, при котором возникает определенная периодичность, т. е. дальний порядок в их расположении в основной матрице. Это сопровождается, в отличие от упорядоченных фаз растворов замещения, сильным изменением периода кристаллической решетки основной матрицы с ростом концентрации атомов внедрения. Принято считать [22], что искажение решетки носит упругий характер, а процесс упорядочивания, т. е. перераспределения атомов внедрения, приводит к релаксации внутренних напряжений. В пользу идеи о доминирующей роли деформационного взаимодействия свидетельствует плавный, почти линейный характер изотермы сорбции в области упорядоченной фазы. [c.115]

    Аморфная структура стекол объясняется чрезвычайно большими временами релаксации для процессов перераспределения свободных объемов и структурных частиц, образующих матрицу. В этом смысле стекла можно рассматривать, как неравновесные системы, в которых может сформироваться периодическая структура. Известно, что стекла самопроизвольно кристаллизуются в течение длительного периода (в несколько сотен лет). [c.120]

    Основной задачей при использовании формул Эйлера, Рунге— Кутта и т. д. для решения системы (7.288) является выбор шага интегрирования, или фактора релаксации. При малых значениях последнего сходимость решения монотонная, но медленная. В случае же больших значений л возможно появление колебательности и даже расходимости решения. Система уравнений баланса является жесткой, т. е. имеет сильно различающиеся по абсолютной величине собственные значения. Поэтому ее решение существенно зависит от величины шага интегрирования. Очевидно, должно существовать оптимальное значение фактора релаксации, величина которого определяется собственными значениями матрицы системы уравнений и в конечном итоге количеством и концентрацией компонентов на тарелке. При расчете по формулам (7.288) фактор релаксации определяется через собственные зна- [c.367]


    По известным потокам и составам определяются факторы релаксации, по кинетическим уравнениям — скорости химической реакции и коэффициенты матрицы системы уравнений материального баланса (7.288). [c.368]

    Напряжения, возникающие при смещении цепи относительно матрицы твердого тела, могут быть также описаны с учетом понятия о коэффициенте трения мономеров [25]. Смысл такого допущения детально обсуждается Ферри [25], который также приводит перечень численных значений коэффициентов трения мономеров для многих полимеров. Естественно, коэффициенты в сильной степени зависят от температуры. Но даже если проводить сравнение при соответствующей - температуре, например при температуре стеклования каждого полимера, коэффициенты трения мономеров изменяются в зависимости от физической и химической структуры цепи на 10 порядков величины. В верхней части интервала значений получим при соответствующих каждому полимеру температурах стеклования 1740 Нс/м для ПММА, 19,5 Нс/м для ПВА и 11,2 Нс/м для ПВХ [25]. Это означает, что сегмент ПВХ, вытянутый при 80°С из матрицы ПВХ со скоростью 0,005 нм/с, преодолевает силу сдвига 0,056 нН на мономерное звено. При более низких температурах коэффициент молекулярного трения, по существу, растет пропорционально интенсивности спектра времен релаксации Я(т), причем увеличение составляет примерно от одного [c.145]

    Механизмы восстановления (релаксации) напряженных цепей рассматривались попутно при исследовании прочности связи и нагружения цепи. Такими механизмами являются проскальзывание цепи относительно окружающей матрицы (энталь-пийная релаксация), изменение конформации цепи (энтропийная релаксация) или ее разрыв. [c.147]

    При частичном проникновении жидкости или пара в матрицу возникают градиенты концентраций, которые действительно оказывают прямое механическое действие вследствие неоднородного набухания или косвенное действие вследствие неоднородной релаксации или распределения напряжений. Подобные действия даже усиливаются в присутствии температурных градиентов и могут вызвать быстрое образование обычных трещин и трещин серебра. В случае медленного проникновения окружающей среды в однородную матрицу с достаточно перепутанными цепями вынужденные напряжения обычно снимаются упругими или вязкоупругими силами. Например, в листах поликарбоната после проведения искусственных погодных испытаний не обнаруживаются трещины даже после воздействия суровых температурно-влажностных циклов [212]. Однако за относительно короткий период, 30—32 мес, естественных погодных испытаний на стороне, обращенной к солнечным лучам, возникала сетка поверхностных микротрещин. Путем сравнения с искусственным ультрафиолетовым облучением образцов авторы работы [212] смогли показать, что фотохимическая деградация поверхностных слоев вносит дефекты в материал и снижает прочность полимера в такой степени, что вызванные физически неоднородные напряжения стимулировали образование микротрещин, а не рассасывание неоднородностей. Влияние жидкой среды на образование обычной трещины и трещины серебра будет рассмотрено в разд. 9.2.4 (гл. 9). [c.319]

    Также широко исследовалось влияние температуры окружающей среды на скорость деградации материала [221—227]. С учетом сложной природы процесса деградации не следует ожидать простых кинетических уравнений. Из выражений (5.41) и (7.3) становится ясно, что размягчение матрицы (уменьшение о) и более низкая прочность эффективной связи и Т) частично компенсируют друг друга. Согласно данным, приведенным в обширном обзоре Казале [226], по-видимому, можно утверждать, что влияние температуры на твердость матрицы будет определяющим. Более низкие времена релаксации при более низких температурах вызывают увеличение механической деградации с уменьшением температуры (отрицательный температурный коэффициент общей механохимической реакции). [c.417]

    В дополнение к гауссову методу исключения имеются и другие прямые методы, такие, как правило Крамера и метод обращения матрицы. Эти вычислительные схемы дают результат решения только после конечного числа шагов. Если число уравнений велико, становятся более эффективными непрямые или итеративные методы решения, такие, как итерационный метод Гаусса—Зайделя и метод релаксации [16]. [c.275]

    Для сужения сигналов ЭПР на практике часто приходится прибегать к сильному охлаждению образцов жидким азотом или даже гелием, или водородом, что прежде всего позволяет увеличить время спин-решеточной релаксации. Это особенно бывает необходимо при изучении солей переходных металлов и редкоземельных элементов. Для снижения эффектов, вызываемых спин-спиновой релаксацией и обменными процессами, прибегают также к разбавлению образцов диамагнитными веществами и изоляции парамагнитных центров друг от друга в матрицах и при замораживании растворов. [c.66]


    Пример органических молекул, замороженных в жестких стеклообразных матрицах, часто используется для демонстрации послесвечения при облучении светом. Сейчас стало понятно, что фосфоресценция органических молекул является излучением запрещенных полос и обычно происходит с триплетных уровней. Поскольку радиационное время жизни таких переходов достаточно велико, столкновительная релаксация триплетных уровней достаточно эффективно конкурирует с радиационными процессами, и поэтому в обычных условиях фосфоресценция не наблюдается до тех пор, пока скорость столкновительной релаксации существенно не подавлена. В твердой среде частицы неспособны диффундировать друг к другу, и поэтому [c.98]

    Триплет-триплетный перенос энергии иногда рассматривается как отличное от синглет-синглетного переноса явление. Однако, если рассматривать механизм обменного взаимодействия, тот факт, что обе частицы А и О меняют свою спиновую мультиплетность, не имеет значения, поскольку реакция адиабатическая. Наблюдаемые же отличия в фотохимических процессах возникают в результате большого радиационного времени жизни триплетных состояний. Для среды, в которой процессы тушения и безызлучательной релаксации протекают медленно (например, в жестких стеклообразных матрицах), большое реальное время жизни триплетного донора приводит к тому, что даже неэффективный процесс переноса энергии успешно конкурирует с другими релаксационными процессами. В то же время сенсибилизированная фосфоресценция наблюдается только в таких системах, где процессы безызлучательной релаксации и тушения не являются основными путями дезактивации триплетного акцептора (т. е. вновь в стеклообразных матрицах, или для таких акцепторов, как диацетил). [c.127]

    Таким образом, даже такая минимальная информация о матрице Кирхгофа, как значение ее любого главного минора, позволяет найти свободную энергию полимерной молекулы. Подробность описания конформационной статистики возрастает с увеличением информации о матрице К. Так, зная ее спектр, можно найти средние размеры молекулы и распределение ее радиуса инерции [75]. Эта же информация позволяет вычислить с помощью обобщения теорий Рауза [76] и Зимма [77] динамические свойства гауссовой молекулы в терминах спектра ее времен релаксации [75, 78]. Для этой цели Фореман [78, 79] вместо матрицы К = ВВ , являющейся обобщением на разветвленные молекулы матрицы Зимма [77], использует аналог В В матрицы Рауза [76]. Поскольку отличные от нуля собственные значения матрицы Кирхгофа совпадают со спектром матрицы Рауза, то получающиеся при использовании двух различных подходов выражения идентичны. [c.177]

    При прессовании в матрице заготовок сложной формы (например, тиглей) нельзя получить равномерное уплотнение материала во всех частях. Это приводит к растрескиванию или тотчас после извлечения из матрицы (вследствие неравномерности релаксации внутренних напряжений), или при обжиге (вследствие неравномерности усадки).  [c.131]

    Методами нейтронной спектроскопии измеряют на поликристаллич. образцах спектр тепловых колебаний атомов (фононный спектр), а на монокристаллах с линейными размерами ок. 1см-т.наз. дисперсионные кривые, определяющие мн. физ. св-ва кристаллов. Нек-рые сведения можно получить также о диффузии атомов, об их подвижности и временах релаксации, влиянии примесей на матрицу и т. д., причем исследуют не только кристаллы, но и твердые аморфные в-ва и жидкости. Нейтронная спектроскопия, в отличие от оптической, позволяет проводить исследования при низких частотах (до 20 см ), причем в спектре проявляются все колебания (отсутствуют правила отбора). [c.206]

    К,-, - долевое участие в коксуемом массиве, соответственно, матрицы и брикетов - предельные термические напряжения, возникающие в матричном коксе, Па С, ,, - модуль упругости, соответственно, матричного кокса и кокса из брикета, Па е -- то же относительные упругие деформации относительная усадка кокса из брикета Л -коэффициент релаксации напряжений в матричном коксе (Л 0,9). [c.245]

    Сходные процессы перестройки электронных состояний матрицы при возникновении катионных или анионных решеточных вакансий установлены для других Ш-нитридов [36—39]. В [38] выполнены оценки решеточных искажений и энергии релаксации (Ер) для системы GaN [3], которые обнаружили их достаточно [c.40]

    Детальный анализ локальных зарядовых распределений показал [104], что при гетеровалентном замещении А " 81 происходит уменьшение электронной плотности вблизи замещаемого узла решетки матрицы, рис. 7.7, и образование оборванных связей . Таким образом, расчеты [104] фиксируют начальные условия последующей структурной релаксации, необходимой для оптимизации химического взаимодействия примеси с локальным кислородным окружением и минимизации энергии примесной системы. Более подробно релаксационные явления на примере примесных систем на основе неметаллических нитридов обсуждаются в гл. 4. [c.161]

    Этот показатель определяется одновременно с /Собр и релаксацией на фракциях 1 —1,5 мм. Порошковый кокс извлекается из матрицы после указанных определений и просеивается на сите с ячейками размером 1,0 мм. [c.97]

    Р матрица релаксации [выражение (2.3.2)] [c.16]

    Приведенные результаты показывают, что различные блочные эпоксидные смолы проявляют большие различия как в значениях равновесного водопоглощения, так и в кинетике сорбции. По крайней мере для одной из систем наблюдаются заметные необратимые эффекты, которые не дают возможности разграничить случай релаксации матрицы с другими типами нефиковской диффузии. Однако изменения в сорбционном поведении при увеличивающемся количестве повторных циклов сорбция — десорбция являются веским аргументом в пользу предположения об изменении структуры смолы в ходе начального сорбционного цикла. Для идентификации изменений, происшедших в смоле, включая образование микротрещин на поверхности и в объеме и образование пустот, целесообразно было бы применить методы оптической микроскопии или сканирующей электронной микроскопии. Невозможность полного удаления всей сорбированной воды в случае смолы П1 также указывает на значительные изменения в химическом строении смолы. [c.539]

    Принципиальная возможность расчета и перспективность использования азеотропно-экстрактивной ректификации была показана в работе [481, где предложена и схема алгоритма, основанная на методике релаксации. Однако основная задача состоит в разработке эффективной процедуры решения системы уравнений материального баланса, поскольку, обладая устойчивой сходимостью, метод релаксации весьма времеемок. Позднее был предложен комбинированный метод, основанный на методах релаксации и трехдиагональной матрицы [791. Другим подходом является использование метода Ньютона—Рафсона для решения системы уравнений материального баланса [801. И все же в виду сложности задачи основное внимание до сих пор уделяется разработке алгоритмов сведения материального баланса при отборе одной из фаз со ступени разделения или расслаивании целевых продуктов в гравитационных декантаторах. Но этим не исчерпываются особенности ректификации с расслаиванием жидких фаз. Большие возможности этого процесса заключаются в перераспределении потоков отдельных фаз внутри колонны на специальных устройствах [811 для создания необходимого температурного режима, а также изменения условий протекания процесса. [c.355]

    Двухстадийное обессеривание снижает прочность кокса. Механизм такого влияния, очевидно, объясняется релаксацией напряжений при двухступенчатом нафеве микроразрывами напряженных элементов углеродной матрицы с образованием микротрещин. [c.32]

    Классическим подтверждением диффузионного характера процесса является влияние размера частиц. Более интенсивное удаление серы при большем ее исходном содержании объясняется более ранним началом удаления серы с образованием большего числа транспортных каналов с раскрытием пор, что равнозначно измельчению кокса. Процесс гидрообес-серивания также реализуется через раскрытие пор разрушением углеродной матрицы газификацией водородом. Углубление процесса термообес-серивания при двухстадийной термообработке объясняется образованием микротрещин - пор вследствие релаксации напряжений. Ужесточение структуры, повышение прочности углеродной матрицы коксов из окисленного сырья и сырья, обработанного кислотой, затормаживают процесс термообессеривания. [c.32]

    Кб1 - энергия активации диффузии мономера в среде. В отличие от Л(7, Л/, имеет другой физический смысл и характеризует время релаксации частиц в полимерной матрице (микрореакторе) Тогда коксуемость или коксовое число вешестна [c.45]

    При прокаливании в одну ступень эти напряжения остаются и развиваются цри дальнейшем повышении температуры. Цри охлаждении после прокаливания цри 800°С цроисходат релаксация напряжений вследствие разрывов и образования трещин (пор) в наиболее напряженных микрозонах. Это подтверждается характером всех структурных цревра-щений ростом объемной плотности за счет меньших напряжений "ослабленной" углеродной матрицы меньшей механической прочностью и лучшей графитируемостью вследствие разрывов жестких связей. [c.112]

    Как показано на рис. 13.28, величина ВЭВ и форма экструдата зависят от отношения L/D для матрицы головки. Отношение площади сечения экструдата к площади сечения матрицы с увеличением L/Reff уменьшается. Этот эффект наблюдался также в кольцевых головках. Это явление связывают с релаксацией деформаций, накопленных на входе в капилляр. Второй эффект тоже достаточно интересен и важен. При очень малых значениях LlRuff, хотя величина ВЭВ велика, форма экструдата в большей мере соответствует форме выходного отверстия головки, чем при большом LlR jf. Причина этого заключается в следующем. По-видимому, в коротких капиллярах поле напряжений не успевает сформироваться пол- [c.501]

    При помощи детальных электронно-микроскопических исследований проанализированы взаимосвязи между микрокристаллами основных фаз в процессе восприятия внешней нагрузки гидратированным цементом и показано, что возникновение межфазных микротрещин, сливающихся в магистральные трещины разрушения, обусловлено различием симметрии кристаллов и сростков. Микротрещины зарождаются на границах микрообластей с пониженными категориями симметрии, вблизи зон параллельных сдвигов портландита и гидроалюминатов кальция. Силикатные и алюминатные гидрогели, представляющие собой субмикроскопические матрицы в затвердевших цементах, обеспечивают релаксацию микронапряжений, возникающих в цементном камне, противостоят развитию микротрещин благодаря армированию гелей кристаллическими / ростками из игольчатых волокон гидросиликатов кальция и эттрингита. [c.381]

    Физический фотохромизм. Окрашивание в-ва или его обесцвечивание обусловлено квантовыми переходами между возбужденными состояниями молекул. Среда (матрица) влияет на время темновой релаксации вследствие тушения возбужденных состояний в жидких средах -с сильно еньшается ю-за высокой скорости диффузии, в твердых телах значение [c.183]

    При использовании метода спинового зонда различные нитроксидные радикалы смешивают с диамагнитным полимером, не связывая их химически, и изучают поведение смесей в процессах, связанных с релаксацией и переходами в полимерах Концентрация нитроксидных радикалов в полимерной матрице при использовании метода спинового зонда составляет 10—100 м. д. [c.362]

    Более драматическая перестройка локального структурного состояния возможна при гетеровалентном легировании, когда характер низкосимметричных искажений (значительный релаксационный сдвиг примеси из позиции замещаемого центра) зависит от природы (донорной или акцепторной) дефекта. В этом случае ока зывается невозможным ограничиться рассмотрением центральносимметричного типа релаксации (как это сделано, например, в [50]). С позиций кристаллохимии низкосимметричные искажения можно трактовать как локальную структурную перестройку вблизи дефекта с образованием переходной структуры — между структурой матрицы и структурой стабильной фазы, образуемой примесными атомами с атомами матрицы, составляющими первую координационную сферу дефекта. [c.46]


Смотреть страницы где упоминается термин Релаксация матрица: [c.80]    [c.316]    [c.15]    [c.367]    [c.131]    [c.150]    [c.105]    [c.97]    [c.51]    [c.129]    [c.417]    [c.521]    [c.121]    [c.133]    [c.254]    [c.150]    [c.185]   
ЯМР в одном и двух измерениях (1990) -- [ c.74 , c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Матрица



© 2025 chem21.info Реклама на сайте