Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь и кристалличность

    Внутреннее строение и физико-химические свойства полимеров. Свойства полимеров зависят от особенностей их внутреннего строения и в" первую очередь от вида структурной единицы полимера, степени полимеризации, строения цепей, а также от характера и интенсивности взаимодействия между ними. Структурные единицы, составляющие данный полимер, могут содержать полярные группировки атомов, что усиливает взаимное притяжение между цепями и, в частности, при наличии гидроксильных или имино-групп (ОН, МН) приводит к образованию между ними водородных связей. Структурные единицы могут содержать двойные связи, что облегчает образование химических связей между цепями. Наличие боковых ответвлений, их размеры и характер расположения вдоль цепи влияют на взаимодействие между цепями, а также на степень кристалличности и т. д. [c.566]


    В твердом состоянии макромолекулы П. обычно имеют конформацию плоского зигзага. Амидные группы макромолекул связаны между собой межмол. водородными связями, чем обусловлены более высокие т-ры стеклования и(или) плавления П. по сравнению с аналогичными т-рами соответствующих сложных полиэфиров. Наиб, высокой степенью кристалличности (40-60%) характеризуются П., имеющие регулярное расположение звеньев в макромолекуле, напр, полиамид-6,6 и полиамид-6. [c.607]

    Алифатические П. обладают хорошими физ.-мех. св-вами, что обусловлено высокой степенью кристалличности и наличием межмол. водородных связей. Прочностные характеристики П. улучшаются с повышением степени кристалличности, при этом влагопоглощение несколько уменьшается. Св-ва нек-рых П. приведены в таблице. [c.607]

    ИК-спектры позволяют сравнивать химический состав полимеров, обнаруживать химические изменения и примеси, изучать водородные связи и др. Ниже (часть III) приведены ИК-спектры основных компонентов древесины - целлюлозы (см. рис. 9.1 и табл. 9.1) и лигнина (см. рис. 12.2 и табл. 12.1). ИК-спектры используют и при изучении физической структуры полимеров, например, для характеристики кристалличности целлюлозы и сравнения ее полиморфных модификаций (см. 9.4.4 и 9.4.6). [c.147]

    Определение характеристик надмолекулярной структуры. В заводской практике ограничиваются определением степени набухания целлюлозы в растворах гидроксида натрия. В научных исследованиях применяют рентгеноструктурный анализ для определения степени кристалличности и размеров кристаллитов, ИК-спектроскопию для характеристики водородных связей, гидролиз до предельной степени полимеризации (см. 20.1), также характеризующей длину кристаллитов и др. [c.542]

    Независимо от природы исходных мономеров и способа синтеза цепи всех полиамидов содержат сильно полярные, способные к образованию водородной связи группы —СО — NH—. Благодаря сильному межмолекулярному взаимодействию, обусловленному этими группами, полиамиды представляют собой труднорастворимые высокоплавкие полимеры с температурой плавления порядка 180—250°С. Небольшой интервал плавления (3—5°С) свидетельствует об их высокой степени кристалличности и малой полидисперсности. Молекулярная масса технических полимеров колеблется в пределах 8000—25 000. Несмотря на сравнительно небольшую степень полимеризации, эти полимеры в ориентированном состоянии отличаются прочностью и эластичностью, что связано с большим межмолекулярным взаимодействием. При вытяжке на 350—500% прочность на разрыв достигает 4000— 4500 кгс/см2. [c.311]


    Макромолекулы целлюлозы связаны между собой посредством водородных связей и сил Ван-дер-Ваальса. Вследствие этого целлюлоза обладает высокоориентированной структурой. По данным рентгенографического анализа, степень кристалличности хлопковой целлюлозы равна 70%. В элементарных волокнах льна кристалличность целлюлозы еще выше и составляет около 80—85%, а для регенерированной целлюлозы в гидратцеллюлозных волокнах она равна 40—50%. [c.12]

    В кристаллических областях волокна благодаря наличию амидных групп макромолекулы связаны между собой водородными связями, что обусловливает относительно высокие (225— 260°С) температуры плавлепия этих волокон. Степень кристалличности для различных текстильных полиамидных волокон составляет 40—60%. Строение кристаллического участка полиамидных цепей, связанных водородными связями, можно представить следующим образом  [c.27]

    Исследование спектров ЭПР показало, что в облученной целлюлозе [231, 315] и других аналогичных полимерах с высокой степенью кристалличности [231, 315—317] образуются очень устойчивые свободные радикалы. По-видимому, кристаллическая структура, характеризующаяся нали шем большого числа водородных связей, защищает эти радикалы от действия различных реагентов, затрудняя их проникновение или препятствуя их взаимодействию со свободными радикалами. Сигнал ЭПР быстро исчезает при нагревании образцов до температуры, близкой к температуре плавления кристаллитов, а также в присутствии воды [315 ]. Присутствие этих радикалов в облученных образцах—наиболее вероятная причина деструкции, протекающей в целлюлозе и пектинах после прекращения облучения [318, 319], и реакций инициирования облученной целлюлозой привитой сополимеризации различных мономеров [312, 315]. [c.116]

    В опубликованной ранее работе [300 ] также было показано отсутствие изменений в рентгенограмме найлона-6,6, облучавшегося высокими дозами в реакторе. По-видимому, рентгенографический метод недостаточно чувствителен для определения образования поперечных связей и деструкции полимеров этого типа. Уменьшение степени кристалличности, вызывающее заметное снижение разрывной прочности полимера, не фиксируется этим методом. Методом инфракрасной спектроскопии установлено уменьшение количества межмолекулярных водородных связей (в кристаллитах -формы) и увеличение числа внутримолекулярных водородных связей (в кристаллитах а-формы) [319]. Этим фактом может быть в основном объяснено снижение прочности полиамида. Наблюдающееся умень- [c.194]

    Наличие групп -ОН в структуре приводит к сильным межмолекулярным водородным связям. Ввиду того, что ЭВС — статистический сополимер, группы СН2 и СНОН являются изоморфными они входят в одни и те же кристаллические структуры. Поэтому полимер легко кристаллизуется. Сочетание больших сил межмолекулярных взаимодействий и кристалличности создает прекрасный барьер против проникновения газов, запахов и ароматов. Однако водородные связи делают материал чувствительным к влаге, что снижает барьерные свойства пленок из ЭВС. [c.238]

    Полоса кристалличности 8,7 (д, (1150 сж ) возникает при образовании межмолекулярных водородных связей в кристаллических областях поливинилового спирта. [c.491]

    Макромолекулы П. в твердом состоянии обычно имеют конформацию плоского зигзага (рис. 1). Благодаря наличию амидных групп макромолекулы П. связаны между собой водородными связями, к-рые обусловливают относительно высокие темп-ры плавления кристаллич. П. Максимальная степень кристалличности П. зависит от симметрии звеньев и от регулярности их расположения в макромолекуле высокой степенью кристалличности (40—60%) обладают регуляр- [c.368]

    Словохотова [1057] показала, что при облучении полиамидов уменьшается количество СНг-групп в метиленовых цепочках, рвутся межмолекулярные водородные связи и образуются внутримолекулярные, т. е. растянутая -форма превращается в свернутую а-форму. Потерю кристалличности при облучении автор объясняет не только образованием поперечных связей, но и закручиванием полимерных цепей с образованием циклов (за счет внутримолекулярных связей). Автор предполагает, что обнаруженный переход -формы полиамида в а-форму может я [c.268]

    Т. М. Буркат, Ю. С. Николаев. Согласно данным, приведенным в докладе, в случае совместной адсорбции воды и органических соединений (бензол, циклогексан, гексан) на поверхности сажи площадь поверхности, приходящаяся на единичную молекулу воды в монослое, составляет 0,083, 0,081 и 0,071 нм . Эти значения меньше собственного геометрического размера молекул воды 0,105 нм , вычисляемого из мольного объема. При расчете этого размера предполагается расплющенное состояние адсорбционной пленки и не учитывается тетраэдрическая направленность водородной связи. Между тем поверхностная плотность воды, соответствующая площади 0,080— 0,083 нм на одну молекулу, часто используется в связи с формированием мономолекулярного слоя воды. В наших опытах при адсорбции воды на ЗпОа различной пористой структуры и степени кристалличности при заполнениях, соответствующих плотности расположения молекул воды около 0,086 нм на единичную молекулу, [c.165]


    Мы видели (см. разд. 4.5), что растворитель при полимеризации мало влияет или вовсе не влияет на стереорегулярность поливинилацетата и, конечно, на стереорегулярность полученного из него поливинилового спирта в частности, изомасляный альдегид не вызывает, как утверждалось в ряде работ [19], увеличения доли синдиотактических структур. Полимер при всех температурах полимеризации почти атактичен следовательно, как и для акрилонитрила, А(ДЯ ) и А(А5+ ) должны быть близки к нулю. Несмотря на это степень кристалличности поливинилового спирта может быть достаточно высока, чему, несомненно, способствует образование водородных связей. Кристалличность поливинилтрифторацетата, полученного из поливинилацетата, растет по мере понижения температуры полимеризации винилацетата [27]. Наиболее вероятное объяснение этих фактов дано в предыдущих разделах. [c.163]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Термопластики, образующие волокна, находятся при обыкновенной температуре, так сказать, в полупластическом состоянии. Этим объясняются те характерные для текстильных волокон свойства, благодаря которым они образуют единственную в своем роде группу твердых тел. Свойства отдельных волокон варьируют соответственно равновесию, которое существует между их кристал- лической и пластической (аморфной) зонами. Ранее уже было-сказано о том, как это влияет на равновесную влагу в волокнах, а также о том, какое действие производит эта равновесная влага на жесткость волокон путем разрушения некоторых связей между цепями соседних молекул. Выше было также упомянуто, что у целлюлозных и белковых волокон указанные связи между цепями, которые могут быть обратимо разрушены водой, представляют собой преимущественно водородные связи. Последние не являются связями, обладающими высокой энергией присущая им энергия равна примерно 4500 калориям/М (см, ссылку 198). Для сравнения можно привести энергию ковалентной связи, существующей между кислородом и водородом, которая составляет 110 000 калорий/М. Влияние водородных связей на жесткость и частичную кристалличность волокон основано на возможности образования большого количества именно таких связей между соседними молекулами. Отсюда явствует, что количество тепловой энергии, требуемой для разрушения этих связей, должно быть значительным, но ее интен- [c.222]

    Структура полимерных молекул во многих случаях оказывает такое же влияние на растворимость и точку плавления, как и в случае органически к соединений. Так, кристалличность, высокая симметрия, водородные связи, высокая полярность, жес1 кость цепи и стереорегулярность в цепи обусловливают более высокую точку плавления и ху хшую растворимость. Для быстрого качественного определения растворимости можно рекомендовать следующую методику. [c.71]

    Свойства кардовых полиарилатов существенно зависят от их химического строения. Аморфность или малая способность к кристаллизации полиарилатов с кардовыми группировками несимметричной формы (например, фталидная, аце-нафтеновая) объясняется статистическим характером поликонденсации и несимметричностью формы кардовых группировок, приводящих к их различному расположению по отношению к макромолекуле [21, 49-50]. Способности кардовых полиарилатов к кристаллизации способствуют симметричность кардовой группировки (флуореновая, антроновая), наличие в кардовых группировках (например, в антроновой) полярных групп и фупп, содержащих водородные атомы, способные к образованию водородных связей [полиарилаты имида фенолфталеина, 2-Р-гидро-ксиэтил-3,3-бис(4-гидроксифенил)фталимидииа]. Полиарилаты, содержащие кардовые группировки, как в бисфенольном, так и в кислотных фрагментах, обнаруживают явные признаки упорядочения. Отмечается также, что на способность к кристаллизации существенное влияние оказывает характер расположения кардовых групп по отношению к сложноэфирной связи. Так, если кристалличность политерефталата феиолантрона, синтезированного высокотемпературной поликонденсацией при 220 °С, после синтеза составляет 40%, то изомерный ему полиарилат гидрохинона и 9,9-бис(4-карбоксифенил)антрона-10 после синтеза в аналогичных условиях аморфен [33, 51]. [c.109]

    При образовании гидратцеллюлозы изменяется кристаллическая структура целлюлозы. Происходит переход кристаллической решетки целлюлозы I (через промежуточные производные - щелочную целлюлозу, сложные эфиры, донорно-акцепторные комплексы) в решетку целлюлозы И. Изменение положения целлюлозных цепей в элементарной ячейке и перераспределение водородных связей приводят и к увеличению содержания аморфной части в целлюлозе (уменьшению степени кристалличности), а также к общему разрыхлению структуры целлюлозы вследствие увеличения межкристаллитных пространств. Регенерирован[(ая И1 растворов целлюлоза оказывается при этом наименее упорядочепио , имеющей меньшую степень кристалличности по сравнению с мерсерию-ванной целлюлозой. [c.572]

    На растворимость полимеров влияют также образующиеся водородные связи и кристалличность полимера. Хотя известны отдельные исключения из предложенной теории, все же правильность ее основных представлений и тот факт, что в большинстве случаев она оказывается применимой, говорят, что предпочтительнее пользоваться теорией, а не старым заслуженным правилом подобное в подобном . Севере и Смитманс применили метод расчета параметров растворимости к системе поливинилхлорид—пластификатор . Они нашли, что действительно существует тесная связь между значениями параметров растворимости различных соединений и их пластифицирующим действием. Одним из наиболее убедительных доказательств справедливости теории, основанной на расчете параметров растворимости, является подбор такой пары плохих растворителей, чтобы после их смешения параметр растворимости смеси оказался бы близким к параметру растворимости самого полимера. И действительно, смесь таких плохих растворителей хорошо растворила полимер. [c.94]

    Оценивая роль, которую играет образование водородных связей в повышении температуры плавления, нельзя упускать из виду их влияние и на энтропию плавления. Найденные калориметрически для трех полиамидов значения ДЯм сходны по величине ив то же время значительно выше, чем определенные по снижению температурьи плавления в набухшем состоянии для двух аналогичных полимеров. Хотя главная причина этого несоответствия не совсем ясна, можно считать, что при калориметрических исследованиях значительные погрешности получаются при определении степени кристалличности. [c.131]

    Диффузия малых молекул в высокополимерах определяется растворимостью и подвижностью в полимерной фазе. В случае полукристаллических полимеров растворимость этих молекул может быть высокой в аморфной области, но ничтожной в кристаллитах. Весьма интересным применением этого подхода может служить оценка степени кристалличности целлюлозы методом изотопного обмена гидроксильного водорода с тяжелой водой. Было обнаружено, что обмен может происходить только в аморфной части полимера и на поверхности кристаллитов, но не в их объеме [44]. Другим примером является исследование изотопного обмена сухого инсулина при этом было найдено, что 45 из всех обменоспособных водородов значительно лабильней, чем остальные 46. Этот факт объясняли образованием водородных связей в той части полипептидной цепи, которая свернута в спираль [65]. Прежде чем использовать полимеры, часто бывает необходимо удалить все реагирующие вещества из их высококристаллической фазы. Наглядным примером служит дакрон (полиэтилентерефталат), весьма устойчивый к гидролизу, так как из-за его плотной кристаллической упаковки молекулы воды не могут проникнуть к внутренним лабильным эфирным связям. В случае полиэтилена, подвергнутого действию ионизирующего излучения, было найдено, что кислород может диффундировать внутрь полимера и воздействовать на радикалы, захваченные микрокристаллитами, но этот процесс протекает очень медленно, в течение тысяч часов [69]. [c.270]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Для полиуретановых волокон (таких, как спанзелл и лайкра) обнаружено два тепловых перехода второго рода. Первый из них (при температуре ниже 0°С) связан с поведением гибких полиэфирных блоков, а второй (при температуре выше 100°С) — с поведением жестких полиариленуретановых блоков. Рентгеноструктурные данные свидетельствуют об отсутствии кристалличности полиуретановых волокон при удлинениях ниже 400%. Следовательно, в нерастянутом состоянии гибкие блоки должны быть преимущественно разупорядочены и свернуты аналогично молекулам натурального каучука. Легкая растягиваемость гибких блоков сдерживается взаимодействием между жесткими блоками соседних цепей, приближающимися при вытягивании макромолекул друг к другу большой объем этих блоков и образование прочных межцепных водородных связей препятствуют удлинению волокна сверх определенной степени. Наличие водородных связей обусловливает необычайно высокую разрывную прочность полиуретановых волокон при температу- [c.340]

    Этим обт.ясняется тог факт, что К. имеют более высокие темп-ры кипения, чем эфиры (табл. 3) и галогенангид-риды (табл. 4) с близкими мол. массами. Водородные связи так же ярко выражены у амидов. Все амиды, кроме формамида,— нелетучие кристаллич. вещества. Замена водородных атомов амидных групп на метильные группы резко понижает темп-ры плавления амидов. Существованием межмолекулярных водородных связей обусловлена кристалличность полиамидов, внутримолекулярных водородных связей — спиральная конформация полипептидов и белков. [c.507]

    П., содержащие различные аминокислотные звенья, растворимы, как правило, лучше, чем соответствующие гомополимеры. Это объясняется более высокой степенью кристалличности последних. По той же причине оптически активные П. растворимы хуже полимеров, полученных из рацемич. аминокислот. Растворимость П. снижается с ростом мол. массы, а также при переходе от структуры с внутримолекулярными водородными связями (а-спираль) к структурам с межмолекулярными связями (р-форма). Такой переход наблюдается, напр., при механич. вытяжке пленок или волокон из полиаланина. При этом поли-В, Ь-аланин теряет способность растворяться в воде, а поли-1,-аланин становится нерастворимым даже в дихлоруксусной к-те. [c.14]

    Кортлеве и др. [80] показали, что поведение сополимера этилена и акриловой кислоты подобно поведению разветвленных полиэтиленов и сополимеров винилацетата. Степень кристалличности поли(этилен со-ак-риловой кислоты) понижается несколько меньше, чем в сополимерах вини ацетата, а число групп -СО — Ш. входящих в кристаллическую решетку, несколько больше. Из данных исследования ИК-спектров Оттока и Квей [113] сделали вывод, что карбоксильные группы в аморфной фазе дамери зуются путем образования водородных связей. Нейтрализация акриловой кислоты приводит к новому классу макромолекул - иономерам [38, 62]. При одинаковой термообработке сополимеров акриловой кислоты и их натриевых и магниевых солей в последних наблюдается более сильное понижение температуры плавления и степени кристалличности. Оттока и Квей [113], например, установили, что в разветвленном полиэтилене с 2 СНд-группами на 100 Hj и введенными дополнительно 0,7 (и 1,6) кислотных крупп на 100 СН температура плавления и степень кристал- [c.392]

    Полиаденилоеая кислота дает рентгенограммы, свидетельствующие о высокой кристалличности волокон сильные меридиональные рефлексы на этих рентгенограммах соответствуют периоду 3,8 А. Результаты рентгеноструктурного анализа говорят о том, что в этом случае мы имеем дело с молекулярной структурой, представляющей собой двойную спираль из параллельно направленных цепочек с восемью остатками на один виток в каждой цепочке шаг спирали равен 30 А. Поскольку аминогруппа аденина в этой структуре не реагирует с формальдегидом, можно думать, что аминогруппа участвует в водородных связях. Период, соответствующий меридиональному рефлексу (3,8 А), у поли-А больше, чем у ДНК (3,4 А), что связано с неизбежностью наклона связанных водородными связями остатков аденина в двойной опирали поли-А. [c.342]


Смотреть страницы где упоминается термин Водородная связь и кристалличность: [c.287]    [c.450]    [c.669]    [c.455]    [c.473]    [c.144]    [c.315]    [c.138]    [c.9]    [c.169]    [c.455]    [c.142]    [c.14]    [c.510]    [c.295]    [c.332]    [c.368]    [c.43]   
Успехи стереохимии (1961) -- [ c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Кристалличности

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте