Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение нуклеофильное зависимость механизма

    Радикальный и ионный механизмы реакции галогенирования. Нуклеофильное замещение при насыщенном атоме углерода. Механизмы 5д,1 и 5д,2. Зависимость механизма реакции от строения исходных веществ и условий реакции. Электрофильное замещение в ароматическом ядре (5 ). Галогенирование ароматических соединений. Механизм реакции, я- и о-Комплексы. [c.76]


    Данные, рассмотренные выше, указывают на правдоподобность предположения, что многие реакции нуклеофильного ароматического замещения протекают по двустадийному механизму с двумя переходными состояниями, которые отделяет друг от друга промежуточный продукт, обладающий некоторой устойчивостью. Ни в коем случае нельзя считать, что имеющиеся доказательства убедительны для всех рассматриваемых реакций замещения. Возможны различные механизмы в зависимости от числа и типов имеющихся в молекуле активирующих групп, природы применяемого нуклеофила и характера замещаемой группы. Тем не менее при последующем обсуждении в качестве удобной схемы будет использоваться механизм с образованием промежуточного комплекса. По мере надобности будут рассматриваться недостатки такого подхода и другие представления. [c.47]

Рис. 5. Изменение механизма и скорости реакций нуклеофильного замещения в зависимости от строения алкильных групп. Рис. 5. <a href="/info/295686">Изменение механизма</a> и <a href="/info/467931">скорости реакций нуклеофильного замещения</a> в зависимости от строения алкильных групп.
    Для ароматических углеводородов известны реакции замещения, идущие ПО нуклеофильному (5ы) и радикальному (5н) механизмам. Однако эти реакции менее характерны для ароматических углеводородов. Протекают они в зависимости от условий. Так, заместители второго рода настолько понижают электронную плотность в кольце, что реакция с нуклеофильными реагентами становится возможной  [c.284]

    При изучении реакций нуклеофильного замещения довольно часто наблюдаются отклонения от кинетических зависимостей, характерных для механизмов и 5,л2, поскольку превращения субстрата осуществляются параллельно как по механизму 5д>1, так и по 5.у2. Такие превращения получили название пограничных . [c.92]

    Не все рассмотренные в данной главе реакции представляют собой нуклеофильное замещение. В некоторых случаях наши-знания о механизме недостаточны даже для того, чтобы решить, что является атакующим агентом — нуклеофил, электрофил или радикал. В других случаях (таких, как реакция 10-77) превращение одного соединения в другое может происходить различными путями, включающими две или даже все три эти возможности в зависимости от реагента и условий реакции. Однако для подавляющего большинства обсуждаемых в дан ной главе реакций реализуется один или более механизмов [c.99]

    Реакции, описанные в этом разделе (10-77—10-86), представляют собой восстановление и могли бы рассматриваться в т. 4, гл. 19. Но они обсуждаются здесь, поскольку включают замещение уходящей группы на водород, который часто атакует как нуклеофил (гидрид-ион). Однако не все реакции этого раздела — это действительно нуклеофильное замещение для некоторых из них может реализоваться более чем один тип механизма в зависимости от природы реагентов и от условий их проведения. Разрыв связи между углеродом и гетероатомом в результате каталитического гидрирования называется гидро-генолизом. [c.175]


    Механизмы большинства реакций восстановления спиртов неясны [915], хотя в некоторых случаях показано, что это нуклеофильное замещение [904]. При гидрогенолизе бензиловых спиртов конфигурация либо сохраняется, либо обращается в зависимости от природы применяемого катализатора [916]. [c.180]

    Много исследований было посвящено выяснению механизма этих реакций [1044], но окончательные выводы до сих пор отсутствуют частично потому, что природа механизма изменяется в зависимости от типа металла, группы R, состава катализатора, если таковой используется, и условий проведения реакции. Наиболее вероятны следующие два механизма нуклеофильное замещение (по механизму SnI или Sn2) и свободнорадикальный механизм  [c.192]

    В соответствии с общими закономерностями реакций нуклеофильного замещения, в случае реализации мо-номолекулярного механизма (3 1) ожидается образование продукта реакции в виде смеси диастереомеров (т.е. а-и (3-форм), так как карбкатионный фрагмент переходного состояния молекулы плоский если же процесс пойдет по синхронному бимолекулярному пути (8 2) — пространственная структура продукта будет зависеть от конфигурации исходного моносахарида из а-формы образуется р-гликозид, из р-формы — а-гликозид, так как атака нуклеофила осуществляется в тыл связи С-0 и завершается обращением конфигурации реакционного центра. Поскольку моносахарид всегда будет существовать в растворе в виде таутомерной смеси а- и р-форм (не считая ациклической структуры), то независимо от механизма реакции мы, как правило, получим гликозид в виде изомерной смеси. Только лишь их соотношение будет варьироваться в зависимости от условий реакций и природы реагента. Но это все верно тогда, когда [c.53]

    Важнейшими СН-кислотами, используемыми в реакциях алкилирования, являются кетоны (рК к 19-20), сложные эфиры (рК х 24) и 1,3-дикарбонильные соединения (рК к 9-13). Вначале получают еноляты металлов, которые затем реагируют [2] с галогеналканами или алкилсульфонатами по механизму нуклеофильного замещения с образованием С—С-связи. В качестве алкилирующих агентов могут быть использованы также сульфоны [3] (рК 23) (Р-6г), изонитрилы [4] Р-156, Р-16 и ацетилены [5] (рХ 25) А-9, К-32а, К-32в. Для получения карбанионов (отщепление протона) в зависимости от значения рК (кислотности) этих СН-кислот используют основания различной силы. [c.193]

    Было найдено, что реакционная способность подобных арил-галогенидов находится в прямой зависимости от прочности связи углерод—галоген и уменьшается при переходе от иодидов к фторидам Это свидетельствует о том, что механизм нуклеофильного замещения галогена в таких арилгалогенидах иной, чем в рассмотренных выше случаях, где скорость замещения определялась стадией образования аддукта субстрата и нуклеофила (анионоидного комплекса) [c.181]

    Механизм процесса, таким образом, может существенно изменяться в зависимости от реагентов и от структуры соединений, участвующих в реакции. Реакция замещения галоидопроизводных соответствует, по Свэну, в основном схеме (б). При этом играют роль, с одной стороны, сродство галоида к электрофильному реагенту У (растворителю пли катализатору) и, с другой стороны, сродство между углеродом и нуклеофильным агентом Z ] (реагент основного характера или растворитель). [c.328]

    Все активные красители в зависимости от механизма их реакции с волокнистыми материалами можно разделить на две группы 1) красители, реагирующие по механизму нуклеофильного замещения 2) красители, реагирующие по механизму нуклеофильного присоединения. [c.101]

    Основные научные работы посвящены физической органической химии, основателем которой он является. Изучал (1926—1933) электронную структуру ароматических соединений. Развил (1926—1934) теорию электронных смещений, или теорию мезомерии, отправляясь от схем Р. Робинсона. Ввел представление об электро- и нуклеофильных реагентах и реакциях, уточнил классификацию эффектов электронных смещений, рассмотрел их причины, осуществил широкое обобщение материала, относящеюся к определению зависимости физических свойств и реакционной способности соединений (по данным химической кинетики) от их электронного строения. Изучал механизм галогенирования и гидратации алкенов. Совместно со своим учеником и сотрудником Э. Д. Хьюзом провел (1933—1946) серию фундаментальных исследований кинетики реакций замещения у насыщенного углеродного атома. Вместе с В. Прелогом разработал общепринятую систему Н- и 8-обозначений для пространственных конфигураций. Автор книги Теоретические основы органической химии (1953), выдержавшей два издания и переведенной на русский язык. [22, 80, 81,322,332,339] [c.209]

    Для нуклеофильного замещения при насыщенном атоме углерода можно различить с точки зрения механизма реакции два крайних случая, в зависимости от того, сколько типов молекул участвует в стадии, определяющей скорость реакции  [c.156]

    В реакциях нуклеофильного замещения в зависимости от природы субстрата, нуклеофила, уходящей группы и от условий реакции могут реализовываться несколько разных механизмов. Однако в каждом из них атакующий агент имеет электронную пару, поэтому сходство между ними больше, чем различие. Вначале будут рассмотрены механизмы реакций, протекающих у насыщенного атома углерода [1]. Для такпх реакций наиболее распространенными являются механизмы SnI и Sn2. [c.12]


    Таким образом, реакция электрофильного замещения бромной ртути с симметричными а-меркурированными ментиловыми эфирами фенилуксусной кислоты протекает с обращением конфигурации у асимметрического атома углерода, а реакция симметризации ментиловых эфиров а-броммер-курфенилуксусной кислоты, представляющая собой также реакцию электрофильного замещения, протекает с сохранением конфигурации [39, 44]. Э о обстоятельство можно понять, если предположить, что механизм электрофильного замещения у насыщенного углеродного атома может изменяться в зависимости от углеводородного радикала, замещаемого атома (или группы атомов), и характера растворителя, как это имеет место при нуклеофильном замещении. В таком случае реакции электрофильного замещения, идущие с сохранением конфигурации, должны соответствовать реакциям нуклеофильного замещения, протекающим по механизму SnI (точнее, по карбониевому механизму ), а реакции электрофильного замещения, идущие с обращением конфигурации, должны соответствовать реакциям нуклеофильного замещения, протекающим по механизму Sn2 (точнее, по механизму прямого замещения ). [c.108]

    В зависимости от характера радикала, связанного с галогеном, а также от реакционной среды взаимодействие может протекать либо по механизму Sjvl (мономолекулярное нуклеофильное замещение), либо по механизму 8 2 (бимолекулярное нуклеофильное замещение). По механизму 5дг1 предпочтительнее реагируют аллил- и бензилга-логениды, так как они могут образовывать карбкатионы, стабилизованные сопряжением  [c.63]

    При рассмотрении реакций нуклеофильного замещения в алифатическом ряду (см. гл. 2) было установлено, что в зависимо-мости от строения реагирующего вещества и условий проведения такие реакции могут протекать по одному из двух или одновременно по двум механизмам (5 2 и 5 1). Согласно механизму N2, реакция проте <ает как одностадийный непрерывный процесс через образование переходного состояния, в котором отрыв уходящей группы и образование новой связи с заместителем происходят синхронно. Согласно механизму 5лт1, реакция протекает в две стадии через промежуточное образование карбокатиона (лимитируюш,ее весь процесс замещения) и последующее быстрое взаимодействие его с нуклеофильным реагентом. [c.314]

    В зависимости от типа и условий проведения реакции ковалентная связь С—N (углерод бензольного кольца и азот диазогруппы) может претерпевать гетеролитический или гомолитический разрыв. В первом случае электронная пара переходит к атому азота такие реакции можно рассматривать как реакции нуклеофильного замещения диазогруппы. Гетеролитический разрыв связи С—N происходит самопроизвольно при нагревании соли диазония. При этом образуется чрезвычайно неустойчивый реакционноспособный фенил-катион, в котором в отличие от бензил-катиона отсутствует возможность рассредоточения положительного заряда. Реакции такого типа протекают по двух-стадипному механизму SnI. [c.454]

    На стадии 2 электрофилом является протон. Почти во всех реакциях, рассматриваемых в данной главе, электрофильная атака происходит либо атомом водорода, либо атомом углерода. Отметим, что стадия 1 точно соответствует стадии 1 тетраэдрического механизма нуклеофильного замещения у карбонильного атома углерода (т. 2, разд. 10.9), поэтому можно ожидать, что замещение будет конкурировать с присоединением. Однако такое встречается редко. Если А и В — это Н, К или Аг, то субстрат представляет собой альдегид или кетон, а они почти никогда не вступают в реакции замещения, так как Н.КиАг — очень плохие уходящие группы. В случае кислот и их производных (Б = ОН, ОК, ЫНг и т. д.) присоединение происходит редко, так как перечисленные группы представляют собой хорошие уходящие группы. Таким образом, в зависимости от природы [c.322]

    Длина связи С—С1 в хлорбензоле и винилхлориде 0,169 нм, а в мetилxлd-риде 0,177 нм. Объясните причины различия в длинах связи этих соединений. Как в зависимости от механизма реакции сказываются эти различия при нуклеофильном замещении хлора  [c.154]

    Восстановление других классов органических соединений комплексными гидридами металлов может происходить иным путем. Так, восстановление алкилгалогенидов, эфиров сульфокислот и эпоксидов протекает как нуклеофильное замещение Sn2 типа, в процессе которого перенос гидрид-иона осуществляется атакой аниона AIH4 . Как и следовало ожидать, при восстановлении эпоксидов происходит обращение конфигурации атома углерода, атакуемого алюмогидридом лития, а в случае несимметричного эпоксида связь углерод-кислород разрывается со стороны наименее замещенной связи в соответствии со значимостью стерических препятствий в S] 2 реакциях. Восстановление винил-, циклопропил- и арилгалогенидов может проходить другим путем по карбанионно-му, четырехцентровому или радикальному механизму в зависимости от природы восстановителя и условий реакции. [c.125]

    Tot факт, что скорость гидролиза пероксикеталей растет с увеличением объема заместителей R, и Rj, позволяет полностью исключить возможность протекания реакции по механизму бимолекулярного нуклеофильного замещения, поскольку стерические затруднения — преграда нуклеофильной атаке. Подобная зависимость может быть объяснена снятием в ходе образования алкилпероксикарбонового иона В-напряжения, обусловленного стерическим взаимодействием заместителей у цен аль-нОго атома углерода пероксикеталя. [c.318]

    Кислотное расщепление простых эфиров следует рассматривать как типичный случаи реакции нуклеофильного замещения у насыщенного атома углерода. В зависимости от нр1фоды алкильных групп, связанных с кислородом, реализуется Si.il-или 5 лг1-механизм. Если эфир содержит первичные или вторичные алкильные груииы, реализуется 5 аг2-механизм, в котором бромид- илн йодид-ион атакует нротонированную форму эфира но менее замещенному атому углерода  [c.923]

    Сложные реакции. Стехиометрич. ур-ние, как правило, не отражает истинного М. р. Так, газофазная термически активируемая неразветвленная цепная р-ция Hj -Ь Bfj - 2НВг состоит из след, простых стадий термич. инициирование Вг -> 2Вг продолжения цепи Вг -Ь Н НВг + Н Н" + + Вг, -> НВг + Вг Н + НВг -> Hj -Ь Вг обрыв цепи Вг + + Вг - Вг . Скорость процесса описывается сложным ур-нием, включающим константы скорости всех простых стадий II концентрации в-в BI2, Hj и НВг. Другой пример-нуклеоф. замещение при атоме С, соответствующее стехиометрич. ур-нию RX + V -> RV -(- X", к-рое в зависимости от природы реагентов п р-рителя может идти по двум разл. механизмам S ,2 и S yl (см. Нуклеофильные реакции). [c.74]

    Образование простого эфира при дегидратации служит примером реакции нуклеофильного замещения, в которой протонированный спирт выступает в качестве субстрата, а вторая молекула спирта — в роли нуклеофила. Реакция может протекать по механизму 8м1 или 814,2 в зависимости от того, потеряет ли протонированный спирт молекулу воды раньше или одновременно с атакой второй молекулой спирта. Вторичные и третичные спирты, вероятно, реагируют по З Ьмеханизму [c.535]

    Реакция триметиламина с п-нитрофенилацетатом, ведущая к диссоциации нитрофенола, протекает, как и в случае имидазола, по механизму нуклеофильного катализа. Эту гипотезу подтверждает отсутствие кинетического изотопного эффекта растворителя в оксиде дейтерия. В качестве внутримолекулярного аналога этого процесса была выбрана реакция гидролиза пара-замещенных фенил-4-(Ы,Ы-димегиламино)бутиратов и валера-тов. Для этой реакции прямых доказательств промежуточного образования ионов ацилтриалкиламмония получено не было. Однако ряд факторов позволяет считать, что и эта реакция включает нуклеофильное содействие со стороны внутреннего амина. Среди них следует отметить 1) идентичность наклонов на гамметовских зависимостях (р = -Ь2,2—2,5) для меж- и внутримолекулярных процессов 2) идентичность энтальпий активации для меж- и внутримолекулярных процессов 3) более высокое значение члена (порядка 4—5 ккал/моль) для внутримолекулярного процесса по сравнению с межмолекулярным. Еще одним доводом в пользу нуклеофильного механизма гидро- [c.266]

    Механизм и стереохимическая сторона реакции. Раскрытие кольца окиси в общем представляет собой реакцию нуклеофильного замещения при углероде [51], причем группой, которая замещается, является атом кислорода цикла. Замещение различается в зависимости от типа реакционной формы окиси. Это может быть собственно окись XVIII или это может быть оксониевое производное XXI. [c.23]

    Имеющиеся в литературе сведения по кинетике некоторых реакций нуклеофильного замещения в бензильном положении весьма противоречивы и не дают убедительных доказательств для однозначного выбора механизма превращения Вероятно это обусловлено тем, что во всех работах определение порядка реакции, который, по существу, являлся основным аргументом в по1ь-зу того или иного механизма, проводилось только однократным изменением начальной концентрации каждого из компонентов В зависимости от того, какая из констант оставалась неизменной, производился выбор кинетического уравнения, описывающего процесс Между тем известно, что при глубине превращения до 50% реакция может приближенно описываться уравнениями как первого, так и второго порядка [29], а константа скорости второго порядка во многих случаях зависит от начальной концентрации реагентов [30] Видимо, недостаточность кинетических данных и оказалась причиной существующих разноречий относительно механизма нуклеофильного замещения у Са-атома п-оксибензи-ловых спиртов, содержащих свободный фенольный гидроксич [c.138]

    Для 3-галоген-5-К-1,2,4-трпазинов было изучено аминиро-вание амидом калия в жидком аммиаке [56, 84]. В зависимости от природы галогена аминирование идет с получением различных продуктов. Более того, механизм процесса существенно различен. Для 3-фтортриазинов протекает обычное нуклеофильное замещение с получением З-амино-5-К-1,2,4-триазина. В иных случаях образуется сложная смесь продуктов аминирования, дегалогенирования и перегруппировки (механизм размыка- [c.41]

    В зависимости от и и и.п и относительных концентраций свободных ионов и ионных пар определяющую роль в процессе может играть либо один, либо другой тип ионных частиц [от акц > (1—а)ка.п до а и<С(1—а) ип]. Может быть и так, что вклады ионов и ионных пар сопоставимы. Кинетически эти варианты характеризуются различными порядками по ионнопостроенпым реагентам (от 0,5 до 1), что не мешает, однако, используя уравнение (8) и его модификации, определять абсолютные значения и й ,п. На основании этих данных можно сделать совершенно однозначные выводы относительно влияния противоиона на реакционную способность и соотнести также тип реагирующей частицы с образующимся продуктом. Эта информация имеет исключительно важное значение для установления механизмов реакций многих органических и металлорганических соединений, поэтохму основное внимание в нашем обзоре будет уделено химически.м следствиям ионной ассоциации. Ее роль будет продемонстрирована на примере реакций нуклеофильного и электрофильного замещения и присоединения, реакций переноса протона и электрона, процессов элиминирования и некоторых других реакций. [c.252]

    Алифатические галогениды в 5лг реакциях проявляют в зависимости от природы галогенида однозначный порядок реакционной способности Р -С С1 < Вг < I. При нуклеофильном замещении в ароматическом ядре в реакциях элиминирование — присоединение ряд реакционной способности галогенобензолов проявляет удивительную зависимость от природы основного реагента, вызывающего элиминирование ННа1. Бергстром с сотрудниками [5], изучая конкурирующее аминирование амидом калия в жидком аммиаке, нашел следующую последовательность реакционной способности Вг > I > С1 фторбензол оказался инертным. Наоборот, дегидробензол образуется с наибольшей скоростью при взаимодействии литийорганических соединений с фтор-бензолом. Это различие, по-видимому, указывает на различные механизмы образования дегидробензола. Тем не менее, как показано ниже, все факты могут быть объяснены простым изменением параметров в пределах обычного механизма. По-видимому, целесообразно начать рбсуждение с примеров четкого образования дегидробензола при действии литийорганических соединений, которое не осложняется явлениями обратимости. [c.73]

    В настоящее время представляется вероятным, что классические S i и Sj 2 механизмы Хьюза и Ингольда являются крайними случаями. Уинстейн я Свен с сотрудниками [12, 50—52] постулировали, что должны существовать промежуточные механизмы между Sjfi и 5jy2, в которых электрофильная сольватация отщепляющейся группы и нуклеофильное взаимодействие растворителя с замещенным углеродным атомом способствуют протеканию реакции. Стрейтвизер [53] анализировал доказательства существования промежуточных механизмов нуклеофильного замещения. Один из веских аргументов в пользу существования промежуточных механизмов базируется на влиянии ионизирующей способности растворителя на скорость реакций. Если в сольволитической реакции конкурируют и Sj 2 механизмы, то график зависимости логарифма скорости сольволиза от ионизирующей способности растворителя имел бы определенный изгиб или даже разрыв в области перехода от одного механизма к другому [50, 51]. Действительно, получены очень четкие прямые линии с промежуточным наклоном между тем, который получен для S l и Sj 2 реакций [54]. Это доказывает, что реакции проходят по одному механизму, промежуточному между  [c.419]

    Так, реакция алкоголятов с алкилгалогенидами или алкилсульфатами является важным общим методом получения простых эфиров, известным под названием синтеза Вильямсона. Осложнения могут возникать вследствие того, что увеличение нуклеофильности, связанное с превращением спирта в алкоголят-ион, всегда сопровождается еще большим увеличением способности к отщеплению по механизму типа Е2. Взаимодействие алкилгалогенида с алкоголят-ионом может, таким образом, привести преимущественно как к реакции замещения, так и к реакции отщепления в зависимости от температуры, структуры галогенида и алкоголят-иона (стр. 276, 279). Например, еслж хотят получить изопропилметиловый эфир, то наилучшие выходы могут быть достигнуты при использовании иодистого метила и изопропилат-иона, а не изопропилиодида и метилат-иона, так как при последнем сочетании реагентов доминирует отщепление Е2-типа. [c.350]


Смотреть страницы где упоминается термин Замещение нуклеофильное зависимость механизма: [c.281]    [c.67]    [c.148]    [c.269]    [c.80]    [c.7]    [c.143]    [c.295]    [c.496]    [c.186]    [c.168]    [c.100]    [c.238]    [c.426]   
Теоретические основы органической химии (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение механизм

Замещение нуклеофильное

Механизмы нуклеофильного

Нуклеофильное замещение механизм SnI



© 2025 chem21.info Реклама на сайте