Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ингибиторов потенциал

    Адсорбция ингибитора на твердом металлическом электроде зависит от его потенциала коррозии в коррозионной среде, структуры металла, типа обработки поверхности, механических нагрузок и других факторов. Наибольшее влияние на способность металла адсорбировать на своей поверхности ингибитор оказывают его природа и структура [242], а именно  [c.122]


    Следовательно, пластическая деформация практически не влияет на хемосорбцию исследованных ингибиторов коррозии. Однако это не означает, что защитные свойства ингибиторов, связываемые обычно с адсорбируемостью, также не изменяются при пластической деформации металла например, адсорбция ингибитора КПИ-1 практически не зависит от деформации (кривая 1 для С), тогда как интенсивность разблагораживания стационарного потенциала ф в присутствии ингибитора (кривая /) даже выше, чем в неингибированной кислоте. Это объясняется деформационным нарушением в отдельных точках поверхности сплошности защитного действия указанного ингибитора и развитием локализованных анодных процессов в этих точках (аналогично питтингу). [c.158]

    Степень адсорбции ингибиторов поверхностью металла зависит от нескольких свойств металла, главные из которых потенциал точки нулевого заряда металла, знак заряда поверхности, способность оксидных пленок металлов к ионообменным реакциям с ионами ингибиторов. [c.80]

    Если потенциал нулевого заряда больше стационарного потенциала металла в данном электролите (фд 3 > ф . ), то есть поверхность металла в условиях коррозии заряжена отрицательно, то наиболее вероятна адсорбция ингибиторов катионного типа или положительно заряженных коллоидных частиц. При фд 3 < ф ., то есть когда поверхность металла заряжена положительно, наиболее вероятна адсорбция ингибиторов анионного типа или отрицательно заряженных коллоидных частиц [4]. [c.323]

    Адсорбция ингибиторов приводит к снижению скорости коррозионного процесса кор до кор, смещению стационарного потенциала металла, изменению его физико-химических, механических н др. свойств [50]. [c.27]

    В результате адсорбции ингибитора происходит изменение структуры двойного электрического слоя, в том числе и величины адсорбционного скачка потенциала 2- Экранирование части поверхности (0) сплошной пленкой ингибитора исключает ее из коррозионного процесса, который протекает на поверхности, равной (1 — 0). [c.299]

    Исследование анодной реакции ионизации металла (рис. 5,15) показало, что малые добавки хотя и смещают потенциал в поло-л<ительную сторону, однако поляризуемость электрода меняется мало. Все это указывает на то, что сдвиг потенциала в положительную сторону обусловлен, очевидно, в основном изменением кинетики катодного процесса. Большие концентрации ингибитора (1—2 г/л) способствуют сильной анодной поляризации электрода, что связано со специфической адсорбцией ингибитора и упрочнением химической связи по мере смешения потенциала в положительную сторону. [c.169]


    Трудно предположить, чтобы и в наших исследованиях большие органические ионы или молекулы при адсорбции растворялись в поверхностном слое электрода. Обнаруженную зависимость силы тока (скорости катодного процесса восстановления Н3О+) от времени можно было бы объяснить неравномерной адсорбцией ингибитора на участках с различным адсорбционным потенциалом [8]. Однако маловероятно, чтобы время адсорбции на различных участках поверхности значительно различалось, так как физическая адсорбция (а мы ее здесь предполагаем) — быстрый процесс. Поэтому, очевидно, причину наблюдающегося изменения силы тока при добавке в электролит органического ингибитора следует искать в иных явлениях. Было показано (стр. 130), что нри адсорбции молекул органических веществ или ионов строение двойного электрического слоя изменяется с образованием переходной зоны. Ее возникновение сопровождается вытеснением из двойного слоя ионов фона и молекул воды, изменением потенциала и pH в приэлектродном слое и затруднением диффузии ионов водорода к поверхности металла. Эти изменения, вызванные возникновением переходной зоны, про- [c.140]

    В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, имино-, тиогрупп, а также в виде карбоксильных, карбонильных и некоторых других групп. Согласно наиболее распространенному мнению действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл — кислота. В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, что снижает скорость коррозии. В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает величина заряда поверхности корродирующего металла, т. е. величина его ф-потенциала. Применение ф-шкалы потенциалов позволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла позволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитывать коэффициенты торможения. Экспериментальные значения коэффициентов торможения кислотной коррозии железа в присутствии различных количеств диэтиламина, сопоставленные с расчетной прямой, приведены на рис. 103. Расчетная прямая вычерчена по уравнению [c.482]

    Органические ингибиторы сильно препятствуют катодному процессу [233, 234] и облагораживают потенциал железа. При этом зависимость от концентрации замедлителя соответствует изотерме адсорбции Лэнгмюра. Зависимость отношения концентрации к потенциалу от концентрации графически выражается прямой [236]. На рис. 1.81 показано обратимое изменение потенциала при адсорбции ингибитора. Оптимальное повышение потенциала достигается в том случае, когда мономолекулярный слой построен из хемосорбированных молекул. [c.90]

    В работе Д. И. Лейкис с сотрудниками дается обзор работ по использованию метода импеданса для исследования границы электрод — электролит. Рассмотрены возможности этого метода при исследовании, адсорбции ингибиторов, изучении кинетики электродных реакций, определении защитных свойств покрытий. Особое внимание уделяется рассмотрению эквивалентных электрических схем и изучению импеданса для процессов адсорбции на твердых электродах. Сопоставляются потенциалы нулевого заряда и токов адсорбции и десорбции органических веществ как функции потенциала. Описаны методы исследования с помощью импеданса процессов пассивации. [c.4]

    При определении области потенциалов, в которой происходит адсорбция ингибиторов, можно исходить из величины потенциала нулевого заряда исследуемого металла или из изменений емкости двойного электрического слоя при добавке в электролит адсорбирующегося вещества. Рассмотрим, какие возможности имеются в настоящее время для определения области потенциалов адсорбции заданных веществ методом измерения импеданса. С точки зрения анализа результатов измерений импеданса простейшей является адсорбция нейтральных органических веществ. Если исследуемые вещества являются поверхностно-активными адсорбирующимися веществами, диэлектрическая постоянная которых меньше, чем воды, то в области их адсорбции наблюдается понижение емкости двойного слоя и область потенциалов адсорбции на кривых зависимости емкости от потенциала ограничивается пиками адсорбции — десорбции [2]. [c.27]


    Большую роль при определении области адсорбции ингибиторов играет потенциал нулевого заряда. Эта характеристика металла, как известно, может явиться важным ориентиром для выбора ингибиторов коррозии, а также при исследовании механизма коррозионных процессов. Один из методов определения потенциала нулевого заряда — измерения зависимости емкости двойного электрического слоя от потенциала в разбавленных растворах поверхностно-неактивных электролитов. Такие данные могут быть получены при измерении импеданса. В соответствии с теорией двойного слоя в разбавленных растворах поверхностно-неактивных электролитов на кривых зависимости емкости от потенциала должен быть минимум, потенциал которого равен потенциалу нулевого заряда металла. Экспериментальные данные, полученные на ртути, хорошо согласуются с этими теоретическими представлениями [13]. [c.29]

    При наложении отрицательного потенциала или при интенсивном перемешивании среды необратимая адсорбция ингибитора нами обнаружена лишь на части защищаемой поверхности, а с остальной части металла происходит десорбция относительно слабо связанных с твердой поверхностью молекул, что, по-видимому, обусловлено указанной выше особенностью адсорбции дифильных молекул на поверхности металла. [c.121]

    Вызванное извне наложенным током смещение потенциала в отрицательную сторону обусловливает изменение адсорбционно-химического взаимодействия между металлом и поверхностноактивными веществами, находящимися в растворе. Анализ вторичных явлений (десорбции и адсорбции ингибиторов коррозии) в процессах катодной защиты имеет существенный интерес для практики. Этот анализ влияния ингибиторов коррозии на скорость растворения металла при его катодной поляризации может быть выполнен путем сопоставления теоретической зависимости ме жду степенью защиты (см. табл. 8) с имеющимися экспериментальными данными. Изменение степени защиты в зависимости от отношения плотности катодного тока к коррозионному приведено на фиг. 53. [c.74]

    Повышение концентрации электролита сопровождается изменением ij/]-потенциала (см. 174). Поскольку при выделении водорода электродный потенциал имеет отрицательный знак, то из рис. 171 видно, что с ростом концентрации раствора i i становится более положительным. В соответствии с (187.2) перенапряжение при этом возрастает. Аналогичным образом можно проследить влияние на перенапряжение адсорбции поверхностью электрода ПАВ. При адсорбции катионов фх-потенциал становится более положительным по сравнению с его значением в отсутствие ПАВ в расгворе (см. рис. 172), что сопровождаете ростом перенапряжения. Адсорбция анионов снижает перенапряжение. При адсорбции катионов П. В действует как ингибитор — замедлитель электрохимической реакции, при адсорбции анионов — как активатор. Значительным активирующим действием обладают, например, ионы СГ и 1 . Адсорбция ПАВ на границе металл — раствор происходит в определенной для каждого вещества области потенциалов. Поэтому влияние ПАВ на перенапряжение отмечается только тогда, когда потенциал электродного процесса находится в области адсорбции ПАВ. [c.513]

    При подборе ингибиторов коррозии руководствуются соотношением стационарного потенциала и п. н. з. металла. Так, если отрицательнее П.Н.З., то при стационарном потенциале заряд поверхности отрицателен, и на металле хорошо адсорбируются органические вещества катионного типа. Если же стационарный потенциал положительнее п. н. 3., то при Ес преимущественно адсорбируются органические вещества анионного типа. Важную роль при защите металла от коррозии играет совместная адсорбция неорганических и органических веществ. Так, например, ионы Н5 являются сильными активаторами коррозии металлов группы железа. Но в их присутствии на железе хорошо адсорбируются катионы тетрабутиламмония, что резко замедляет сероводородную коррозию. [c.376]

    Таким образом, вся совокупность имеющихся опытных данных и теоретические соображения показывают, что органические добавки в комплексных электролитах могут быть эффективными ингибиторами электродных процессов и регуляторами роста кристаллов. В отдельных случаях вследствие очень резкого уменьшения среднего размера зерна или направленного роста кристаллов могут быть получены зеркально блестящие катодные отложения. При подборе добавок для электрокристаллизации металлов из комплексных электролитов в первую очередь нужно учитывать соотношение значения реального потенциала электродного процесса и потенциала нулевого заряда. Это соотношение определяет собой область адсорбции собственно комплексных ионов, участвующих в электродной реакции, и посторонних ПАВ. [c.400]

    Влияние органических ингибиторов коррозии на кинетику электрохимического растворения металла возможно лишь в условиях адсорбции этих веществ на корродирующей поверхности. В зависимости от степени заполнения частицами ингибитора поверхности металла, подвергающейся коррозии, изменяется строение двойного слоя, а следовательно, и кинетика электрохимических реакций, т.е. может тормозиться стадия разряда или диффузии реагирующих частиц либо предшествующая разряду стадия проникновения этих частиц через адсорбированный слой молекул ингибиторов. В связи с этим особое значение имеет потенциал нулевого заряда , т.е. потенциал металла, измеренный по отношению к электроду сравнения в условиях, когда заряд металла равен нулю. При потенциалах вблизи потенциала нулевого заряда металл обладает наибольшей способностью адсорбировать растворенные в электролите вещества и хуже всего смачивается растворителем. [c.143]

    Наиболее просто повысить эффективность ингибирования преимущественной блокировкой поверхности корродирующего металла бифункциональными соединениями при их плоскостной ориентационной адсорбции, когда силы отталкивания между заряженными частицами минимальны, а заполнение поверхности значительно. При этом изменение потенциала внутри двойного слоя невелико. Совместного влияния двойнослойного эффекта и эффекта блокировки поверхности можно ожидать при большем заряд е поверхности металла или при повышенном содержании бифункциональных ингибиторов, когда плоскостная ориентация молекул может смениться на вертикальную, а ось, проходящая через центр тяжести функциональных групп молекулы ингибитора, бу- [c.144]

    При наложении поляризации от внешнего источника тока или от создаваемого гальванического элемента из защищаемого металла и другого, более электроотрицательного металла повышение эффективности действия ингибиторов достигается вследствие смещения потенциала коррозии в отрицательном направлении при неизменном потенциале нулевого заряда. Смещение потенциала металла в отрицательном направлении при электрохимической катодной защите облегчает адсорбцию катионных органических веществ, при этом возрастают поверхностная концентрация таких ингибиторов и их ингибирующее действие. [c.145]

    Согласно определению, величина ф-потенциала служит приближенной мерой заряда металла по отношению к среде в выбранных условиях. Хотя между ф-потенциалом и зарядом металла не всегда существует строгий параллелизм (в силу поверхностных реакций, адсорбции с частичным переносом заряда и т. д.), тем не менее эта шкала впервые дала возможность сопоставить различные металлы и оказалась полезной при качественном подходе к выбору ингибиторов коррозии при нахождении оптимальных условий электросинтеза и т. д. [c.29]

    Замедление процесса коррозии при введении индивидуальных адсорбционных ингибиторов связано, главным образом, с изменением в строении двойного электрического слоя, с возникновением дополнительного положительного адсорбционного скачка потенциала и уменьшением свободной поверхности корродирующего металла в результате экранирования части ее адсорбированным ингибитором. Скопление ингибитора на поверхности корродирующего металла обусловлено преимущественно электростатической адсорбцией, а также специфической адсорбцией I рода, зависящей, в основном, от свойств частиц ингибитора и от заряда металла [12]. [c.36]

    Большая часть распространенных в промышленности ингибиторов сероводородной коррозии представляет собой органические азотсодержащие соединения, в частности амины и их производные. Механизм защитного действия, предложенный И. Л. Розенфельдом и являющийся в настоящее время общепринятым, заключается в следующем. Адсорбирующиеся на поверхности металла ионы Н8 образуют диполи, отрицательно заряженные концы которых обращены в сторону коррозионной среды и способствуют адсорбции ингибиторов катионного типа. При этом изменяется строение двойного электрического слоя на границах металл-коррозионная среда и возникает дополнительный положительный скачок электродного потенциала, приводящий к замедлению катодной реакции путем торможения перехода катионов металла из кристаллической решетки в коррозионную среду. Анодная реакция замедляется в результате блокирования образующихся на поверхности каталитических комплексов (РеН8)адс адсорбированными катионами ингибитора. Кроме того, в ингибированных сероводородсодержащих средах образуется [c.327]

    В настоящее время нет единой точки зрения относительно механизма ингибирующего действия нитрита натрия. По мнению Розенфельда [69], МаЫОг является анодным ингибитором, в то время как Путилова с соавторами [68] считают, что в этом случае процесс ингибирования связан с окислением продуктов коррозии (таких, например, как соединения двухвалентных железа и олова или одновалентной меди) в соли соответствующих металлов, в более высокой валентности, которые осаждаются на поверхности металла и вызывают повышение электродного потенциала последнего. По мнению Вахтера и Смита [70], нитрит действует как окислитель, за счет которого на анодных участках образуется тонкая пленка окиси железа. Теория, получившая наиболее широкое признание, была развита Коэном [71], который постулирует, что защитная пленка состоит из у-Ре О) с небольшим количеством -РегОз Н2О. Такая пленка возникает в результате взаимодействия между нитритом, кислородом и металлом, которое протекает на поверхности раздела жидкость — металл, причем адсорбция ингибитора является, по-видимому, промежуточной стадией этого взаимодействия. Строение нитритного иона благоприятствует его хорошей адсорбции. [c.154]

    При выборе ингибиторов коррозии металлов большое значение имеет заряд поверхности металла в данном электролите, т. е. его потенциал ф в шкале нулевых точек (см. с. 164). Если поверхность металла заряжена положительно (т. е. ф > О, например, у РЬ, Сё, Г1), это способствует адсорбции анионов, которые, образуя на металле анионную сетку , снижают перенапряжение водорода и ионизации металла, что нежелательно, так как приводит к ускорению коррозии. Замедляюш,ее действие могут в этих условиях оказать лишь анионные добавки экранирующего действия, а замедлители катионного типа не применимы. [c.348]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Изменять способность металла адсорбировать ингибиторы можно, изменяя заряд поверхности поляризацией от внешнего источника тока и с помощью специальных добавок. В частности, сместить потенциал нулевого заряда в положительную сторону можно с помощью галогенид-ионов, сульфид-ионов, а также окислением поверхности металла кислородом или другим окислителем. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосор-бированных слоев ингибитора с металлом. [c.91]

    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    Механизм КРН латуней был предметом многих исследований. Сплавы высокой чистоты и монокристаллы а-латуни также растрескиваются под напряжением в атмосфере NH3 [27]. В под-тверждение электрохимического механизма показано, что в растворах NH4OH потенциалы границ зерен поликристаллической латуни имеют более отрицательные значения, чем сами зерна. В растворах Fe lg, где коррозионное растрескивание не происходит, не наблюдается и подобного распределения потенциала [28]. Согласно другой точке зрения, на латуни образуется хрупкая оксидная пленка, которая под напряжением постоянно растрескивается, а обнажившийся подлежащий металл подвергается дальнейшему окислению [29, 30]. Возможно также, что структурные дефекты в области границ зерен напряженных медных сплавов способствуют адсорбции комплексов ионов меди с последующим ослаблением металлических связей (растрескивание под действием адсорбции). В соответствии с этим предположением, ионы Вг и С1 действуют как ингибиторы, вытесняя с поверхности комплекс металла (конкурирующая адсорбция). [c.338]

    Для защиты от коррозии широко используют ингибиторы — вещества, снижающие скорости анодного растворения металла, выделения водорода или скорости обоих этих процессов. Механизм действия ингибиторов показан на рис. 95. В соответствии с тем, скорости каких процессов — анодного, катодного или обоих — замедляются, ингибиторы подразделяют на анодные, катодные и ингибиторы смешанного типа. Анодные ингибиторы смещают стационарный потенциал в анодную, а катодные — в катодную сторону. Ингибиторы смешанного типа могут смещать Е в анодную или катодную сторону или не изменять его в зависимости от степени торможения соответствующих процессов. Ингибиторы смешанного типа оказываются наиболее эффективными. В качестве ингибиторов кислотной коррозии применяют разнообразные органические вещества, молекулы которых содержат амино-, ИМИНО-, тио- и другие группы. Необходимым условием ингибирующего действия этих веществ является их адсорбция на по-нерхности металла. [c.214]

    Изменить способность металла адсорбировать ингибиторы можно введением в среду композиций, состоящих из неорганических веществ (окислителей, солей металлов) и органических ингибиторов, а также изменяя заряд поверхности металла поляризацией. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосорбироваиных слоев ингибитора с металлом. Благодаря изменению заряда корродирующего металла, вызванного смещением нулевой точки от ее положения для корродирующего металла до потенциала нулевого заряда для металла, вьщеляющегося из неорганического компонента, увеличение защитного действия комбинированных ингибиторов может быть весьма значительным.  [c.145]


Смотреть страницы где упоминается термин Адсорбция ингибиторов потенциал: [c.119]    [c.11]    [c.111]    [c.188]    [c.270]    [c.258]    [c.168]    [c.20]   
Ингибиторы коррозии (1977) -- [ c.119 , c.142 ]




ПОИСК







© 2025 chem21.info Реклама на сайте