Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучук агенты

    Химической модификацией нефтяных асфальтенов — введением в пх молекулы новых функциональных групп с помощью реакций сульфирования, аминирования, фосфорилирования и др.— могут быть получены ионообменные материалы с разнообразными свойствами. Хлорметилированные асфальтиты могут служить агентами для бессерной вулканизации каучуков и в качестве от-вердителей некоторых поликонденсационных смол. Обстоятельный обзор процессов химической модификации ВМС нефти, характеристик получаемых продуктов и направлений их практического применения дан в работе [1073]. [c.204]


    Однако если судить о свойствах жидких каучуков при пониженных температурах по коэффициенту морозостойкости Км эластомеров на их основе [64], то хорошо видно влияние взаимного расположения функциональных групп, которое может даже оказаться сильнее влияния температуры стеклования каучука (при использовании одинаковых отверждающих агентов) (табл. 6). Полибутадиен, содержащий только концевые карбоксильные группы, обладает наименьшей температурой стеклования, однако величина Лм сильно изменяется с понижением температуры и достигает значение 0,5 уже при 5°С, Достаточно ввести в [c.437]

    Процесс дегазации осуществляется непрерывно и, как правило, в противотоке дегазирующего агента — острого водяного пара и дегазируемой крошки каучука в виде дисперсии ее в воде в присутствии антиагломераторов крошки. При осуществлении противоточного процесса водной дегазации используют или несколько последовательно соединенных аппаратов — дегазаторов или отдельные аппараты. Чаще всего используют двухступенчатую дегазацию. [c.222]

    Модификация диеновых эластомеров не только улучшает технологические и физико-механические свойства смесей и вулканизатов в условиях существующей технологии, но и открывает ряд возможностей в интенсивно разрабатываемых новых процессах получения литьевых композиций и гранулирования каучуков. В первом случае целесообразно исследовать смесь, содержащую высокомолекулярный полиизопрен с функциональными группами и низкомолекулярные жидкие полимеры, при нагревании которой в присутствии сшивающих агентов из маловязкой наполненной системы образуется вулканизат с заданными свойствами, определяемыми в значительной степени присутствием высокомолекулярного полиизопрена. В другом случае может быть использовано частичное структурирование модифицированных полимеров для облегчения их грануляции или совмещение стадий модификации в массе и грануляции [62]. [c.240]

    Синтетические каучуки очень редко применяются для изготовления изделий без дополнительной переработки и проведения специфических химических превращений (в первую очередь — вулканизации под влиянием различных агентов). При их стабилизации необходимо решать более узкие задачи, чем при стабилизации таких полимерных материалов, как резины, пластмассы и синтетические волокна. Стабилизация каучуков должна обеспечить сохранение их свойств на стадии получения и первичной переработки и при длительном складском хранении. В связи с этим для синтетических каучуков нет необходимости применять светостабилизаторы, антиозонанты, антирады, противоутомители. Эти стабилизаторы обычно вводят в каучук на заводах, перерабатывающих его в изделия, и необходимость их применения обусловлена спецификой эксплуатации этих изделий. Это обстоятельство, на первый взгляд, позволяет сделать вывод о меньшей сложности [c.618]


    Таким образом, можно выделить две группы химических процессов, приводящих к вулканизации каучука во-первых, гетерогенные процессы, в результате которых формируется либо гомогенная, либо микрогетерогенная вулканизационная структура во-вторых, гомогенные процессы с участием растворенных в каучуке агентов вулканизации, приводящие к формированию также гомогенной либо микрогетерогенной сетки. [c.247]

    Питьевые резины. Макромолекулы жидких каучуков, рас-сматриваемых в этой главе, являются карбоцепными, т. е. аналогичными по своей природе соответствующим высокомолекулярным каучукам общего назначения. Характер концевой группы в жидком каучуке определяет выбор вулканизующей системы и, в конечном счете, оказывает существенное влияние на свойства получаемых резин [66—68]. Правильно подобранная система отверждения (удлинитель цепи, сшивающий агент, катализатор, наполнитель, температура и продолжительность процесса и др.), а также метод структурирования (например, одно- или двухстадийный процесс отверждения, порядок смешения и т. д.), являются одними из наиболее решающих факторов, определяющих свойства конечного продукта, [c.441]

    Из БНК может быть получен теплостойкий эбонит, характеризующийся большой стойкостью к различным химическим агентам и высокими механическими свойствами. На основе БНК изготовляют клеи. Особенно ценными свойствами (высокой прочностью, масло- и теплостойкостью) обладают клеи, содержащие феноло-формальдегидные смолы. Композиции каучука со смолой рекомендуются для изготовления деталей электрических панелей, уплотнителей и ряда других изделий. [c.366]

    В качестве вулканизующих агентов в состав большинства силоксановых резиновых смесей входят органические перекиси. Распадаясь при нагревании после придания формы изделию, они инициируют радикальную цепную реакцию сшивания цепей с участием винильных и метильных групп каучука. В зависимости [c.489]

    Каучуки А и FA вулканизуются окисью цинка, при этом происходит увеличение молекулярной массы с образованием дисульфидных связей. Необходимо отметить, что в данном случае образуются вулканизаты, в которых отсутствуют поперечные связи, что делает их нестойкими к сопротивлению остаточному сжатию. К этому типу эластомеров можно отнести и отечественный тиокол ДА, который также вулканизуется с применением окиси цинка. Предварительной пластикации этот полимер не подвергается. Вулканизация тиокола ST осуществляется окислением концевых меркаптанных групп с образованием дисульфидных связей при помощи окисей и двуокисей металлов, неорганических окисляющих агентов, га-хинондиоксима и др. Наиболее часто применяется двуокись цинка, иногда в сочетании с м-хинондиоксимом. [c.562]

    В настоящее время совокупность экспериментальных данных по влиянию металлов переменной валентности на окислительную деструкцию и стабильность синтетических каучуков позволяет определить максимально допустимые количества металлов, которые позволяют обеспечить стабильность каучука без дополнительного введения агентов, пассивирующих эти примеси. [c.631]

    Винилацетилен—обычная примесь в дивиниле—не замедляет реакции, но действует как сильный агент поперечного сшивания цепей. Наличие 2% винилацетилена в дивиниле может привести к снижению прочности на разрыв вулканизированного каучука до 75% [85]. [c.243]

    В настоящее время определенным недостатком в применении СКЭП является неудовлетворительное решение вулканизации этого вида каучука, поскольку обычный этилен-пропиленовый сополимер не содержит двойной связи, и поэтому вулканизация с применением обычных вулканизующих агентов здесь неприменима. [c.340]

    Перфторалкилентриазиновые эластомеры отличаются хорошей работоспособностью в напряженном состоянии. В зависимости от молекулярной массы каучука, агента вулканизации и наполнителя перфторалкилентриазиновые резины имеют сопротивление разрыву от 2,5 до 16,0 МПа, относительное удлинение 90—600% [8]. В качестве наполнителя для фторалкилентриазиновых эластомеров [c.515]

    Специфич, особенности рассмотренных р-ций - высоковязкая среда, а также большой избыток каучука по сравнению с кол-вом агента В. (обычно 1-5% от массы каучука). Большинство агентов В. плохо растворимо (твердые в-ва) нли плохо совместимо (жидкости) с каучуком поэтому для равномерного диспергирования агента В, в среде каучука в виде частиц (капель) минимально возможного размера применяют спец. диспергаторы, являющиеся ПАВ для данной системы. Хорошим диспергатором служит, напр., стеарат цинка, к-рый образуется в резиновой смеси при р-ции стеариновой к-ты с ZnO, применяемыми в кач-ве активаторов серной В. Присутствие полярных группировок в макромолекуле, полярных нерастворимых в-в в резиновой смеси и ряд др. факторов способствует локальному концентрированию даже р-римых в каучуке агентов В. Вследствие этого р-ции, обусловливающие В., идут частично как гомогенные (растворенный ДАВ), а частично как гетерогенные [рьции на границе раздела каучук - частица (капля) ДАВ]. Полагают, что гетерогенные р-ции приводят к образованию сетки с узким ММР отрезков макромолекул между сшивками, благодаря чему повышаются эластичность, динамич. выносливость и прочность вулканизатов. Статистич. распределение поперечных связей, характерное для гомогенных р-ций, предпочтительнее при получении уплотнит, резин, наиб, важное св-во к-рых-малое накопление остаточных деформаций при сжатии. [c.435]


    Возвращаясь к данным рис. 10.8 (см. с, 223), замечаем, что меньшую прочность имеют пероксидные вулканизаты, полученные с растворяющимся в каучуке агентом вулканизации. Если же в соетав вулканизующей системы входят малорастворимые (большинство ускорителей серной вулканизации) или совсем нерастворимые (оксид цинка) в каучуке компоненты, то прочностные свойства вулканизатов повышаются. Можно полагать, что локальное концентрирование агента вулканизации в отдельных микрообъемах эластической матрицы способствует избирательному сшиванию [c.227]

    Компаунды и герметики на основе силоксановых жидких каучуков вулканизуются при комнатной или более низкой температуре,, реже при 50—70°С, за счет конденсации концевых ОН-групп полимера между собой [реакция (4)] и с введенными в композицию полифункциональными структурирующими агентами, например метилтриацетоксисиланом, этилсиликатом [реакция (3)]. Вулканизацию однокомпонентных композиций холодного отверждения, хранящихся в герметичной таре, катализируют слабые кислоты или слабые основания, образующиеся в результате гидролиза структурирующей агента при контакте смеси с влагой воздуха. В двухкомпонентные композиции, смешиваемые непосредственно перед применением, входят катализаторы вулкалтгаацшт, ассортимент которых весьма широк. Чаще всего используются оловоорганические соедтшния. Известны также композиции, отверждаемые при 20—70°С за счет реакции гидросилилирования и содержащие в своем составе алкенил и гидридсилоксаны и платиновый катализатор [3, 72]. [c.490]

    Весьма активны для ненасыщенных каучуков агенты вулканизации типа хлорированных арилметильных соединений. Так, вулканизаты из полибутадиена и бутадиен-стирольного каучука с высокими прочностными показателями и стойкостью к термоокислительному старению получены с помощью бисхлорметил-лг-ксилола в присутствии оксида свинца [84]. Реакции в системе протекают по ионному механизму. Кроме того, предполагается возможность конденсации вулканизующего агента с образованием олигомерных продуктов. Бисхлорметил-ж-ксилол взаимодействует с каучуком по схеме [c.309]

    Металлический натрий известен давно как эффективный катализатор полимеризации бутадиена и изопрена (с 1910 г.) в синтетический каучук. В этом методе полимеризации, как предположили Циглер и другие исследователи, натрийалкилы являются активными агентами [26, 27]. Сравни-тельно недавно был ириготовлен весьма эффективный катализатор полимеризации диенов путем смешения или взаимодействия натрийамила с изопропиловым эфиром [15]. [c.388]

    Для алкилпроизводных дифенилолпропана основным направлением использования является стабилизация различных материалов. /прет-Бутилзамещенные дифенилолпропана могут быть использованы как неокрашивающие антиоксиданты каучуков " , турбинного масла и крекинг-бензина . Добавки 2,2-бис-(3 -бутил-4 -окси-фенил)-пропана и 2,2-бис-(3 -изопропил-4 -оксифенил)-пропана к полиэфиру делают последний устойчивым к термическому окислению стабилизованный таким же образом полиэтилен является нетоксичным и может быть использован для упаковки пищевых продуктов . 2,2-Бис-(3 -трет-бутил-4 -оксифенил)-пропан является хорошим неокрашивающим антиоксидантом для полистирола, бактерицидным агентом, а также может быть использован для синтеза смол типа фенол о-формальдегидных 2. [c.56]

    Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22]. [c.234]

    Для вулканизации используют вулканизующ-ие агенты, применяемые для высоконепредельных каучуков [16—19], исключая пере кисн. Вулканизацию проводят с более активными ускорителями и при более высоких температурах. При вулканизации с помощью доноров серы, например, дитиоморфолина в сочетании с тиурамом, [c.349]

    Теплостойкость вулканизатов бутилкаучука позволяет широко использовать бутилкаучуки, в основном каучуки с непредельнсктью выше 1,6% (мол.), в производстве паропроводных рукавов и транспортерных лент, эксплуатируемых при высо>ких температурах. Химическая стойкость бутилкаучуков обусловливает его применение для обкладки валов, гуммирования химической аппаратуры, изготовления кислотостойких перчаток, рукавов для перекачивания агрессивных агентов. Благодаря сочетанию химической стойкости, газонепроницаемости, ат.мосферо- и водостойкости бутилкаучук используют для изготовления прорезиненных тканей различного назначения. Стойкость вулканизатов из бутилкаучука к набуханию в молоке и пищевых жирах позволяет использовать его для изготовления деталей доильных аппаратов и других резиновых изделий, соприкасающихся при эксплуатации с пищевыми продуктами. [c.352]

    Галогенирование увеличивает реакционную способность двойных связей и, кроме того, приводит к возникновению в молекулах новых реакционных центров. Для галогенированных каучуков можно использовать вулканизующие системы, эффективные для структурирования обычного бутилкаучука. Разработано также значительное число систем вулканизации, реагирующих с аллильным хлором или бромом. Эффективным вулканизующим агентом галогенированных бутилкаучуков является окись цинка [18—20]. Отличительной особенностью бессерных вулканизатов галогенированных бутилкаучуков является высокая теплое гойкость. [c.353]

    Для улучшения способности к вулканизации в состав каучуков вводят мономеры, имеющие реакционноспособные функциональные группы. Чаще всего это — винилхлорацетат, глицидил-акрилат или метакрилат, аллилглицидиловый эфир, р-хлорэтил-метакрилат, некоторые акриламиды и др. [23]. При введении таких мономеров в состав сополимера увеличивается скорость вулканизации известными вулканизующими агентами [11], создается возможность проведения термовулканизации и увеличения густоты вулканизационной сетки с помощью специальных присадок [24], а также появляется способность вулканизоваться солями жирных кислот в присутствии серы, органических солей аммония, диэтил-дитиокарбамата цинка и др. [1, 23, 25]. Для повышения теплостойкости в резиновые смеси на основе таких каучуков вводят антиоксиданты [25]. [c.394]

    Способность системы сохранять дисперсность во времени при отсутствии внешних астабнлизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латексы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. 6о многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.) [c.588]

    Эффективный способ устранения подвулканизации смесей — экранирование поверхности частиц соединения металла защитной пленкой. Например, описан способ повышения стабильности резиновых смесей за счет использования окиси цинка, покрытой сульфидом цинка, и окиси цинка, покрытой фосфатом цинка [8]. Применение органических кислот и их ангидридов в качестве замедлителей реакции солеобразования с окисью цинка снижает подвулканизацию смесей карбоксилсодержащих каучуков и одновременно существенно улучшает свойства вулканизатов [8]. Применение в качестве вулканизующих агентов алкоголятов алюминия, магния, а также различных перекисей двухвалентных металлов (Zn02, ВаОг и др.) позволяет существенно повысить стойкость резиновых смесей к подвулканизации [7]. Особенностью карбоксилсодержащих каучуков является повышенная стойкость в процессе теплового старения, очень высокое сопротивление разрастанию трещин (больше 300 тыс. циклов) [1]. По комплексу свойств карбоксилсодержащие каучуки представляют существенный интв--рес для различных областей применения.  [c.403]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]

    Образование из эпокисей каучукоподобных полимеров связано с раскрытием напряженных окисных циклов под влиянием каталитических агентов и соединением в линейные цепи. Структурной особенностью этих каучуков является присутствие в основной полимерной цепи простых эфирных групп, придающих линейной молекуле большую гибкость [4]. Этот эффект обусловлен, по-видимому, низким потенциалом барьера вращения по связи углерод — кислород. В то же время полярность эфирного кислорода и наличие в цепи внутренних диполей должны привести к усилению межмолекулярных взаимодействий и повышению плотности энергии молекулярной когезии [1, 5, 6]. В результате подвижность цепей и свойства полимеров будет определяться сложным сухммар-ным эффектом двух противоположно действующих факторов [1, 6]. Отсутствие ненасыщенных связей в основной цепи придает эпоксидным каучукам значительную стойкость к действию тепла, кислорода, озона и других агентов по сравнению с непредельными каучуками, полученными на основе диеновых мономеров. [c.574]

    Работы по синтезу пропиленоксидного каучука (СКПО) в СССР проводятся во ВНИИСК. Была исследована сополимеризация бинарных смесей окиси пропилена с аллилглицидиловым эфи ром, моноокисью бутадиена и моноокисью диаллила. В качестве катализаторов изучались системы на основе диэтилцинка, триэтил-алюминия и триизобутилалюминия. Лучшие свойства показали сополимеры окиси пропилена с аллилглицидиловым эфиром. Наиболее эффективными оказались каталитические системы на основе триалкилалюминия, содержащие хелатирующий агент—ацетилаце-тон. Были исследованы основные закономерности полимеризации, уточнен состав каталитического комплекса, выбраны оптимальные [c.575]

    Жидкая резиновая смесь, изготовленная на основе жидкого каучука с добавкой обычных ингредиентов резиновой смеси — вулканизуюш,его агента, ускорителей, наполнителей, позволяет получить монолитное покрытие без швов на любых сложнопро-фильных поверхностях. Саженаполненная смесь наносится кистью на предварительно обработанную пескоструйным способом и обезжиренную поверхность, после чего проводится вулканизация покрытия горячим воздухом. Толщина покрытия зависит от вязкости смеси и составляет 1—3 мм. [c.196]

    Непревзойденными по химической стойкости в широком диа-иазоне температур являются фтор-каучуки. Резиновые изделия и защитные обкладки на их основе можно эксилуатировать в сильно агрессивных агентах и окислителях до 150° С. Однако [c.448]

    Синтез изопрена. В предыдущих процессах в качестве эпокси-дирующего агента можно применять гидропероксид изопентана, а в качестве сопутствующих продуктов получать грег-амиловый спирт и изоамилен, который при дополнительном дегидрировании превращается в изопрен — важный мономер для получения синтетического каучука. Возможно, однако, в качестве главного продукта получать только изопрен, осуществляя эпоксидирование изоами- [c.445]

    Хлорметилировапные асфальтены могут использоваться также в качестве агентов бессернистой вулканизации ненасыщенных каучуков. Вулканизаты обладают высоко теплостойкостью. Кроме того, продукты хлорметилирования асфальтенов могут быть использованы в качестве связующего для изготовления различных строительных материалов. [c.217]

    В окисленном асфальте сильно повышается величина отношения асфальтейы/смолы, что результируется в некотором увеличена его молекулярного веса, повышении твердости и хрупкости, снижении эластичности температура размягчения повышается, не-нетрация снижается. В элементном составе наблюдается изменение идет заметное обогащение серой и углеродом и обеднение водородом (отношение С/Н повышается). Почти весь кислород, содержащийся в 302, выделяется в виде реакционной воды. Это обстоятельство, а также накопление серы в окисленном битуме, несомненно, указывают на то, что основным агентом дегидрирования при воздействии па нефтяные остатки двуокиси серы является содержащийся в ней кислород сера же, если и участвует в процессе дегидрирования, то лишь в незначительной степени. Основное направление ее действия состоит в сшивании углеродных скелетов с образованием трехмерных структур. Процесс этот напоминает вулканизацию каучука при нагревании с элементной серой. Вновь образовавшиеся молекулы асфальтенов в результате конденсации двух и более молекул ароматизированных в результате дегидрирования углеводородов и смол способствуют накоплению в битуме более жестких с меньшим молекулярным весом асфальтенов, чем первичные асфальтены. Эти новые полициклоароматические кон- [c.85]


Смотреть страницы где упоминается термин Каучук агенты: [c.39]    [c.177]    [c.390]    [c.410]    [c.412]    [c.472]    [c.490]    [c.517]    [c.595]    [c.603]    [c.629]    [c.14]    [c.653]    [c.445]    [c.66]    [c.69]   
Химия коллоидных и аморфных веществ (1948) -- [ c.422 ]




ПОИСК







© 2025 chem21.info Реклама на сайте