Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

кислотных соединений хинолинов

    Для коррозионной защиты черных металлов при кислотной обработке нефтяных скважин используют также четвертичные полимерные соединения винилпиридина, пиразина, пиперидина, хинолина или их сополимеры с метилакрилатом, акрил-амидом или акрилонитрилом. [c.242]

    Хинолин, а также некоторые другие азотсодержащие соединения оказывают большое влияние на каталитический крекинг нефти [1099]. Это влияние связано с основным характером данных соединений, обусловливающим реакцию их с кислотными группами катализатора [1100], в результате чего активные центры нейтрализуются и катализатор теряет активность. Эта химическая реакция является важной в практическом отношении, так как некоторые сырые нефти содержат гетероциклические азотистые соединения, которые вызывают частичную потерю активности катализатора. Эта реакция важна также потому, что при помощи ее можно изучить ряд важных химических свойств катализаторов крекинга. [c.240]


    Было исследовано явление частичного отравления катализатора. Оказалось, что первые порции хинолина наиболее сильно дезактивируют катализатор. Степень дезактивации катализатора различными азотистыми соединениями различна. По уменьшению дезактивирующего действия азотистые соединения можно расположить в следующем порядке хинальдин > хинолин > пиррол > пиперидин >дециламин > анилин. Если рассмотреть их исключительно с точки зрения основности, то наиболее эффективным из приведенных ядов должен бы быть пиперидин. Однако в присутствии катализатора пиперидин в значительной степени распадается при температуре около 425°, Дециламин избирательно расщепляется на аммиак и децен. Хинолин и хинальдин в этих условиях не расщепляются и являются эффективными ядами. Сравнительно сильное отравляющее действие пиррола, возможно, является следствием отложения на катализаторе полимера, так как известно, что пиррол легко полимеризуется в присутствии кислот. Кроме того, на хемосорбцию азотистых оснований оказывают влияние силы ван-дер-Ваальса. Необходимо учитывать степень этого влияния так же, как размер молекулы и структуру адсорбированного вещества. Отравляющая природа азотистых оснований согласуется с общей теорией катализаторов кислотного типа, которые содержат серную и фосфорную кислоты и промотированы галогенидами алюминия и бора. Предполагают, что механизм действия этих веществ включает образование карбониевых ионов. Азотистые. соединения являются более основными, чем олефины или ароматические соединения, если основность определять, согласно Льюису, как способность отдавать электронную пару. Азотистые основания, следовательно, способны реагировать с кислотой катализатора с образованием устойчивой соли. Следствием таких реакций является отравление катализатора, который обычно действует путем обратимого образования нестойких комплексов. [c.241]

    Азотистые соединения, находящиеся в сырой нефти, не обладают основными свойствами, но при нагревании они превращаются в основания, часть из которых является гомологами хинолина [1101], Фракция нефти, пригодная для крекинга, может содержать гетероцикличе ские азотистые соединения в количестве, соответствующем 0,2% азота. Этого количества азота достаточно, чтобы нейтрализовать кислотные центры катализатора крекинга, вследствие [c.241]

    Это новое соединение — продукт взаимодействия — является носителем кислотных свойств и каталитической активности для изомеризации. Ввиду пропорциональности активности и кислотности (рис. 3) можно заключить, что кислотные и активные центры — тождественны. Это вытекает и из обнаруженного факта, что органические основания, например пиридин или хинолин, оказываются каталитическими ядами. [c.281]


    При хранении нефтепродуктов часть азотистых соединений является источником интенсивного образования смол, особенно в тяжелых топливах (дизельные топлива, мазуты). Ухудшение свойств топлив при хранении наблюдается уже при наличии 0,01 % азота в виде пирролов. В присутствии азотистых соединений цвет топлив темнеет [51]. Добавление 0,1 % азотистых оснований, выделенных из нефтяных фракций, а также 0,1% чистого хинолина в автолы кислотной очистки ухудшает их стабильность при испытании на окисляемость 132]. [c.96]

    Для повышения эффективности разделения и уменьшения размывания пиков применяют различные методы обработки носителей с целью их деактивации. Промывание кислотой приводит к некоторому уменьшению адсорбционной и каталитической активности, одновременно снижается содержание пылевидных частиц. Промытые кислотой носители рекомендуются в первую очередь для использования с жидкими фазами, чувствительными к щелочам при повышенной температуре (силиконы, сложные эфиры, фазы кислотного характера). Для разделения соединений основного характера (аминов, пиридинов, хинолинов, эпоксисоединений) целесообразно использовать носители, промытые щелочами в водном или спиртовом растворе. [c.179]

    Аналогичные зависимости наблюдаются и для некоторых других соединений, способных физически и специфически адсорбироваться на поверхности корродирующих металлов например, при ингибировании кислотной коррозии железа алифатическими аминами, хинолинами и некоторыми сульфопроизводными [15], никеля—добавками катиона тетрабутилам-мония [82], кадмия—низшими алифатическими спиртами [26]. [c.65]

    Так, например, возрастание каталитической активности в ряду комплексных соединений кобальта с производными меркапто-хинолина коррелируется с понижением кислотных свойств лигандов по ЗН-группе [84]. Аналогичная зависимость наблюдается в ряду комплексов кобальта с тиосемикарбазонами [86]. [c.280]

    Каменноугольная смола (или каменноугольный деготь), содержащая свыше 100 в подавляющем большинстве ароматических соединений, подвергается фракционной разгонке. Полученные фракции обрабатывают щелочами для удаления ароматических соединений кислотного характера, главным образом фенола и крезола, а затем разбавленной серной кислотой для извлечения органических оснований — пиридина, хинолина и его производных и, наконец, водой. Из отдельных фракций индивидуальные углеводороды выделяют при повторной разгонке или кристаллизацией. [c.413]

    Изучение состава азотсодержащих веществ различных нефтей показало, что азот находится в них в виде соединений, обладающих основным, нейтральным или кислым характером. К числу азотистых соединений основного характера относятся пиперидин, пиридин и хинолин к нейтральным — бензпиррол, или индол, и карбазол 1 кислотным — пиррол и др. Реагируя со щелочными металлами, азотистые соединения образуют соответствующие соли. Особое место среди азотистых соединений нефтей занимают порфирины. Это комплексы из соединений азота с высокомолекулярными углеводородами, включающие металлы — ванадий и никель. Доказано наличие в нефтях кислых и основных порфиринов. В числе прочих азотистых соединений нефтей следует назвать аминокислоты и аммонийные соли. Они интересны как добавки, способные повышать адгезионные свойства битумов. [c.30]

    Существенное влияние на результаты крекинга оказывают содержащиеся в сырье азотистые соединения. Обладая высокой основностью, они прочно адсорбируются на кислотных активных центрах и блокируют их. Ядами для алюмосиликатных катализаторов являются азотистые оонования аммиак и алифатические амины на активность алюмосиликатов не влияют При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей молекулярной маосы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Влияние различных соединений азота, добавляемых к декалину в количестве 0,11% N, на глубину крекинга (в %) в заданных условиях характеризуется следующими данными без добавки — 41,9 с аммиаком и метиламином — 42 с диамиламином — 42,3 с пиридином — 26,8 с индолом — 25,1 с а-нафтиламином — 21,8 с хинолином — 8,5 с акридином — 8,2. [c.228]

    Производные пиридина и анилина извлекаются из фракции 150—180 °С обработкой 1 н. раствором хлороводорода при отношении сырья к кислоте 3 1, 50 °С в, течение 0,5 ч [190]. Кислотный слой очищают от углеводородов промывкой хлороформом, нейтрализуют 40 % едким натром. Выделяющиеся азотсодержащие соединения экстрагируют хлороформом, который затем удаляют в токе азота. Например, обработкой фракции 150—350 °С нефти Джар-Кургана 86 % серной кислотой выделяли одновременно нефтяные сульфиды и азотсодержащие соединения [203]. Разбавлением экстрактной фазы получали органический слой сульфидов и сернокислотный слой азотсодержащих оснований. После нейтрализации кислотного слоя 30 % щелочью получали концентрат, содержавший хинолины, бензохинолины, нафтОбензо-хинолины, нафтохинолины, динафтопиридины, пиридины и динафто-бензохинолины. [c.90]


    В нефти и продуктах ее переработки содержится три группы азотистых соединений основания, соединения нейтрального и кислотного характера [114]. Отношение содержания основного азота к общему для нефтей равно 0,25—0,34, для дистиллятов прямой перегонки 0,31—0,67, для продуктов каталитического крекинга 0,25—0,67, термического крекинга 0,5—1,0. По данным [23], азотистые основания на 50—70% (масс.) представлены хинолинами и нафтеновыми гомологами, на 25—40% (масс.) бензохинолина-ми и нафтеновыми производными и на 7—15% (масс.) бензтиазо-лами и их нафтеновыми гомологами. Соединения основного азота адсорбируются на поверхности катализатора крекинга и отравля- их [8, 24]. [c.23]

    Полнота удаления азота из хинолина, а также глубина гидрирования ароматического кольца определяются главным образом стадией разложения анилинов. Связь углеоод—азот в анилинах прочнее, чем в алифатических аминах. Это обусловлено присутствием свободной пары электронов при атоме азота, что придает связи углерод—азот в анилинах ненасыщенный характер. Если эта свободная пара электронов находится при атоме азота, то связь углерод—азот должна разрываться легче. Связывание этой электронной пары может быть достигнуто применением катализатора, обладающего более сильным кислотным характером, чем алюмокобальтмолибденовый. Помимо кислотности, оптимальный катализатор должен обладать также высокой гидрирующей активностью. Следует подчеркнуть, что анилин является удобным исходным веществом для исследований на моделирующих соединениях лри поисках такого катализатора. [c.136]

    Азотистые соединения, являющиеся достаточно сильными основаниями и титруемые перхлорной кислотой в смешанном растворителе бензол — уксусная кислота, можно извлечь из нефтепродуктов, применяя небольшое количество серной кислоты. Такой способностью обладают пиридин, хинолин и пзохинолин, но пиррол, индол и карбазол не удаляются при кислотной очистке. [c.110]

    Самые распространеиньхе ингибиторы кислотной коррозии железа и стали - это азотсодержащие соединения соли замещенного аммония, пиридин, четвертичные пиридиновые основания, хинолин, изохинолин, а также эффективные ингибиторы ХОСП-10, КПИ-1,КПИ-Зи др. [3,4]. [c.109]

    Арилсульфонильные производные давно нашли применение для синтеза вторичных аминов из первичных аминов. Сульфонильная группа препятствует образованию третичных аминов или четвертичных аммониевых соединений и, кроме того, повышает кислотность связи N — Н поэтому из первичных аминов легко образуются натриевые соли сульфамидных производных, которые алкилируются алкилгалогенидами или эфирами серной кислоты в водном или в водно-спиртовом растворе [145—147]. -Толуолсульфонильная (тозильная) группа использовалась для получения 4-кетотетрагидро-хинолинов [148] (см. схему 30) и азабензоциклогептенона [149], а также в синтезе пептидов. Арилсульфамиды очень легко получить, но отщепление сульфонильной группы иногда затруднительно. [c.213]

    Хинолины по своим химическим свойствам аналогичны пиридинам. При действии алкилгалогенидов, ацилгалогенидов или диалкилсульфа-тов они образуют соответствующие четвертичные соли. Хлорид М-бен-зоилхинолиния реагирует с цианидом калия, образуя так называемое соединение Райссерта (1905 г.), которое при кислотном гидролизе расщепляется на хинальдиновую (хинолин-2-карбоновую) кислоту и бензальдегид  [c.591]

    Фенильная группа, электроноакцепторная способность которой невелика,, вызывает очень незначительное уменьшение р/Скнсл. акридинов хлор же вызывает уменьшение р/Скисл. на 0,76—1,64 единицы. Активные электроноакцепторные группы (СМ, СООСНд, СОМН, и КО ) понижают р/Скисл.на 1,1—2,9 единицы. Введение кислотных остатков (СООН, ЗОдН) в ядро акридина обусловливает образование внутренних солей (амфотерных ионов), в результате чего свойства катиона почти исчезают даже у таких сильных оснований, как 5-аминоакридин. Несмотря на это, величина основности амфотерных ионов изменяется мало, а сила кислотных групп обычно несколько больше, чем в соответствующих соединениях ряда бензола. По способности образовывать амфотерные ионы при введении СООН-группы акридины напоминают пиридины и хинолины и отличаются от ароматических аминов последние, однако, образуют амфотерные ионы, при введении 50зН-группы. 1-, 2-, З- и 4-Оксипроизводные 5-амина- [c.414]

    Как видно из приведенных примеров, эти реакции аналогичны превращениям в ряду пиридина (стр. 210). Следует отметить, что хинолин и изохинолин при взаимодействии с таким избирательным нуклеофильным агентом, как аллилмагнийбромид, обладают примерно равной реакционной способностью, намного превышающей реакционную способность пиридина [51]. Хинолин и изохинолин не реагируют со слабыми нуклеофильными агентами, однако четвертичные соли и N-окиси довольно легко вступают в такие реакции. Примерами подобного рода реакций могут служить щелочное окисление соединения XVH и получение соединений Рейсерта типа XVHI и XIX [58]. Соединения Рейсерта при кислотном гидролизе расщепляются с образованием альдегидов. [c.256]

    Производные азота содержатся в крекинг-бензинах в незначительных количествах, главным образом, в виде производных пиридина и других азотистых органических оснований. Азотистые соединения отмываются слабыми растворами неорганических кислот, образуя соли, и могут быть регенерированы из кислотных растворов. Браттон и Бэйли [5а] выделили из калифорнийского крекинг-бензина метил-, диметил- и триметилпиридины, хинолин и хинальдин. В противоположность дестиллатам прямой гонки в крекинг-бензинах найдены только ароматические азотистые основания. Азотистые соединения присутствуют, главным образом, в крекинг-бензинах, полученных из нефтей нафтенового и асфальтового оснований. [c.309]

    Первый представитель цианиновых красителей, применяемый в качестве сенсибилизатора фотографических эмульсий, был получен в результате катализируемой основаниями конденсации метилзаме-щенной соли хинолиния с иодидом N-этилxинoлиния. Ниже приведена схема образования цианинового красителя 52 пурпурного цвета. Синтез соединения 52 основан на использовании двух осноъ-ных свойств солей хинолиния активности положения 4 к атаке нуклеофила и СН-кислотности метильных заместителей в положениях [c.201]

    Изомервзация с кислыми халькогенидами. В настоящее время твердо установлено, что каталитическая активность алюмосиликатов и родственных им веществ зависит от их кислотности [84, 165, 272]. Их стехиометри-ческая кислотность может быть определена титрованием щелочами [38, 272], а сила поверхностной кислотности некоторых из этих твердых тел может быть определена по изменению цвета адсорбированных индикаторов [297]. Как кислоты они нейтрализуются путем адсорбции ионов щелочных металлов [38, 165] (существенен ионный обмен с водородом), иона аммония [165] или хинолина [165]. Их каталитическая активность количественно связана с их стехпометрической кислотностью 165, 272] или со степенью нейтрализации азотистыми соединениями [165  [c.72]

    Получение альдегидов взаимодействием хлорангидридов карбоновых кислот с хинолином и синильной кислотой и последующим кислотным гидролизом 1-ацил-1,2-дигидро-2-цианохинолинов (соединений Райссерта)  [c.343]

    Азот в нефтепродуктах содержится в виде азотистых соединений основного и кислотного характера, а также в виде нейтральных соединений. Отношение азота, входящего в соединения основного характера, к общему содержанию азота составляет 0,25—0,35 [73]. В смолах и асфальтенах азот в основном присутствует в виде ароматических (содержащих ядро пиридина или хинолина), гидроароматических (ядро пиперидина) и нейтральных (ядро индола, карбазола и пиррола) соединений, которые включены в общую полнциклическую систему. При пиролизе смол и асфальтенов большая часть соединений азота переходит в кокс [8, 39], т. е. входит в состав термически стойких циклических соединений [10, 39]. Ниже представлены N- o-держащие фрагменты, установленные масс-спектрометрическим анализом асфальтенов [26, 27, 29, 60]  [c.78]

    Рассматривается группа 8-оксихинолина и его замещенных (I—VIII). Как явствует из наличия кислотной фенольной ОН-группы и основного третичного атома азота в ядре хинолина, 8-оксихинолин и его замещенные являются амфолитами, которые растворяются как в кислотах, так и в основаниях. Кислотный характер этих соединений усиливается при введении в их молекулы галогенов или сульфогрупп. [c.263]

    Азотистые соединения в нефтях присутствуют в виде гетероциклических соединений [6, 7]) — это производные пиридина, хинолина, пиперидина, индола, бензпиррола. И хотя содержание их в газойлях термического и каталитического крекинга незначительно (обычно не более 0,5%), пренебрегать ими нельзя обладая кислотным или основным характером, азотистые соединения образуют комплексы с металлами, тем самым способствуют повышению содержания в сырье металлоорганических соединений. Так, известны порфирины — комплексные соединения азота с высокомолекулярными углеводородами, включающие атомы ванадия и никеля. Во фракциях каменноугольной смолы содержание азотистых соединений значительно больше, оно достигает 3%, [c.7]

    Наряду с углеводородами каменноугольные масла содержат различные группы производных, имеющих кислый или основной характер. Кислотная часть масел представлена оксипроизводными бензола (фенолы и кре-золы). Основания в дегте представлены преимущественно азотсодержащими гетероциклическими производными, например хинолином [30]. Кислотная и щелочная части могут быть выделены обработкой щелочами и кислотами. Некоторые соединения, имеющиеся в погонах дегтя, при сравнительно низких температурах кристаллизуются и поэтому могут быть выделены охлаждением. Основное различие [33, 34] между низкотемпературным и высокотемпературным дегтем состоит в том, что первый содержит больше кислот, парафинов и нафтенов, а второй — больше оснований, ароматических соединений и олефинов. Дестилляты низкотемпературного дегтя получаются в меньших количествах, чем дестилляты высокотемпературного. Первое указание на применение их для инсектисидных целей мы находим в работе Уортслея и Стейнера [34]. Разбор инсектисидности каменноугольных дестиллятов [c.159]

    В колориметрии используют несколько типов реакций. Наибольшее значение имеют реакции образования окрашенных комплексных соединений, кроме того, применяются также приводящие к образованию окрашенных продуктов реакции окисления-восстановления, образования нерастворимых окрашенных соединений, реакции, связанные с изменением окраски при диссоциации кислотно-основных индикаторов, а также реакции синтеза органических красителей. Влияние pH на первый, наиболее важный тип реакций рассматривается подробнее ниже. Относительно последних четырех типов реакций можно сказать следующее реакции синтеза органических красителей, как, например, образование азокрасителей при сочетании окси-хинолина с диазосоединениями, реакция образования метиленовой синей при определении сульфидов и другие, — требуют каждый раз особых условий. В настоящее время эти реакции еще не мо<гут быть рассмотрены в общем виде. [c.52]

    В дополнение к сказанному Милликен, Миле и Облед предложили новую, однако чисто гипотетическую, концепцию природы и происхождения кислотных центров крекинг-катализаторов. Они высказали предположение, что при температуре крекинга фактически вся окись алюминия катализатора имеет структуру с координационным числом 6, иначе говоря, что структура кислоты Льюиса имеется лишь в потенциальном виде. Ионы алюминия, наиболее близкие к тетраэдрическому иону кремния, находятся в напряженном состоянии и испытывают индуцированное координационное смещение , т. е. вынуждены приобрести тетраэдрическую структуру (координационное число 4) при приближении молекулы даже со слабыми основными свойствами, например молекулы парафинового углеводорода. Другими словами, кислотные центры катализатора в действительности создаются только в момент приближения основания. Доля поверхности катализатора, ставшей кислотной, зависит от количества ионов кислорода на поверхности, соединенных одновременно с кремнием и с алюминием, то есть от степени дисперсности окиси алюминия в окиси кремния, от содержания гидроксила в окиси алюминия и от поляризующей способности основания, приближающегося к потенциальному кислотному центру. Слабо основные молекулы (слабые основания по Льюису — например парафины), хотя и обладают лишь слабой спосо бностью поляризовать другие молекулы, однако, по мнению Милликеиа и др., способны изменить координационное число ионов алюминия, наиболее близко расположенных к тетраэдрическим ионам кремния. Более сильные основания, например хинолин, могут индуцировать координационное смещение ионов алюминия, более удаленных от окиси кремния. Таким образом, кислотность катализатора становится функцией основности вещества, применяемого для измерения этой кислотности. [c.22]


Смотреть страницы где упоминается термин кислотных соединений хинолинов: [c.111]    [c.116]    [c.347]    [c.298]    [c.92]    [c.3]    [c.187]    [c.177]    [c.26]    [c.34]    [c.402]    [c.254]    [c.298]    [c.121]   
Общий практикум по органической химии (1965) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Хинолин

Хинолинии



© 2024 chem21.info Реклама на сайте