Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство сложное

    Следовательно, химическое сродство сложной реакции равно сумме величин химического сродства всех стадий  [c.30]

    Главные восстанавливающие реагенты — углерод и окись углерода. Значительно меньшее значение как восстановителя имеет водород и углеводороды. В сложных системах особенно в расплавах восстановителем могут быть металлы, имеющие повышенное сродство к кислороду. [c.7]


    Однако чистые системы трудно практически приготовить, поэтому их можно считать чистыми только теоретически. Обычно же в системе одновременно находятся как минимум два вещества и в ней при определенных условиях может быть выделено несколько фаз. Вещества, обладая определенным химическим сродством, подвергаются химическим превращениям, а фазы непрерывно обмениваются между собой энергией и веществом. Состояние неоднородной по химическому составу системы или гетерогенных систем будет зависеть уже от их состава, и внутренняя энергия таких сложных систем будет функцией как 5 и V, так и состава смеси Пх (моли)  [c.144]

    Нестабильность обнаруженных характеристик затруднила и выяснение влияния акцептора на стойкость КПЗ. Однако сравнение соединений 2,6-ДМН состава 1 2с МА и ПДА в среде Э и соединений 2,3-ДМН с МА и ПДА в А, а также соединений 2,6-ДМН состава 2 1с МА и ФА в среде Д говорит о повышении стойкости сложных КПЗ с ростом электронного сродства ангидрида [22J. [c.135]

    На основании экспериментальных и лит("ратурных данных показано влияние типа симметрии донора н сродства к электрону акцептора на стойкость сложных комплексов в диоксане, этил-ацетате, уксусном ангидриде и ацетоне. [c.137]

    S- и р-Элементы. Мы рассмотрели общие тенденции в характере изменения значений радиусов и энергии ионизации атомов, их сродства к электрону и электроотрицательности в зависимости от атомного номера элемента. При более глубоком изучении этих тенденций можно обнаружить, что закономерности в изменении свойств элементов в периодах и группах значительно сложнее. В характере изменения свойств элементов по периоду проявляется внутренняя периодичность, а по группе — вторичная периодичность. [c.36]

    Феноменологический подход может быть использован для определения средних показателей реакционной способности сложных систем, характеризующих ее химическую активность, по аналогии с показателями реакционной способности в химии чистых веществ . Любую многокомпонентную смесь гетероорганических углеводородных молекул можно рассматривать как статический ансамбль компонентов. Следовательно, задача состоит в определении усредненной электронной структуры этого ансамбля. Задача решается в рамках ЭФС на основе обнаруженных [12, 21] закономерностей, связывающих интегральную силу осциллятора (площадь под кривой поглощений излучения в видимом и ультрафиолетовом диапазонах спектра) с потенциалом ионизации (ПИ) и сродством к электрону (СЭ). [c.92]


    Межфазное поведений углеводородов, их смеси или нефти в многокомпонентных системах можно моделировать алканами. Для любого углеводорода существует свой алкановый эквивалент (а.э.), который показывает, что углеводород ведет себя в системе аналогично алкану с соответствующим числом углеводородных атомов. Число атомов углеводорода алкановой цепи, соответствующее а, принято называть алкановым углеводородным числом (а.ч.). Хотя алкановое число является характеристикой исследуемой системы в целом при определенных температурах, концентрации электролитов, структуре и концентрации сопутствующих ПАВ, оно может быть характеристикой самого ПАВ. Влияние различных параметров на а.ч. описывается эмпирическими корреляциями, основанными на исследованиях как индивидуальных, так и сложной смеси технических ПАВ. Введение электролитов в водный раствор суль-фанатов приводит к обогащению межфазного слоя ПАВ. Однако не всегда обеспечиваются условия для оптимального распределения их между водной и углеводородными фазами. Высокое сродство поверхностно-активных веществ к обеим граничащим фазам достигается добавлением в систему сопутствующих ПАВ, в качестве которых наиболее часто используют спирты [19, 20]. Наличие спиртов ведет к образованию более разрыхленной структуры межфазного слоя. Увеличение длины радикала спирта способствует повышению сродства системы к углеводородной фазе, что снижает оптимальную концентрацию электролита и увеличивает глубину минимума межфазного натяжения [19, 20]. Низшие спирты вызывают обратный эффект. Увеличение количества атомов углерода в боковой цепи сопутствующих ПАВ мало сказывается на изменении а. Например, трет-бутиловый и изопропиловый спирты оказывают такое же действие на систему вода-ПАВ-углеводород, как и этанол. [c.10]

    Сущность работы. Если компоненты газовой смеси обладают различным адсорбционным сродством по отношению к выбранному адсорбенту, то при хроматографической десорбции такой смеси, каждый ее компонент будет двигаться вдоль слоя адсор- бента с различной характерной для данного компонента скоростью. Это может привести к разделению смеси. Следовательно, различие величин адсорбции, теплот адсорбции и других характеристик системы адсорбат — адсорбент может быть положено в основу адсорбционного хроматографического разделения и анализа сложных смесей газов. [c.139]

    Таким образом, скорость производства энтропии в стехиометри-ческом химическом процессе пропорциональна произведению движущей силы процесса (химического сродства реакций) на скорость реакции. Существенно, однако, что в реальных сложных химически реакционноспособных системах в качестве стехиометрических химических процессов обычно можно рассматривать лишь элементарные химические реакции, те. реакции, осуществляемые в одну стадию и поэтому не имеющие промежуточных продуктов — интермедиатов (см. подразд. 16.4.1). [c.300]

    Таким образом, по уравнениям (Х.45), (Х.47), (Х.48) и (Х.50) — (Х.Й) мы можем вычислить любое равновесие, а также и сродство реакции. Но, как уже отмечалось, для этого надо знать помимо термических величин QI, Да, Др, Ду константу интегрирования, которую можно определить только опытным путем, измерив равновесие хотя бы при одной температуре. Между тем, исследование химических равновесий при всей их важности является чрезвычайно трудным делом. Потребность теоретических расчетов равновесий была удовлетворена лишь теоремой Нернста, благодаря которой и оказалось возможным вычислить величину /, а следовательно, не прибегая к сложным экспериментальным исследованиям, вычислить любое равновесие при любой температуре из простейших термических данных. [c.252]

    Как следует из таблицы, величины сродства к электрону сложным образом изменяются в периодах. Для таких атомов, [c.65]

    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]


    Электрофильные реагенты — это катионы, простые или сложные молекулы, которые сами по себе или в присутствии катализаторов обладают повышенным сродством к электрону или к отрицательно заряженным центрам (Е). [c.178]

    Все элементы II главной подгруппы литофильны. Это, несомненно, связано с их сродством к кислороду имея благородногазовую электронную подкладку, не склонную деформироваться, двухзарядные катионы этих элементов образуют очень прочную кристаллическую структуру с анионами кислорода (II), а также сложными кислородсодержащими анионами (силикат-, алюмосиликат-, сульфат-анионами и др.). [c.26]

    Экспериментальные методы определения сродства к электрону весьма сложны, поэтому значения Ах определены не для всех элементов таблицы Д. И. Менделеева. Впрочем, и расчет этого свойства представляет сложную задачу, хотя формальная схема проста требуется взять разность энергий нейтрального атома и отрицательного иона. Расчет энергии последнего вносит основную ошибку. Так, например, для атомов галогенов имеем р(эксп.) = 3,45 эВ, [c.74]

    Экспериментальные методы определения сродства к электрону весьма сложны, поэтому значения Лх определены не для всех элементов таблицы Д. И. Менделеева. Наиболее надежные данные для некоторых элементов приведены в табл. 6. [c.67]

    Пруст был очень скромным человеком, искусным экспериментатором, но теоретическими вопросами не занимался. Тем не менее его экспериментальные работы связаны с работами Бертолле, одного из крупнейших теоретиков той эпохи, и можно даже проследить полемическое происхождение этой связи. Чтобы понять работы Пруста, следует сначала остановиться на одной статье, прочитанной Бертолле в 1799 г. в Египетском институте, основанном в Каире во время экспедиции Наполеона Бонапарта. Статья Бертолле имеет заглавие Исследования законов сродства в ней впервые выдвинуто утверждение, что на течение химической реакции влияет масса и другие физические силы, как-то сцепление, летучесть, растворимость, упругость и т. д. Руководящие идеи этих исследований изложены самим Бертолле следующим образом Доказав прямыми опытами, что химическое действие тел противоположной силы зависит не только от их сродства, но и от их количества, я выберу из наблюдений над различными видами соединений те, которые подтверждают этот принцип и указывают на область его применения я исследую впоследствии обстоятельства, которые его изменяют, и условия, которые благоприятствуют или не благоприятствуют химическому действию тел и заставляют изменяться пропорции в соединениях, которые эти тела могут образовать я применю эти соображения к сложному сродству и к сродству сложных тел я попытаюсь, наконец, установить фундамент, на котором должны основываться общие теории и особенно теории химических явлений . Заслуживают упоминания следующие главы статьи Бертолле П. Опыты, которые доказывают, что компоненты данного соединения распределяются в соответствии с химическим сродством реагирующих веществ И1. Наблюдения, которые подтверждают положение о том, что химическое действие пропорционально массе IV. Об изменениях в химическом действии, которые вызываются нерастворимостью веществ VI. Об упругости веществ, проявляющих химическое действие X. Об определении химического сродства XII. О сложном сродстве XIII. Об осаждении металлов из растворов посредством других металлов. [c.164]

    Старые представления о том, что субстантивные красители имеют длинные нитевидные молекулы приблизительно прямолинейной формы, основанные на исследованиях азокрасителей бензидинового ряда, должны быть пересмотрены, исходя из строения субстантивных лейкосоединений антрахиноновых кубовых красителей. Сродство сложного полициклического красителя с несколькими хи-нонными группировками в молекуле, например Индантренового хаки GG, по-видимому, объясняется связыванием молекулы красителя в подходящих точках с различными параллельно расположенными остатками целлюлозы, так что молекулы красителя играют роль мостиков или решетки в трехмерной системе связей. На основании имеющихся данных вычислено, что плоская молекула Индантренового хаки GG (принимая для него тетракарбазольную структуру, что не является вполне достоверным) имеет размеры несколько [c.1473]

    М3 наблюдений над различными видами соединений те, которые подтверждают этот принцип и указывают на область его применения я исследую впоследствии обстоятельства, которые его изменяют, и условия, которые благоприятствуют или не благоприятствуют химическому действию тел и заставляют изменяться иропорции в соедипениях, которые эти тела могут образовать я применю эти соображения к сложному сродству и к сродству сложных тел я попытаюсь, накопец, установить фундамент, на котором должны основываться общие теории и особенно теории химических явлений . Заслуживают упоминания следующие главы статьи Бертолле II. Опыты, которые доказывают, что компоненты данного соединения распределяются в соответствии с химическим сродством реагирующих веществ III. Наблюдения, которые подтверждают положение [c.165]

    Интенсивность химического взаимодействия окисных соединений, входящих в состав смесей твердых веществ, определяется целым рядом факторов, важнейщими из которых являются химическое сродство и реакционная способность этих соединений. В первом приближении химическое сродство сложных кислс родсодержащих соединений характеризует термодинамическую вероятность осуществления процесса их взаимодействия, а реакционная способность — кинетические особенности его протекания. [c.94]

    Ионная связь. Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Ма+, К , анионы Р , С1") или сложными, т. е. состоящими из двух или более атомов (напрнмер, катион ЫН , анионы ОН, N03, 504 ). Простые ионы, обладающие положительным зарядом, легче всего образуются из атомов элементов с низким нотеициалом ионизации к таким элементам относятся металлы главных подгрупп I и II группы (см. табл. 4 и 5 на стр. 102). Образование простых отрицательно заряженных ионов, напротив, характерно для атомов типичных неметаллов, обладающих большим сродством к электрону. Поэтому к типичным соединениям с ионным типом связи относятся галогениды щелочных металлов, например, МаС1, СзР и т. п. [c.150]

    Как указывалось в 34, атомы неметаллов характеризуются положительными значениями сродства к электрону при присоединении электрона к такому атому выделяется энергия. Однако присоединение второго электрона к атому любого неметалла требует затраты энергии, так что образование простых многозарядных анионов (например, 0 , N -) оказывается энергетически невыгодным. Поэтому в таких соединениях как оксиды (ВаО, А1пОз и др.) или сульфиды (например, 2пЗ, СиВ) не образуется чисто ионная связь здесь химическая связь всегда носит частично ковалентный характер. Вместе с тем, многозарядные сложные анионы (ЗО , СОз, РОГ и т. п.) могут быть энергетически устойчивыми, поскольку избыточные электроны распределены между несколькими атомами, так что эффективный заряд каждого из атомов не превышает заряда электрона. [c.151]

    Таким образом, кислая реакция водного раствора соли объясняется тем, что гидратированный катион теряет протон и аквагруппа превращается в гидроксигруппу. В рассмотренном случае могут образоваться и более сложные комплексы, например, [А1а(0Н))г,] +, а также комплексные ионы вида [А10(0Н)41 - и [А10. (0Н)2р , что связано с большим сродством алюминия к кислороду. [c.212]

    Как известно (гл. I, 5), химическую природу элементов определяет со ютание восстановительных и окис,тн тельных свойств не1"1-тральных атомов, количественной характеристикой которых являются значения энергии ионизации и энергии сродства к электрону, которые изменяются в зависимости от изменения заряда ядра и размеров атома с увеличением заряда ядра энергии ионизации и сродства к электрону увеличиваются, а с увеличением радиуса атома уменьшаются. В связи с этим в периодах энергия ионизации слева направо — от щелочных метал.лов к инертным элементам—увеличивается, а в группах сверху вниз уменьп1ается. 3 побочных подгруппах закономерность изменения эиергии ионизации сложнее. Энергия сродства к электрону, вообще изменяющаяся симбатно с изменением энергии ионизации, увеличивается для элементов от четвертой до седьмой главных подгрупп и резко падает ири переходе от седьмой к восьмой главной подгруппе. [c.108]

    Интересно, что эти комплексы связывают кислород с тем же самым сродством, что и кобальтзамещенные миоглобин и гемоглобин в твердом состоянии и в виде раствора в толуоле. Более сложные модели можно получить синтезом огороженных порфирннов с другими стерически затрудненными группами. [c.373]

    Ферментативные системы, связанные с функцией кофермента В12, достаточно сложны. В связи с этим имеется несколько сообщений об очистке В12-зависимых ферментов или В12-связывающих белков с помощью аффинных сорбентов, обладающих сродством к витамину В12. Фактически для очистки ферментов или белков аффинная хроматография широко используется как один нз наиболее привлекательных методов [270]. С этой целью был разработан метод синтеза нерастворимого носителя кобаламинсефарозы (рис. 6.14). Этот носитель использован для очистки М-5-метилтетрагидрофолатгомоцистеин1юбаламинмстилтрапс-феразы из Е. oli. [c.394]

    Используя термодинамическую форму записи кинетических уравнений, можно показать, что вывод о пропорциональности между скоростью реакции и ее химическим сродством остается верным и в ситуации, когда вблизи термодинамического равновесия рассматривается не элементарная, но произвольная сложная стехи-ометрическая брутто-реакция, которой можно приписать определенное значение химического сродства [см., например, выражение [c.323]

    Классические уравнения Онзагера (17.4) являются основой для линейной неравновесной термодинамики и справедливы только в ситуации, когда система находится вблизи термодинамического равновесия. Как следует из разд. 16.4, для химических превращений это соответствует малости (относительно величины КТ) значений сродства сразу по всем возможным каналам процесса и, таким образом, близости значений термодинамических напоров всех взаимодействующих фупп реагентов. При таком очень жестком условии скорости всех элементарных химических превращений в системе действительно оказываются пропорциональными значениям их сродства. Очевидно, однако, что данное требование к линейности чрезвычайно офаничивало бы возможность последовательного и широкого анализа влияния термодинамического сродства различных каналов сложного химического процесса на скорость превращения по этим каналам методами неравновесной термодинамики. [c.333]

    Размер пор молекулярных сит СаА почти совпадает с размером поперечного сечения цепочек углеводородов нормального строения они не адсорбируют углеводородов изостроения и циклостроения. Цеолиты СаХ адсорбируют не только нормальные парафиновые углеводороды, но и изо-парафиновые, нафтеновые, ароматические углеводороды, нафталин, хинолин, тиофен, пиридин и их производ-ньге. Ошг ке поглощают сложных конденсированных ароматических углеводородов. У цеолитов МаХ поры довольно велики 8—10 А. Они обладают большим сродством к неполярным и ненасыщенным соединениям. Применяются для разделения углеводородов свыше Св- [c.90]

    Энергия ионизации и сродство к электрону могут быть вычислены квантово-механическим путем для конкретных оболочек атомов, т. е. с учетом степени гибридизации связей и заселенности орбиталей. В связи с этим все шире используется понятие орбитальной электроотрицательности (ОЭО), с помощью которого оценивается способность атома в молекуле к притяжению электрона на данную орбиталь. Целесообразность использования ОЭО становится понятной, если учесть, что ЭО атома в разном окружении (в разных молекулах или сложных радикалах) неодинакова. Л1етод ЭО позволяет рассчитать эффективные заряды, которые определяются только нормальными валентными связями атомов. В случае дополнительных эффектов (водородные связи, трансвлияние, дативное взаимодействие и т. п.) вычисленные значения зарядов атомов могут существенно отличаться от экспериментальных. [c.20]

    Формула Капустинского (39.18) широко применяется в термохимии для расчета некоторых неизвестных теплот. Так, по формуле (39.19) цикла Борна — Габера можно найти теплоту образования кристалла, если известны теплоты образования крнов и энергия решетки. Последнюю легко рассчитать по уравнению Капустинского. Аналогично можно найти неизвестную теплоту образования газообразного иона и связанные с ней величины, например сродство атома к электрону. Если в узлах решетки находятся сложные ионы (ионы SO 4- в NajSQt, NH/ в ННц,С1и др.), то, пользуясь термохимическим значе-. нием энергии решетки, можно по формуле Капустинского рассчитать эффективный радиус сложного иона. Эти эффективные так называемые термохимические радиусы пригодны затем для расчета по формуле (39.18) энергии решеток, содержащих сложные ионы. Эта формула и ее модификации широко использованы в химии комплексных соединений К. Б. Яцимирским [к-8]. Зная экспериментальные теплоты растворения солей и энергии решетки по Капустинскому, можно рассчитать из термохимического цикла теплоты сольватации солей, широко используемые в теории растворов. [c.170]

    Теории Кекуле и Купера с необыкновенной легкостью и простотой объясняли строение и сложных радикалов , и органических соединений в целом. Молекула любого. химического соединения рассматривалась в этих теориях как та1Кое целостное образование (дань унитарному учению Жерара), которое складывается из атомов за счет полного взаимного насыщения единиц сродства. Теории Кекуле и Купера обосновали таким образом истинность и действенность учения Берцелиуса о сложных радикалах, но они запретили то вольное обращение с понятием радикала, которое допускал Берцелиус, стирая грань между радикалом и молекулой. Такой синтез всех предшествующих структурных идей на основе теории валентности привел к той ступени в разв итии классической структурной химии, на которой оказалось возмож1Ным получение из элементов или простейших веществ самых разнообразных органических соединений. Это был канун того периода в истории органической химии, который обычно характеризуют как триумфальное шествие органического синтеза . [c.83]

    Метод МОХ, или, как его часто называют, простой метод МО сыграл огромную роль во внедрении и распространении квантовомеханических представлений в органической химии. Не будучи количественным методом, т. е. не претендуя на строгие оценки тех или иных характеристик соединений, метод МОХ должен быть оценен как простой и удобный, легко численно реализуемый способ относительной качественной оценки многих химических (термодинамическая устойчивость и реакционная способность) и физических (потенциалы ионизации и сродство к электрону, спектры ЭПР и др.) свойств сопряженных органических соединений. Кроме того, среди последних существует класс соединений — так называемые альтер-нантные углеводороды, — для которых метод МОХ столь же строг, как и намного более сложные методы ССП МО. [c.212]

    Присоединяемый электрон попадает на одну из не полностью занятых орбиталей акцептора. Такие орбитали имеются, например, в радикалах С1, СЮ4, N63. В результате присоединения электрона к этим частицам получаются прочные анионы С1 , СЮ , НОз В сложных молекулах присоединяемые электроны нередко включаются в системы я-электронов акцептора (хиноны, изоаллоксазин, хлоранил и др.). Электронно-акцепторные и электронно-донорные функции органических соединений подробно описаны Б. Пюльман и А. Пюльман. Ниже приведены значения сродства к электрону некоторых соединений и радикалов (Дж/моль) (по П. Кебарле)  [c.85]


Смотреть страницы где упоминается термин Сродство сложное: [c.731]    [c.53]    [c.21]    [c.40]    [c.96]    [c.233]    [c.110]    [c.68]    [c.50]    [c.79]   
История химии (1975) -- [ c.164 ]

История химии (1966) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2024 chem21.info Реклама на сайте