Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород низкотемпературная

    Высокоэффективным способом окислительной минерализации является разложение образцов с помощью возбужденного кислорода (низкотемпературной кислородной плазмы), который получают, пропуская газообразный кислород под давлением 133-665 Па через высокочастотное электрическое поле [7]. [c.50]

    Левая часть рисунка отвечает устойчивой, высокотемпературной активности, достигаемой при равновесном содержании кислорода в поверхностном слое окисла. В правой части приведены активности при низких температурах для образца, подвергнутого тренировке в вакууме при высокой температуре. При комнатной температуре активность такого образца непрерывно снижается. После прогрева в кислороде низкотемпературная активность полностью исчезает. [c.48]


    Очистка сырого аргона цеолитами. Очистка аргона от кислорода низкотемпературной адсорбцией кислорода цеолитами возможна благодаря тому, что эти адсорбенты поглощают больще кислорода, чем азота и аргона. Например, при 90 °К цеолит типа ЫаА поглощает кислорода примерно в 40—45 (по объему) больще, чем аргона или азота. [c.261]

    Разделение аргона и кислорода низкотемпературной адсорбцией на цеолитах типа ЫаЛ возможно благодаря значительной разнице в величине адсорбции кислорода этими цеолитами по сравнению с азотом и аргоном. В табл Х1-2 и Х1-3 приведены данные по адсорбции Аг, О2 и N2 на цеолитах типа NaA и ЫаХ отечественного производства. [c.76]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Анализ причин подобных взрывов показал, что для предотвращения таких аварий нужно удалять кислород из кожуха низкотемпературного блока, т. е. заполнять его инертным газом — азотом. Для этого кожух должен быть максимально герметизирован. Вся обшивка и болты кожуха блока должны быть тщательно уплотнены, а штоки и вентили, проходящие через обшивку блока, должны быть герметизированы плотной укладкой теплоизоляции. На внутреннюю поверхность кожуха необходимо нанести антикоррозионное покрытие. Азот, выходящий из кожуха, должен анализироваться на содержание кислорода и горючих газов, чтобы обнару- [c.23]


    Многие исследователи полностью согласны с тем, что в низкотемпературных реакциях с парафиновыми углеводородами кислород воздействует на углеродные атомы по всей длине цепочки.  [c.71]

    В полимеризации, инициированной радикалами, последние должны присутствовать в системе до возникновения реакционной цепи. Обычно это обеспечивается нри низкотемпературной полимеризации добавкой кислорода, слабо разложившихся алкильных перекисей или кислотных перекисей, или нагревом в случае термической полимеризации. Последнюю обычно проводят при достаточно высоких температурах, вызывающих некоторый крекинг, усложняющий природу конечных продуктов. Полимеризация, инициированная свободными радикалами, не согласуется с определением катализированной реакции, так как в процессе расходуется инициатор. Конечный полимер (исключая чисто термическую переработку) обычно содержит небольшой процент кислорода [351, 352]. Полимеризация такого типа, но не полимеризация, катализированная карбоний-ионом, может задерживаться присоединением к мономеру фенольных или ароматических аминовых антиокислителей.  [c.109]

    Для выделения водорода из газов коксования и пиролиза нефти необходимы специальные установки низкотемпературного фракционирования, аналогичные тем, которые применяют при производстве кислорода. Этот метод выгоден, если одновременно выделяют также и другие газы (этилен, этан, ацетилен), которые затем можно перерабатывать. [c.215]

    Кислород, необходимый для окисления природного газа, и азот для синтеза аммиака получают низкотемпературным фракционированием воздуха. [c.159]

    Имеются сведения о взрыве, происшедшем в ФРГ на установке, оснащенной многопоточными пластинчатыми теплообменниками (вместо регенераторов). Взрыв произошел в отделителе жидкости, расположенном между пластинчатым теплообменником и низкотемпературным газовым адсорбером, при пуске блока после кратковременной остановки. Причиной взрыва, как следует из сообщения, явилось накопление в отделителе взрывоопасных примесей и обогащенной кислородом жидкости. [c.22]

    В опытах по низкотемпературному коксованию угля в слоях, псевдоожиженных воздухом при 430 °С, измеряли расход кислорода. Дэвидсон 1 интерпретировал результаты исходя из скорости переноса кислорода от пузыря к непрерывной фазе и предполагая, что константа скорости реакции практически бесконечна, а пузырь не содержит твердых частиц. При горении в псевдоожиженном слое частицы угля могут быть распределены среди частиц зоны и не все они будут участвовать в реакции. В этом случае кажущаяся константа скорости получается значительно ниже и диффузия с поверхности частицы в этих условиях может оказаться лимитирующей стадией процесса. [c.312]

    Традиционные холодильные процессы переработки природных газов при умеренно низких температурах очень быстро расширились до криогенных уровней. Это объясняется высокой экономической эффективностью технологии низкотемпературной переработки газа. Основными причинами широкого применения процессов сжижения природного газа являются все возрастающая потребность в энергии в районах с ограниченными или слишком дорогими местными источниками топлива при одновременном избытке природного газа в других районах высокая экономическая эффективность применения сжиженного природного газа для компенсации пиковых топливных нагрузок по сравнению с другими традиционными способами резко возрастающая потребность в гелии, кислороде, азоте и редких газах, самым экономичным способом получения которых является сжижение природного газа. Предполагается, что к 1985 г. в сжиженном виде из Африки в Западную Европу будет транспортироваться около 110—140, в США — 85—140, в Японию — 28 млн. м газа в 1 сут. Эти цифры являются прогнозными и, очевидно, неточными, однако они хорошо иллюстрируют потенциальные потребности в сжиженном природном газе. [c.196]

    В низкотемпературной области термического окисления углеводородов основными продуктами реакции являются альдегиды, спирты, олефины, низшие углеводороды, а также в некоторых условиях органические перекиси, кислоты, перекись водорода и гетероциклы, содержащие атом кислорода. [c.221]

    В настоящее время для промышленного производства тяжелой воды применяют крупномасштабные установки [471. Значительные трудности аппаратурного характера возникают при разделении газовых изотопных смесей. Поэтому лабораторное получение изотопов при температуре кипения жидкого азота и жидкого воздуха пока еще слишком дорого. Однако если ректификационную установку присоединить к промышленной установке для получения кислорода из жидкого воздуха, то концентрирование изотопов Аг, 0 и N может оказаться очень экономичным [48, 491. По-видимому, очень выгодна низкотемпературная ректификация N0 при одновременном получении и 0 [50], а также ректификация СО при концентрировании [511. [c.222]

    НИИ ЦТМ не ухудшаются низкотемпературные свойства автомобильных бензинов, не увеличивается их кислотность количество фактических смол получается несколько завышенным (на 2—4 мг на 100 мл). Коррозионная агрессивность бензинов с ЦТМ примерно такая же, как и бензинов, содержащих этиловую жидкость Р-9 (табл. 5. 35), химическая стабильность бензинов при добавлении ЦТМ снижается. При окислении крекинг-бензина с антиокислителями в присутствии ЦТМ гораздо раньше наблюдается энергичное поглощение кислорода с одновременным увеличением содержания перекис-ных соединений, фактических смол и органических кислот. [c.305]


    Для нормальной работы низкотемпературной аппаратуры ожижительной установки газообразный водород требуется предварительно очищать до содержания примесей 10 —10 объемных долей. Существующие методы очистки водорода позволяют удовлетворить указанные требования. Так, метод каталитического восстановления позволяет очистить водород от кислорода до содержания последнего 10" ° объемных долей, а методом адсорбции можно очистить водород от азота и кислорода до содержания их не более 2- 10 ° объемных долей [27]. [c.60]

    Необходимо, однако, отметить, что на практике опасность низкотемпературного поражения или удушья от недостатка кислорода имеет гораздо меньшую значимость, чем взрыво- и пожароопасность водорода. Поэтому существующий комплекс мер по технике безопасности при работе с жидким и газообразным продуктом в основном предусматривает предотвращение пожаров и взрывов водородо-воздушных смесей, а также мероприятия по устранению их последствий. [c.175]

    Низкотемпературное окисление этилена. За последние годы был разработан перспективный процесс каталитического окисления этилена кислородом до ацеталь-дегида. Реакция проводится при давлении порядка [c.76]

    Для ТЭ, работающих при температуре ниже 100°С, целесообразно использовать двухконтурную СУВ, так как для переноса теплоты за счет теплоемкости водорода требуется значительное увеличение расхода циркулирующего водорода. Низкотемпературные двухконтурные СУВ с контуром циркуляции Нз использованы, наиример, в ЭХГ фирмы Пратт энд Уитни (США) космического назначения для проектов, которые последовали за проектом Аполлон , и в ЭХГ для глубоководного аппарата (батарея на основе ТЭ с матричным электролитом, образующаяся теплота удаляется потоком хладоагента), в ЭХГ фирмы Юнион карбайд для электромобиля Электровэн (теплота удаляется циркулирующим электролитом). Вместо контура циркуляции водорода может быть использован контур циркуляции кислорода. Низкотемпературные двухконтурные СУВ, предложенные в патентной литературе, различаются способами регулирования баланса воды, устройством агрегатов, входящих в состав системы. [c.219]

    Попытки Малфорда [306] использовать активированное кислородом низкотемпературное озоление для определения мышьяка и селена были довольно успешными при определении мышьяка, поскольку его извлечение из биологических материалов равнялось почти 100%. Селен же извлекался даже при самых благоприятных условиях в количестве 70Нехотя атомно-абсорбционный метод сравнительно мало применялся для анализа селена, Сирен [307] использовал его при определении селена в сетчатке глаз животных. Сирен предполагает, что элементарный селен играет основную роль в механизме зрения. Он обнаружил 7 мкг/мл селена в сетчатке гвинейских свиней, обладающих плохим зрением, и 630—800 мкг/мл селена в сетчатке крачек (птиц) и косуль, обладающих острым зрением. [c.163]

    Lupersol DDM — 60%-ный раствор Перекиси метилэтилкетоиа в диметилфталате содержит 11% активного кислорода. Низкотемпературный инициатор для полиэфирных смол. (623) [c.136]

    Низкотемпературный обмен на всех окислах характеризуется низкой энергией активации и малой энтропией активации, протекает без участия кислорода катализатора, отсутствует корреляция между каталитической активностью и энергией связи кислорода, удельная каталитическая активность зависит от условий предварительной обработки и в большинстве случаев резко снижается в результате прогрева в кислороде. Замечательна сама по себе возможность протекания с малой анергией активации реакции, включающей разрыв очень прочной связи в молекуле О2 (117 ккал1моль). Надо полагать, что реакция протекает в этих случаях через ассоциативные активные комплексы, образование которых возможно вблизи химических нарушений катализатора, образующихся в результате высокотемпературной обработки, у-облучения, обработки взрывом и др. Природа этих нарушений не установлена однозначно. Снижение активности при обработке кислородом при повышенных температурах указывает на значение кислородных дефектов. В случае 7-А12О3 после обработки в кислороде низкотемпературная активность частично сохраняется. Исследование отравляющего действия паров воды позволяет прийти к заключению о том, что в состав активных участков входят образования, остающиеся на поверхности после удаления ОН-групн. [c.38]

    Таким образом, при низкотемпературном режиме (до 500 К) ртуть скисляется кислородом, в то время, как при высокотемпературном ежиме (выше 500 К), оксид ртути распадается с выделением кислорода. Эти процессы можно использовать для получения кислорода Е лаборатории. [c.174]

    Известны другие случаи бурного выхода паров нз нескольких резервуаров сжиженных газов. В каждом случае теплый и тяжелый продукт закачивали в резервуар снизу и выход паров происходил при заполнении, до охлаждения продукта в нем. Данные явления до настоящего времени изучены недостаточно. Некоторые исследователи приписывают этот выход паров явлению ролловера. Другие объясняют тепловым переливом и феноменом поверхностного слоя . Но и те и другие считают, что внезапный мощный выброс паров сжиженных газов не может происходить в низкотемпературных резервуарах, содержащих однородные жидкости с одинаковой по всему объему плотностью, а также в резервуарах с жидким аммиаком, жидким кислородом или жидким азотом. В случае возникновения этих явлений, наблюдавшихся до сих пор, не происходило аварий, но объемы и скорости образования паров были достаточно велики, чтобы привести к аварии. [c.133]

    Эти каталитические реакции имеют большое значение при низкотемпературных реакциях окисления, особенно нри явлении загрязнения атмосферы (например, дым в Лос-Анжелосе), и их разъяснение требует элементарного понимания свободнорадикальной химии кислорода. Трудность в изучении этих систем объясняется трудностью изучения самого озона и сложностью промежуточных продуктов. [c.352]

    Кислород и кислородсодержащие вещества также являются ядами для катализатора синтеза аммиака. Для удаления из газа двуокиси углерода применяют водную очистку под давлением, очистку при атмосферном и повышенном давлениях мопоэтаноламином, очистку горячим раствором поташа под давлением, очистку водными растворами аммиака, низкотемпературную абсорбцию метанолом, очистку водным раствором щелочи под давлением для удаления остатков СО2. [c.46]

    Низкотемпературные свойства полисульфидных полимеров зависят как от структуры углеводородной части полимера, так и от степени его полисульфидности. Увеличение длины углеводородной части основного звена полимера, введение эфирного кислорода снижает температуру стеклования полимеров, а повышение степени полисульфидности, наоборот, ухудшает их морозостойкость [8, 9]. [c.557]

    Газ азот (второй по объему производства в списке табл. VIII. 1) и кислород (третий по объему производства) выделяются из воздуха низкотемпературной перегонкой. (Азот - главное сырье компании EKS.) [c.505]

    Традиционно кислород и азот получают методами низкотемпературной ректификации воздуха — криогенным способом и адсорбционным. Оба этих метода, кроме достоинств, имеют и недостатки сложность и громоздкость аппаратуры, необходимость применения низких температур (криогенный), регенерации адсорбента, истираиие его и т. д. Кроме того, для многих областей применения кислорода и азота их концентрации в обогащенном потоке и произ1водительность установок могут оказаться недостаточными. В отличие от традиционных мембранные газоразделительные установки — компактные, модульные, простые в эксплуатации и надежные— весьма перспективны. Причем стоимость кислорода (и азота) при мембранном разделении воздуха может быть значительно более низкой, чем при криогенном или адсорбционном, особенно при небольших производительностях — менее 20 т/сут. (в пересчете на чистый кислород) [71, 72]. [c.305]

    Низкотемпературная коррозия шеевиков и дымовых труб печей продуктами сгорания топлива. При сжигании сернистого топлива в топочных газах появляется значительное количество серного ангидрида, сероводорода, диоксида углерода, водяных паров, кислорода и других компонентов, вызывающих интенсивную низкотемпературную коррозию трубчатого змеевика И дымовой трубы. Особенной агрессивностью коррозионного воздействия отличается серный ангидрид. Его образование зависит от используемого для сжи1 ания топлива избытка воздуха. В случае неправильной эксплуатации горелок или при нарушении герметичности топки увеличивается поступление воздуха в печь, что приводит к возрастанию коэффициента избытка воздуха до очень высоких значений (1,5—2,0) и усилению коррозии. Активность влияния серного ангидрида на металл значительно увеличивается при каталитическом действии пятиоксида ванадия в присутствии водяного пара, подаваемого на распыление топлива и образуемого при его сжигании. [c.155]

    Азот получают из воздуха путем низкотемпературной ректификации попутно получающийся кислород используют в производстве ацетилена для окисления аммиака в слабую азотнук> кислоту и для других технических целей. [c.334]

    Нитроорганические отходы взрывоопасны и при их сжигании образуются окислы азота. Для уменьшения образования КОл до предельно допустимых концентраций существует несколько способов. Один из них — низкотемпературное (980—1095 °С) сжигание в больших камерах сгорания с длительным периодом нахождения в них перерабатываемых отходов. Применяется также двухступенчатая система сжигания, в которой первичная камера сгорания работает с избытком топлива, а несгоревшие углеводороды затем окисляются во вторичной камере. Такая система преследует цель уменьшения образования окислов азота в высокотемпературной зоне путем удаления кислорода, способствующего их образованию. [c.139]

    Воздухоразделительные установки служат для получения кислорода, азота и редких газов (аргон, криптон, ксенон) путем разделения воздушной смеси (воздуха) на составляющие ее компоненты методом низкотемпературной ректификации. При эксплуатации воздухоразделительных аппаратов представляет опасность нахождение в атмосферном воздухе, направляемом на переработку, органических примесей, углеводородов, окислов азота, сернистого ангидрида и некоторых других веществ. Особенно опасно наличие ацегн-лена, паров смазочных масел и продуктов их разложения. [ опадание их в разделительные аппараты может привести к взрывам. [c.104]

    Следует назвать ряд больших сводок по термодинамическим свойствам окислов и галогенидов при обычных и высоких температурах, опубликованных Брюером с сотр. Сюда включено большое число новых значений, вычисленных авторами на основе той или другой закономерности в свойствах аналогичных соединений. Из числа работ, посвяшенных специально низкотемпературным свойствам, здесь можно сослаться лишь на работы содержащие данные об основных термодинамических свойствах гелия, водорода, азота, кислорода и окиси углерода. [c.80]

    На рис. 6.5 показаны кривые дифференциального термического анализа (ДТА), полученные Маслянским Г.Н. при выжиге кокса с алюмоплатинового катализатора. На термограмме обнаруживаются два пика в интервале температур 200-370 С и 370-550 °С. С повышением давления водорода при риформинге выход кокса и высота обоих пиков уменьшаются. Считается, что первый пик на термограмме связан с горением непредельных углеводородов на платине, а второй пик характерен для горения кокса, карбоидизированного на кислотных центрах и инертных участках оксида алюминия. Определенную роль может играть также спилловер кислорода, заключающийся в активации молекулярного кислорода на платине, его натекании на поверхность носителя и особенно его кислртные центры и тем самым участие в реакциях окисления. Следствием является то, что при низкотемпературном окислении (до 370 С) выгорают соединения не [c.144]

    I — реактор-газификатор 2 — зона сушки (343 С) 3, 4 — реакционная зона соответственно низкотемпературная (673°С) и высокотемпературная (954°С, 33,2 кгс/см , или 3,32 ГГТа) 5 — зона синтеза 6 — зона очистки сырого газа 7 — метаннзатор (300—450°С, 30— 100 кгс/см , или 3—10 ГПа) /—кислород // — пар III — водоугольная суспензия /1 — полукокс V —ЗПГ [c.162]

    Природный газ под давлением 4 МПа после очистки от серосодержащих соединений смешивается с паром в соотнощении 3,7 1, подогревается в теплообменнике отходящими газами и поступает в трубчатый конвертор метана с топкой, в которой сжигается природный газ. Процесс конверсии метана с водяным паром до образования оксида углерода протекает на никелевом катализаторе при 800—850°С. Содержание метана в газе после первой ступени конверсии составляет 9—10%. Далее газ смешивается с воздухом и поступает в шахтный конвертор, где происходит конверсия остаточного метана кислородом воздуха при 900—1000°С и соотношении пар газ = 0,8 1. Из шахтного конвертора газ направляется в котел-утилизатор, где получают пар высоких параметров (10 МПа, 480°С), направляемый в газовые турбины центробежных компрессоров. Из котла-утилизатора газ поступает на двухступенчатую конверсию оксида углерода. Конверсия оксида углерода осуществляется вначале в конверторе первой ступени на среднетемпературном железохромовом катализаторе при 430— 470°С, затем в конверторе второй ступени на низкотемпературном цинкхроммедном катализаторе при 200—260°С. Между первой и второй ступенями конверсии устанавливают котел-утилизатор. Теплота газовой смеси, выходящей из второй ступени конвертора СО, используется для регенерации моноэтаноламинового раствора, выходящего из скруббера очистки газа от СОг. [c.98]

    Олефиновые углеводороды при высоких температурах, в отличие от низкотемпературного их окисления (идущего по иному механизму), окисляются труднее парафиновых, и окисление их идет при более высоких температурах. Так, например, октен-1 начинает окисляться, как оказалось, при более высокой температуре, чем к-октан, причем окислением, в первую очередь, затрагивается конец углеродной цепи, противоположный тому, который содержит двойную связь. Окисляемость о.тефиновых углеводородов при низких температурах представляет собою весьма сложную картину. Процесс окисления относится к числу автокаталитических, причем периоду активного окисления здесь предшествует весьма медленное окисление, иногда также называемое индукционным периодом [31. При этом процессе даже относительно стойкие разветвленные олефины в конечном счете не остаются имуиными к воздействию кислорода. Кроме того, смеси углеводородов могут окисляться иначе, чем индивидуальные углеводороды, причем бывает, что стойкие в отношении воздействия кпслорода парафиновые углеводороды изостроения окисляются быстрее в присутствии непредельных углеводородов. Так, например, Н. М. Кижнер [4] показал, что 2,7-диметилоктан, довольно стойкий к окислению перманганатом сам по себе, в присутствии нопредэльных углеводородов окисляется уже легко. [c.340]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Необходимым условием низкотемпературной изомеризации, как и каталитического риформинга, яв.ляется глубокая очистка сырья и водородсодержащего газа ог примесей влаги, серы, азота, кислорода, отравляющих катализатор. Для восполнения потерь галогена на катализаторе в сырье аводят небольшое количество (порядка десятитысячных долей процента) галогенорганических соединений. [c.262]

    Влияние марганца иа изменение лрочности сталей пока не установлено. Добавка никеля способствует улучшению пластических свойств стали при сохранении дo тi точной прочности в условиях низких температур 139]. На способность сталей к деформации при йзких температурах влияет присутствие примесей. Увеличение содержания примесей (например, кислорода, серы, фосфора) понижает способность сталей к низкотемпературной деформации. [c.135]


Смотреть страницы где упоминается термин Кислород низкотемпературная: [c.305]    [c.358]    [c.516]    [c.220]    [c.101]    [c.51]    [c.314]    [c.184]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.276 , c.278 ]




ПОИСК







© 2025 chem21.info Реклама на сайте