Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система химически чистые

    Химический потенциал (75—77) — обобщенная сила, отвечающая перераспределению массы каждого компонента системы. Для чистого вещества представляет собой молярное значение энергии Гиббса. Расчеты химического потенциала для различных систем идеального газа (83, 84) компонента в идеальном растворе (84) вещества в дисперсной фазе (177—179) в стандартном состоянии (99) вещества в неидеальном растворе (97). Связь химического потенциала с различными термодинамическими функциями системы (72). [c.316]


    Понятие о моделях реакторов. Химический реактор является сложной системой, характеризующейся чисто физическими, физикохимическими и конструктивными параметрами. Под моделью реактора понимается некоторый гомоморфный объект, более простой во всех отношениях, кроме тех признаков и параметров, влияние которых необходимо изучить и определить. Естественно, что идеализированные условия не должны противоречить основным законам химии и физики. Исследуя свойства модели, устанавливают свойства реактора. Полное совпадение всех признаков — тождество реактора с самим собой. [c.460]

    В некоторых случаях один из компонентов (пусть это будет компонент ]) выступает как растворитель, другой (или другие) — как растворенное веще" ство допустим, компонент 1 в чистом состоянии жидкий, а компонент 2 твердый или газообразный, так что жидкие растворы существуют лишь в ограниченной области концентрации с большим содержанием компонента I. Иногда для раствора, образованного двумя жидкими компонентами, изучают лишь область составов, где содержание одного из компонентов мало (допустим, задача состоит в исследовании влияния малых добавок компонента на свойства раствора). В подобных случаях удобным оказывается другой, несимметричный способ нормировки коэффициентов активности, — не на чистые компоненты, а на бесконечно разбавленный раствор. Принимается, что в бесконечно разбавленном растворе у = 1 как для растворителя, так и для растворенного вещества (г = 1,2). Для растворителя, таким образом, стандартное значение (Т, р) есть химический потенциал чистого растворителя. Для растворенного вещества стандартное значение химического потенциала — величина химического потенциала в гипотетической системе, образованной чистым компонентом 2, в которой молекула 2 взаимодействует с окружением а среднем так же, как и в бесконечно разбавленном по компоненту 2 растворе. [c.404]

    Физические и химические свойства иттрия и лантаноидов. РЗЭ имеют серебристо-белый цвет (неодим и празеодим с желтоватым оттенком), в порошкообразном состоянии — от серого до черного. Большая их часть кристаллизуется в плотной гексагональной решетке, за исключением церия, иттербия, самария и европия (табл. 15). Изменение атомных объемов иллюстрируется рис. 16. Для сопоставления верхней и нижней пунктирными линиями показано изменение атомных объемов двух- и четырехвалентных элементов, соседних с лантаноидами в периодической системе. Гексагональная плотная упаковка при достаточно высокой температуре превращается в кубическую плотную с тем же координационным числом. Всем им присущ полиморфизм. В химически чистом виде они имеют высокую электропроводность. Пластичны, имеют твердость порядка 20—30 единиц по Бринеллю. Твердость их зависит от чистоты, термической обработки и обычно воз- [c.51]


    Определение теплоемкости калориметрической системы основано на сжигании навески химически чистой бензойной кислоты в стандартных условиях испытания удельная теплота сгорания кислоты равна 26400 кДж/кг (6320 ккал/кг). В течение начального, главного и конечного периодов испытания фиксируют температуры по специальному калориметрическому термометру. [c.76]

    Набухание соответствует неравновесному переходному состоянию системы от чистых сополимера и растворителя к их полному взаимному смешению. Согласно законам термодинамики самопроизвольное течение изобарно-изотермических процессов сопровождается уменьшением термодинамических потенциалов, поэтому можно считать, что причиной сорбции является стремление системы к выравниванию химических потенциалов компонентов. Набухание — это замедленный процесс смешения двух фаз. Из-за разницы в подвижности молекул компонентов набухание осуществляется диффузией растворителя в сополимер, тогда как макроцепи весьма медленно проникают в объем, занятый чистым растворителем. Диффузии сопутствуют процессы взаимодействия молекул растворителя со звеньями макроцепей, перемещения структурных элементов сополимера, изменение конформаций макроцепей. Полимеры (сополимеры) по своим механическим (реологическим) свойствам обладают ярко выраженной анизотропией (продольные свойства близки к свойствам твердых тел, в то время как поперечные приближаются к свойствам жидкостей), вследствие чего занимают промежуточное положение между твердыми телами и жидкостями. Силовое поле, наводимое диффузией растворителя в полимер, частично запасается в последнем, что приводит к возникновению комплекса релаксационных явлений или явлений вязкоупругости. [c.296]

    Таким образом, любое реальное химически чистое вещество содержит в своей системе один доминирующий (основной) компонент и разные компоненты - спутники. Закон постоянства состава выполним только для основного вещества. При системном подходе к веществу с учетом всех даже очень малых количеств компонентов закон постоянства состава не выполняется, суммы компонентов лишь приближенно равны целому. Отсюда следует невыполнимость закона действующих масс для системы в целом. [c.9]

    Как следует из понятия равновесие , фугитивности химически чистой жидкости и находящегося с ней в равновесии пара должны быть равны. На этом основании, чтобы вычислить фугитивность химически чистой жидкости, достаточно найти фугитивность равновесного с ней пара при существующих в системе температуре и давлении. [c.65]

    Постоянная к, входящая в последние уравнения, носит название коэфициента обогащения пли коэфициента относительной летучести. Коэфициент обогащения к зависит только от давления паров химически чистых компонентов бинарной смеси при температуре системы. [c.228]

    Исследуемый электрод припаивают или приваривают точечной сваркой к токоотводу (медная или никелевая проволока) и закрепляют с помощью держателя, который изготавливают из тефлона. Нерабочую часть поверхности изолируют от раствора полистиролом (используют раствор полистирола в химически чистом толуоле) или другим полимером. Часто для этих целей применяют эпоксидный клей. При выборе изолирующего полимера необходимо проявлять определенную осторожность и предварительно убедиться в том, что он не растворяется в исследуемом растворе. Последнее, естественно, может сильно исказить истинное поведение металла в изучаемой системе. [c.278]

    На основании вышесказанного можно сделать вывод, что исследование кинетики и механизма многостадийных электродных процессов с участием органических соединений в общем случае представляет собой весьма непростую проблему. Многочисленность принципиально реализуемых в данной системе химических и электрохимических стадий и неоднозначность пути реакции выдвигают на первый план задачу выяснения химизма изучаемых процессов, т. е. установление природы их основных и побочных конечных продуктов, обнаружения и идентификации возможно большего количества нестабильных промежуточных продуктов реакции (интермедиатов). Решение такой, по существу, чисто химической задачи должно предшествовать решению вопросов физико-химических определению лимитирующих стадий процесса и их кинетических характеристик, нахождению связи между теми или иными параметрами и кинетикой суммарной реакции и ее отдельных стадий. [c.194]

    В системах, состоящих из большого числа одинаковых молекул, например одного моля какого-либо химически чистого газа, для описания механического состояния проще применять фазовое fi-npo-странство 2/ измерений, если / — число степеней свободы молекулы (см. 2 гл. VI). Как уже говорилось, точка в таком пространстве будет точно определять координаты (gi. .. qf) и импульсы (р . .. / /) данной [c.185]


    Для буферных растворов используют соляную кислоту, хлорид калия, лимонную кислоту, гидрофосфат натрия, дигидрофосфат калия, борную кислоту, тетраборат натрия, гидрофталат калия, три-гидрооксалат калия (тетраоксалат), гидротартрат калия и др. Реактивы марки X. ч. (химически чистый), дважды перекристаллизованные, растворяют в дважды перегнанной воде. Буферными свойствами обладают также системы, содержащие комплексное соединение, лиганд и катион металла (Н. П. Комарь). [c.59]

    Химически чистая вода обладает хотя и ничтожной, но измеримой электрической проводимостью, которая по сравнению с электрической проводимостью ГМ НС1 меньше в Ю раз. Из этого следует, что вода в незначительной степени диссоциирует на ионы. Процесс электролитической диссоциации воды возможен благодаря достаточно высокой полярности связей О—Н и наличию между молекула-ми воды системы Н-связей (см. гл. IV, 5). Механизм процесса объясняется следующей схемой  [c.159]

    Периодическая система химических элеменюв Д. И. Менделеева завоевала к себе доверие после подтверждения прогнозов, сделанных на ее основе. До Периодической системы Менделеева. — пишет В. И. Семишин [5, с. 14], — открытие новых элементов являлось чистой случайностью, Периодическая система ясно указала, какие элементы остались еще не открытыми". Сам Менделеев писал по этому поводу "Периодическая законность первая дала воз.можность видеть неоткрытые еще элементы в такой дали, до которой невооруженное этой законностью химическое зрение до тех пор не достигало" [11, с. 9]. Первым подтверждением предвидений Менделеева стало открытие галлия Лекоком де Буободраном [c.164]

    Количественный анализ смеси двух (илн нескольких) химически чистых солей можно иногда выполнить методами так называемого косвенного анализа, при котором взвешиваемый осадок весовая форма) получается не из одной, а из обеих солей. В этом случае вычисление результатов анализа сводится к составлению и решению системы уравнений. [c.55]

    Резкий излом и последующий более пологий спад говорят о том, что один из компонентов начинает кристаллизоваться из жидкой смеси либо в виде истого компонента, либо вместе с другим компонентом, в виде твердого раствора. Понижение кривой свидетельствует о том, что состав жидкости и связанная с ним температура затвердевания непрерывно изменяются. Третий возможный случай хода кривой—это остановка в ее понижении на определенном уровне, что соответствует затвердеванию жидкости без изменения ее состава при постоянной температуре. Такой ход кривой характеризует химически чистые вещества, а также смеси, которые ведут себя подобно чистым веществам, например эвтектики. Примеры подобных кривых охлаждения даны на рис. 21. Кривая а соответствует (рис. И) охлаждению жидкости состава Х , кривая Ь изображает затвердевание чистого компонента или эвтектической смеси, а кривая с—затвердевание системы, в которой образуются твердые растворы, например—жидкости, имеющей исходный состав Х (рис. 16). [c.42]

    Результаты изучения адсорбционного равновесия в системе и-бутиловый — к-кротиловый спирт на цеолитах NaX и СаА показали, что н-кротиловый спирт избирательно сорбируется цеолитами обоих типов. Среднее значение коэффициента разделения при нормальном давлении 150 °С (газовая фаза) на цеолите NaX составляет 7,35. При содержании в исходной смеси 8% (масс.) н-кротилового спирта концентрация последнего в десорбате, извлеченном из цеолита NaX, составляет 40%. Рафинат представлял собой химически чистый бутиловый спирт. Эти свойства цеолитов в рассмотренной системе могут быть использованы в промышленности синтетического каучука. [c.355]

    Умение пользоваться описанными выше диаграммами равновесия между твердой и жидкой фазами необходимо для правильной оценки степени чистоты данного вещества и для подбора подходящего метода выделения его из смеси или для разделения смеси на чистые компоненты. Факт постоянства температуры плавления или затвердевания отнюдь не означает, что мы имеем дело с химически чистым веществом, поскольку это постоянство характерно также для эвтектических и перитектических смесей, а также для твердых растворов, дающих минимум или максимум на кривой затвердевания. Понижение температуры плавления может дать некоторое основание для оценки степени загрязненности вещества лишь в случае систем, подчиняющихся закону Рауля, т. е. крайне редко. Эти трудности еще усугубляются наличием описанных выше случаев, когда добавление одного вещества к другому не только не понижает тем-пе уры его плавления, но повышает ее, или же не влияет на нее вообще Поэтому для получения правильных данных о составе смеси и о возможности ее разделения на отдельные компоненты нельзя ограничиваться определением температуры плавления, а следует пользоваться полной диаграммой равновесия системы жидкость—кристаллы. [c.41]

    Величины (Г, р) в (П1.59) и [Х2 в (П1.60) называют стан-дартными химическими потенциалами растворителя и растворенного вещества. Стандартный химический потенциал растворителя представляет собою химический потенциал чистого растворителя при заданных Тир. Смысл 12 (Г, р) сложнее. Если бы зависимость (П1.60) выполнялась при всех концентрациях до Ха = 1, то значение Ы2 совпадало бы со значением Ы2, т. е. 12 (Г, р) = = 1 2 Ту р)у был бы идеальный раствор. Если же раствор нельзя рассматривать как идеальный во всей области составов, то величину 12 следует определить как значение химического потенциала [Хз в гипотетической системе, образованной чистым вторым компонентом, но в которой последний имеет те же энергетические свойства, что и в бесконечно разбавленном растворе. [c.49]

    Для наблюдения сигнала ЯМР используют спектрометры, например С-60 предназначен длн измерения резонансного поглощения ядер Н и Р. Их резонансная частота поглощения равна 60 10 и 56,446 10 пер/с соответственно, при внешнем магнитном поле 1,41 Т. Метод ЯМР нашел широкое применение для изучения распределения водорода по различным группам атомов макромолекул веществ углей. Дпя этой цели может быть использована величина химического сдвига 6, предварительно устанавливаемая для модельных чистых веществ, у которых магнитные поля протонов искажаются различными системами химических связей. [c.85]

    Состав летучих веществ в эпоксидных смолах определяли 197] методом масс-спектроскопии на приборе МИ-1305, оборудованном обогреваемой системой напуска. Масс-спектры летучих веществ эпоксидной смолы ЭД-5 показали, что основными примесями являются глицидол, эпихлоргидрин, толуол и вода. Количественный состав этой смеси определяли, используя систему уравнений, вытекающую из свойства аддитивности масс-спектров для градуировки применяли химически чистые вещества. В качестве стандартного вещества использовали азот из воздуха. Найдено, что содержание воды, толуола и эпихлоргидрина в эпоксидной смоле составляет 0,23 0,023 и 0,048% соответственно. [c.240]

    Самый распространенный в природе переходный металл — железо Ке, элемент побочной подгруппы VIII группы периодической системы химических элементов Д. И. Менделеева. Атомный номер его 26, относительная атомная масса 55,847. Чистое железо — блестящий серебристо-белый металл. Железо — один из наиболее распространенных элементов в природе, по содержанию в земной коре (4,65% по массе) уступает лишь кислороду, кремнию и алюминию. Оно входит в состав многих оксидных руд — гематита, или красного железняка Гв20з, магнетита Гез04 и др. [c.156]

    Трифторид брома является превосходным реагентом и растворителем при получении тройных фторидов [25, 26]. Например, комплексы типа MRuFe, где М—щелочной металл, получают взаимодействием M I или МВг, ВгРз с металлическим рутением или хлоридом рутения [144, 145]. Эмелеус [26] и Шарп [25] провели обстоятельные физико-химические исследования химии трифторида брома и установили область его применения. В частности, ими проведено кондуктометрическое титрование растворов моновалентных фторидов растворами акцепторных фторидов в вакуумной системе. Для чисто препаративных целей методику этих исследований можно упростить, если получаемый продукт не слишком чувствителен к воздуху. Авторами данной работы было установлено, что можно медленно добавлять стехиометрические количества металлов или фторидов металлов к фторидам брома в тефлоновом стакане [c.333]

    Современная химия, к сожалению, не учитывает процессы самопроизвольного роста компонентности системы в химически чистых моноком-понентных системах. [c.49]

    Цель исследований заключалась в проверке принципа квазилинейной связи применительно к высокомолекулярным системам путем Р1зучения зависимости молекулярной массы полистирола от коэффициентов поглощения в ультрафиолетовой области [16,19 ] В качестве объектов исследования использованы эталонные стандартные образцы олигомерного полистирола для гель-хроматогра(()ии с известными молекулярными массами. Спектры полистирола записывали в разбавленных растворах химически чистого хлороформа (концентрация - Ю " моль/л) на двулучевом спектромелре ЗРЕСОКО иУ-У18 с автоматической регистрацией спек-гров в диапазоне 250-278 нм. Особенностью данной системы является нелинейная корреляция между средневесовой и среднечисловой молекулярными массами и удельными коэффициентами поглощения (табл. 4.3)  [c.71]

    Попытки построения единой системы химических элементов вещества и антивещества были предприняты Е. И. Ахумо-вым. В 1962 г. в развитие его идей появляется статья [14], в которой приводится "расширенный вариант Периодической системы элементов Д. И. Менделеева, включающий атомы, составленные из античастиц". Система состоит из двух зеркальных половин. Подход чисто формальный. По существу, вторая зеркальная половина общей системы химических элементов вещества и антивещества является симметричной только таблице химических элементов вещества, а не выражением физической симметрии строения атомов. Такое решение проблем не может быть научно убедительным, так как не раскрывает генетической сути перехода материи из вещества в антивещество и обратно. Но концептуально она верна. Генетическая же ее суть может быть понята только на уровне атомных переходов, на примере построения "сопряженных" систем атомов вещества и антивещества, что мы и видим на рис. 13. Квадранты I и II этой системы являются, по существу, единым "шахматным полем", где действуют единые (сквозные) правила игры. [c.135]

    IV группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 40, ат. м. 91,22. Открыт Ц. в 1789,г. М, Клапротом. В состав природного Ц. входят пять стабильных изотопов, известны 14 радиоактивных изотопов. В природе распространепы главным образом минералы циркон ZrSi04 и бадде-леит ZrOa. Все природные минералы Ц. имеют примесь гафния. Ц.— металл серебристо-белого цвета с характерным блеском, т. пл. 1852° С. Химически чистый металл исключительно ковок и пластичен. В соединениях проявляет степень окисления -f-4. Ц, очень устойчив против коррозии в химически агрессивных средах. Ц., очищенный от гафния, находит применение как конструкционный материал в ядерной энергетике, электровакуумной технике (как геттер), в металлургии как легирующий металл, в химическом машиностроении. Из диоксида Ц. и циркона изготовляют огнеупорные материалы, керамику, эмали и особые сорта стекла. [c.285]

    Чтобы по формуле (III. 1) рассчитать лГт, надо решить механическую задачу о движении системы, т. е, определить фазовую траекторию системы при заданных начальных условиях. Как уже отмечалось во введении, подобный путь решения в применении к макроскопической системе наталкивается на огромные практические трудности, хотя развитие вычислительной техники открывает здесь широкие перспективы. Решением уравнений движения (если практически такое решение доступно) можно получить наиболее полные, в рамках классической теории, сведения о поведении конкретной рассматриваемой системы. Однако чисто механический подход имеет ограничения принципиального характера, о которых говорилось ранее, и не достаточен для анализа общих закономерностей наблюдаемого на опыте поведения макроскопических систем (термодинамических закономерностей). Такие фундаментальные термодинамические параметры, как температура, энтропия, химический потенциал, не являются средними значениями механических величин и по формуле (III. 1) рассчитать эти параметры нельзя (в формуле (III.1) интересующие нас параметры просто отсутствуют). [c.44]

    На лабораторную доработку вопроса ушло в 1909 г. немнога времени, почти сразу применили опытный аппарат (автоклав),, вмещавший 2 п. масла. Катализатор готовили осаждением гидрата закиси никеля (гидроокиси никеля П) на кизельгуре (1 0,6). Промытый, высушенный, тонко измельченный катализатор восстанавливали в токе водорода. Вскоре научились получать из хлопкового масла весьма удовлетворительный продукт с титром выше 50°. Тогда стали создавать заводскую установку с автоклавом на 50 п. масла. Так началось заводское производство его сразу же наметили развить в масштабе 300—400 тыс. п. (5—6,5 тыс. т) в год. Работали почти целиком на хлопковом масле Оно поступало из Средней Азии и имело, по анализам 1910—1911 гг., свободных жирных кислот 0,09— 0,11%, йодное число 112,6—113,5. Масляные баки вмещали почти годовой запас масла, что обеспечивало хорошее отстаивание. Рафинации не было. Водород получали электролизом воды. По образцу приобретенного в Германии водоразлагателя системы Шмидта изготовили в России, преодолев многие трудности, еще 19 таких же. В установке непрерывно циркулировал раствор химически чистого карбоната калия. Практически можно было одновременно использовать 17 электролизеров, они давали около 2500 водорода в сутки, расходуя около [c.408]

    Таким образом, рациональная система классификации ве-uterTR по их чистоте должна включать только три класса чистый , химически чистый и особо чистый . Степень чистоту B Uie TBa, известная под названием чистый для анализа , яв- ляется излишней. [c.19]

    Параллельно с не слишком плодотворными попытками построить обобщенную термодинамическую теорию, применимую к живым системам, проводились чисто эмпирические наблюдения над процессами роста живых систем и потребления ими энергии, выявившие ряд интересных фактов. Довольно хорошо изучены многие анаэробные процессы брожения, в ходе которых энергия химических реакций используется клетками для синтеза АТР (гл. 9). Как правило, стехиометрия этих реакций известна, и поэтому можно с хорошей точностью оценить количество АТР, синтезированного при сбраживании данного количества субстрата. Нетрудно измерить и количество образовавшейся в ходе брожения биомассы например, можно собрать культуру клеток быстро растущих бактерий, промыть, высушить и взвесить ее. Оказалось, что независимо от того, какой именно субстрат сбраживается (за редким исключением), величина Удтр — бес высушенных клеток в граммах на моль синтезированного АТР — остается почти постоянной [22, 31] и приблизительно равной 10,5. Другой факт состоит в том, что для бактерий, рост и деление которых (в аэробных условиях) сопровождается выделением только СОг и воды, 40 5% потребляемого углерода и водорода окисляется до СОа и воды, а 60 5% ассимилируется клетками. Отметим, что такой процент ассимилированного материала значительно выше, чем для анаэробного брожения, при котором подавляющая часть материала сбраживается, а не ассимилируется. Как мы увидим позднее, это различие обусловлено тем, что окисление дает значительно больший выход АТР, нежели брожение. [c.234]

    Приготовление реактива В бунзеновскую колбу, соединенную с осушительной системой, состоящей из U-образной трубки, содержащей прокаленный СаСЬ, и промывной склянки с химически чистой H2SO4, помещают 67 г пиридина, 167 г метанола и 21 г йода. Через смесь пропускают ток SO2, получаемый из прибора при-ливанием из капельной воронки серной кислоты к КМпО и высушенный над СаСЬ и затем H2SO4 Во все время пропускания SO2 склянка со смесью должна охлаждаться ледяной водой. На указанное количество смеси должно быть израсходовано 16 г SO2, что определяют привесом смеси на 16 г. Готовый реактив сохраняют защищенным от влаги, воздуха и света Попадание в реактив влаги делает его Непригодным к употреблению. [c.340]

    Водородные электроды, изготовленные из химически чистого угля, вообще не активны. Их необходимо пропитывать катализаторами, для чего особенно пригодны металлы VIII группы периодической системы элементов. Различные методы пропитки электродов платиной были подробно изучены еще Шмидом [26]. Исходя из его работ, Кордеш, Хунгер и Мар-тинола [34] усовершенствовали Нгэлектроды этого типа, тщательно изучив различные процессы изготовления пористых углей и методы осаждения в них катализаторов. Для предотвращения намокания Нг-электроды компании Юнион карбайд тоже делаются гидрофобными. [c.41]

    Томогенные процессы, т. е. процессы, протекающие Л о, н.Р --9-Д-й-0 й, с р еде жидкие или газообразные смеси, тге-имеющие поверхностей раздела, отделяющих части системы друг от друга), редко встречаются в промышленности. Любое так называемое химически чистое вещество имеет следы различных примесей, находящихся в другой фазе. Например, один мл дистиллированной воды содержит от 20 000 до 30 000 частичек пыли. [c.96]

    Разрабатывая новые промышленные экстракционные процессы, не всегда можно полагаться на равновесные данные, полученные при применении тщательно очищенных веществ, так как влияние небольших количеств примесей, обычно присутствующих в технических продуктах, часто нельзя предвидеть. Смесь, предназначенная для разделения, во многих случаях не является раствором двух или трех химически чистых компонентов, а содержит по крайней мере небольшие количества веществ, поведение которых при экстракции не всегда можно предусмотреть. Более того, о наличии следов некоторых веществ в растворе иногда можно судить, лишь сконцентрировав их в одной из фаз путем многоступенчатой экстракции. Разделяемая смесь может иметь настолько сложный состав, что попытка получить детальные равновесные данные, особенно если компоненты смеси влияют на распределение друг друга, оказалась бы безуспешной или слишком дорогостоящей. Методы расчета, описанные в предыдуишх главах, к таким системам не применимы. Иногда, при очень малых концентрациях, кривая равновесного распределения может принимать неожиданную, неблагоприятную для экстракции, форму. Это приобретает важное значение, если необходимо довести остаточную концентрацию распределяемого вещества в рафинате до нескольких миллионных долей. [c.405]


Смотреть страницы где упоминается термин Система химически чистые: [c.13]    [c.371]    [c.373]    [c.412]    [c.13]    [c.121]    [c.168]    [c.18]    [c.154]    [c.53]    [c.286]    [c.445]   
Химическая термодинамика (1963) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

или г химически чистый



© 2025 chem21.info Реклама на сайте