Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойная связь Тройная связь механизмы присоединения

    Присоединение к двойной или тройной связи может происходить по четырем основным путям. Три из них представляют собой двустадийные процессы, в которых первая стадия — это атака нуклеофила, электрофила пли свободного радикала. Вторая стадия заключается в рекомбинации получающегося интермедиата соответственно с положительной, отрицательной или нейтральной частицей. В механизме четвертого типа атака на оба атома углерода двойной или тройной связи происходит одновременно. Реализация одного из этих четырех типов механизмов в каждом конкретном случае определяется природой субстрата и реагента и условиями реакции. Некоторые реакции, рассмотренные в данной главе, могут идти по механизмам всех четырех типов. [c.132]


    В случае синхронного механизма атака на оба атома С осуществляется одновременно и р-ция протекает как диполярное присоединение (см. Циклоприсоединение), при этом П. р. по двойной или тройной связи идут как смн-при-соединение (см., напр., Реппе реакции). [c.92]

    Тиоциан. Хотя описан целый ряд реакций присоединения тиоциана к углерод-углеродным двойным и тройным связям [252] и было отмечено, что эти реакции ускоряются ультрафиолетовым светом, механизм реакции был изучен очень мало. Совсем недавно появилось сообщение о том, что на эту реакцию оказывают влияние также перекиси, и для нее был предложен свободнорадикальный механизм [253]. Присоединение по двойной связи с образованием соединения 65 может сопровождаться аллильным замещением, которое приводит к соединению 66. Относительная доля реакций присоединения и замещения зависит от строения олефина. В случае циклогексена происходит как присоединение, так и замещение, [c.228]

    Полимеризация по цепному механизму протекает в основном за счет раскрытия двойных или тройных связей в молекулах веществ, способных к реакциям присоединения. К ним относятся следующие группы веществ  [c.351]

    Такие реакции конденсации не ограничиваются системами с двойной связью С = С, но характерны также для тройных связей С С, двойных связей С = О и двойных связей С == N. Однако продукт с длинной цепью образуется только в некоторых случаях гораздо чаще образуются димеры или циклические продукты с небольшим числом атомов . Детальное изучение реакций полимеризации показало, что они могут идти по двум различным механизмам, которые обычно можно отличить друг от друга. Один из них — ионный механизм, заключающийся в присоединении ионов к одному из концов двойной связи,— приводит к образованию нового иона, который может далее присоединяться по двойной связи другой молекулы, приводя к инициированию цепи  [c.514]

    Механизм электрофильного присоединения по двойным и тройным углерод-углеродным связям включает следующие стадии. [c.113]

    Кажется очевидным, что электроноакцепторные группы способствуют протеканию нуклеофильного присоединения и ингибируют реакции электрофильного присоединения в результате того, что они понижают электронную плотность двойной связи. Это, ио-видпмому, верно, хотя аналогичные рассуждения не всегда оказываются справедливыми при сравнении субстратов с двойными и с тройными связями [67]. Между атомами углерода тройной связи концентрация электронов выше, чем между атомами углерода двойной связи, и тем не менее тройные связи менее склонны реагировать но электрофильному механизму и легче вступают в реакции нуклеофильного присоединения, чем двойные связи [68]. Это утверждение не носит универсального характера, но справедливо в большинстве случаев. При бромировании соединений, содержащих одновременно двойные и тройные связи (несопряженные), бром (электрофильный реагент) всегда присоединяется к двойной связи [69]. В сущности все реагенты, способные образовывать мостиковые интермедиаты типа 2, с двойными связями взаимодействуют быстрее, чем с тройными. В то же время присоединение электрофильного Н+ (кислотно-катализируемая гидратация, реакция 15-2 присоединение галогеноводородов, реакция 15-1) идет примерно с одинаковыми скоростями в случае алкенов и соответствующих алкинов [70]. [c.150]


    Один из наиболее вероятных механизмов превращения тройной связи в двойную с перемещением я-связи по цепи атомов углерода (реакции Фаворского) связан с присоединением — отщеплением щелочного реагента, при- [c.234]

    Книга из серии Механизмы реакций в органической химии , издаваемой английскими химиками. В ней рассматривается присоединение — один из немногих фундаментальных типов органических реакций, изучению которого посвящено множество работ, но до сих пор не было ни одной специальной монографии. Авторы обобщают современные данные по механизму и стереохимии присоединения электрофильных агентов по двойной и тройной углерод-углеродным связям. [c.4]

    Многие из реакций алкинов — это реакции электрофильного-присоединения, протекающие аналогично соответствующим реакциям олефинов, но в две последовательные стадии. Сначала идет-присоединение по тройной связи с образованием производных олефинов, затем присоединение по двойной связи с образованием производных парафинов. Механизм реакции на примере реакции ацетилена с бромистым водородом можно представить схемой  [c.85]

    Ранее нами была изучена реакционная способность дитиокислот фосфора в реакциях присоединения к непредельным электрофильным системам, содержап им углерод-углеродную двойную связь [1—4]. В настоящей работе мы исследовали кинетику и механизм реакций присоединения дитиокислот фосфора по тройной С=С связи метилового эфира пропиоловой кислоты. [c.119]

    В настоящее время получил распространение другой подход к объяснению правила Марковникова, в соответствии с которым направление присоединения электрос1)ильных реагентов по двойной или тройной связи определяется относительной стабильностью образующихся в ходе реакции а-комплексов. Из двух возможных при взаимодействии хлороводорода с пропиленом карбокатионов А и В образование стабилизированного сверхсопряжением иона А требует меньшей затраты энергии, что и предопределяет присоединение хлороводорода к пропилену в соответствии с правилом Марковникова. Поляризация кратной связи пропилена способствует такому направлению реакции. Такой подход к объяснению зависимости направления реакции от ее механизма и строения непредельного соединения позволяет объяснить направление присоединения хлороводорода к хлористому винилу, которое протекает в соответствии с правилом Марковникова, но вопреки поляризации двойной связи  [c.116]

    Высокая активность карбенных центров предопределяет их быстрое исчезновение в реакционных смесях, причем типы молекул-перехватчиков достаточно разнообразны. Вместе с тем карбенные реакции удается достаточно четко классифицировать. Поскольку большинство реакций характерно для всех типов карбенов, в основе такой классификации лежит тип реакционного центра, перехватывающего карбен, — центральный атом другой молекулы карбена (реакции ди- и полимеризации), двойная или тройная связь (реакции присоединения), ординарная связь (реакции внедрения), гетероатом с неподеленной парой электронов или атом переходного металла (реакции комп- Лексообразования). Большинство таких реакций возможны и во рнутримолекулярном варианте, однако ряд внутримолекулярных реакций карбенов обладает определенной спецификой и заслуживает отдельного рассмотрения. В настоящем разделе для большинства типов карбенных реакций приведены только общие сведения об их протекании и наиболее вероятном механизме возможность использования реакций того или иного типа рассмотрена отдельно (см. гл. 4—6). [c.61]

    Использовались также другие методы инициирования радикально-цепных реакций, например облучение светом или у-лу-чами. Третичные амины катализируют гидросилилирование акри-лонитрила схема (100) [121] и фенилацетилена схема (101) [122]. Полагают, что эти реакции протекают путем нуклеофильного присоединения трихлорсилил-аниона к двойной или тройной связи. Другие реакции подобного типа, которые также, возможно. протекают по этому или аналогичным механизмам, обсуждаются в разд. 13.4.5.1 схема (215) и в разд. 13.3.4.3. [c.101]

    Е. А. Шиловым [271—277] изучен механизм реакций хлора с органическими соединениями, лежащий в основе промышленного синтеза этиленхлоргидрата, и показано, что активными агентами хлорирования в водной среде являются ацилгипохлориты, хлор, Н0С1 и окись хлора, а не ион хлора, как считалось ранее. Установлено, что реакции присоединения галогеноводородов к соединениям с двойной и тройной связью в зависимости от природы реагентов и растворителя носят или электрофильный, или нуклеофильный характер. Изучена кинетика присоединения галогенов к тройной связи в неводных средах открыт и исследован гомогенный катализ карбоновыми кислотами и другими акцепторно-донорными веществами в апротонных и протонных растворителях. Создана теория электрофильного замещения в ароматических системах, в которой постулируются акцепторно-донорные комплексы хиноидного строения. Показано, что каталитическое действие аминокислот в процессе энолизации ацетона связано со специфическим свойством аминокислот образовывать циклические промежуточные комплексы. [c.57]


    Скорость реакций электрофильного присоединения к алкенам и алкинам в соответствии с предложенной схемой механизма, как правило, описывается кинетическим уравнением второго порядка Электронодонориые заместители у кратных связей облегчают образование я- и а-комплексов и, следовательно, увеличивают скорость электрофильного присоединения и по двойным, и по тройным связям непредельных соединений, электроноакцепторные заместители снижают скорость присоединения. Приведенные в табл. 4 константы скорости реакций присоединения хлора к производным стирола хорошо иллюстрируют эту зависимость  [c.114]

    В сопряженных системах происходит как 1,2-, так и 1,4-ири-соединение [478]. Бром присоединяется к тройным связям обычно медленнее, чем к двойным (см. разд. 15.6). В молекулах, содержащих как двойные, так и тройные связи, преимущественно атакуется двойная связь. К ацетиленовым соединениям можно присоединить две молекулы брома, что дает тетрабро-мозамещенные продукты. Имеются доказательства того, что присоединение первой молекулы брома к тройной связи происходит по нуклеофильному механизму [479]. В случае алленов реакцию очень легко остановить после присоединения одной молекулы реагента, в результате чего получаются продукты типа X—С—СХ = С [480]. В больщинстве случаев вторую молекулу галогена удается присоединить только в жестких условиях. Присоединение галогенов к кетенам приводит к а-галоге-нозамещенным ацилгалогенидам, но выходы в этой реакции невелики. [c.215]

    В настоящей главе рассматриваются реакции присоединения к ДВОЙНЫМ связям углерод — кислород, углерод — азот, углерод— сера и к тройной связи углерод—азот. Исследование механизма этих реакций намного проще, чем процессов присоединения к кратным связям углерод — углерод, описанных в гл. 15 [1]. Большинство вопросов, обсуждавшихся при рассмотрении последних реакций, либо не возникают здесь вообще, либо на них очень легко дать ответ. Поскольку связи С = 0, С = Ы и С = М сильнополярны и положительный заряд локализован на атоме углерода (кроме изонитрилов, см. разд. 16.3), то нет сомнений относительно ориентации несимметричного присоединения к ним нуклеофильные атакующие частицы всегда присоединяются к атому углерода, а электрофильные — к атому кислорода или азота. Реакции присоединения к связям С = 5 встречаются значительно реже [2], и в этих случаях может наблюдаться противоположная ориентация. Например, из тиобен-зофенона РЬ2С = 5 при обработке фениллитием с последующим гидролизом получается бензгидрилфенилсульфид РЬгСНЗРЬ [3]. Стереохимию взаимодействия, как правило, рассматривать не приходится, так как невозможно установить, происходит ли син- или анти-присоединение. При присоединении УН к кетону, например  [c.321]

    Стереохим. результат ступенчатого присоединения зависит от механизма р-ции и природы реагирующих соединений. Так, электроф. присоединение к олефинам может протекать как син-присоединение-частицы Y и W атакуют молекулу с одной стороны плоскости двойной связи либо как ан 1м-присоединение-частицы атакуют с разных сторон плоскости в нек-рых случаях р-ции идут нестереоспецифич-но. Нуклеоф. присоединение с участием карбанионов протекает, как правило, нестереоспецифично. При П. р. по тройным связям син-присоединение приводит к г/ис-изомеру, аиоти-присоединение - к транс-томеру. [c.92]

    Единичная я-связь в алкенах, алкинах и алленах относится к числу наиболее химически активных реакционных центров ненасыщенных углеводородов. Однако она проявляет свое химическое сродство только к тем реагентам, которые склонны сильно поляризовать я-связь в сторону одного из углеродных атомов и иметь достаточное химическое сродство к а- или я-электронной паре, т. е. обладать электрофильными свойствами. В разделе о механизмах реакций электрофильного присоединения по двойной связи показано, что эти Ас1Е-реакции характерны для всех органических и неорганических гидридов, имеющих выраженный кислотный характер. Из соединений, способных присоединяться по двойной (тройной) связи, исключаются [c.346]

    Кинетические исследования механизма восстановления при помощи Ь1АШ4 непредельных (в том числе и замещенных диацетиленовых) спиртов показали [819], что скорость реакции определяется стадией нуклеофильного присоединения гидридиона к а-углеродному атому. Она возрастает с ростом числа тройных и двойных связей в молекуле. Восстановление спиртов с гидроксильной группой, находящейся не в аллильном положении, протекает медленно. [c.191]

    В мягких условиях в присутствии каталитических количеств едкого кали образуются главным образом алкилтиобутадиены гfw -кoн-фигурации [549, 952, 987—989], а в более жестких, в присутствии значительных количеств щелочи, образуются ацетиленовые [986] или алленовые [952, 987, 988] соединения. Образование этих продуктов объясняется, по-видимому, присоединением к винилацетилену молекулы меркаптана в 1,4-положение с атакой анионом двойной связи (образование алленовых соединений) или тройной связи (образование диеновых соединений) [952, 987, 988]. В случае, когда основной частью продуктов реакции, полученных в мягких условиях нуклеофильного присоединения, являются бута диены-1,3, предполагается, что реакция может проходить по тройной связи по механизму согласованного действия адденда и растворителя [549, 989]. Возможно, что при образовании ацетиленовых аддуктов [986] реакция проходит по радикальному механизму [981 ]. Не исключено также,что первичным продуктом реакции меркаптанов с вииилацетиленом в описанных условиях является продукт алленовой структуры, который в определенных условиях (температура, растворитель, количество щелочи) претерпевает изомеризацию, приводящую к образованию равновесной смеси. [c.285]

    Треххлористый мышьяк сходен с треххлористым фосфором, поэтому можно предполагать, что он также склонен присоединяться по ненасыщенным двойным углерод-углеродным связям, особенно в присутствии катализатора Фриделя — Крафтса. Его присоединение к ацетилену, в частности, используется для получения льюизита (р-хлорвинилдихлорарсина), применяемого как боевое отравляющее вещество кожно-нарывного действия. Эту реакцию проводят в инертном растворителе в присутствии хлористого алюминия [27]. В таких условиях, вероятно, имеет место ионный механизм и по тройной связи присоединяется положительно заряженная частица, содержащая мышьяк [уравнение (9-20)]. [c.229]

    Наличие тройной связи в ионной форме и вследствие этого двойной связи в псевдоформах приводит, как показал Ганч, к определенным следствиям. Один из выводов состоит в том, что псевдоосновная диазогидроокись является членом прототропной системы, а не протолитической системы — аддукта обратимого присоединения. Имея в виду умеренную кислотность диазогидроокисей, т. е. легкость образования диазотат-ионов, можно с уверенностью сказать, что прототропные взаимопревращения протекают по ионному механизму В-Зе1.  [c.697]

    Механизм большинства ферментативных реакций гораздо проще, чем механизм Уонга—Хейнса. Среди этих механизмов можно выделить две основные группы для одних реакция протекает с образованием в качестве промежуточного соединения тройного комплекса ЕСХУ (названного тройным в связи с тем, что он содержит три реагента — фермент и оба субстрата), а для других— замещенной формы фермента ЕС. Ранние исследователи, например Вульф [151,152] и Холдейн [64], предполагали, что реакции должна протекать через промежуточную стадию образования тройного комплекса, который возникает либо из двойного комплекса ЕОХ, либо из двойного комплекса ЕУ. Иными словами, субстраты могут связываться с ферментом в произвольном порядке, как это показано на рис.5.1. Строгое уравнение стационарной скорости для этого механизма имеет сложный вид и содержит члены, включающие [СХ] и [У] . Однако вклад этих членов в скорость, реакции невелик, и Гулбински и Клеланд [61], используя метод моделирования с применением ЭВМ, показали, что если не брать, маловероятные значения для констант скорости, то получаемые-зависимости скоростей концентраций субстратов имеют точно такой же вид, как и соответствующие зависимости для случая,. коГда все стадии, за исключением стадии взаимного превращении ЕХС-У и ЕХ - СУ, являются равновесными. При этом уравнение-скорости не содержит квадратичных членов, и для простоты мы будет использовать уравнения, выведенные в предположении, что скорость установления равновесий очень велика (речь идет только о механизмах с неупорядоченным присоединением субстратов). Следует, однако, подчеркнуть, что факт выполнимости подобных уравнений нельзя рассматривать как доказательство быстрого установления равновесия, точно так же как на основании выполнимости уравнения Михаэлиса—Ментен для большинстваг ферментов нельзя сделать вывод, что при этом справедливо до- [c.104]


Смотреть страницы где упоминается термин Двойная связь Тройная связь механизмы присоединения: [c.171]    [c.84]    [c.194]    [c.219]    [c.176]    [c.176]    [c.188]    [c.287]    [c.292]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.399 , c.433 , c.464 , c.886 ]




ПОИСК





Смотрите так же термины и статьи:

Двойная связь

Двойные тройные

Присоединение механизм

Связь тройная



© 2024 chem21.info Реклама на сайте