Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хинолин применение

    Смесь из 20 г 3-нитрокоричной кислоты [284], 75 мл хинолина и 3 г медного порошка нагревают при 185—190° так, чтобы происходило непрерывное выделение углекислоты. После полуторачасового нагревания смесь подкисляют 3 н. соляной кислотой, которой берут 50%-ный избыток, и перегоняют с водяным паром. Дистиллят несколько раз экстрагируют хлороформом и соединенные экстракты сушат безводным сернокислым натрием. После отгонки хлороформа остаток фракционируют из колбы Кляйзена и получают 9,3 г 3-нитростирола с т. кип. 90—96° (3,5 мм)-, п 1,5836 выход равен 60% от теорет. Повторным фракционированием с применением колонки (высота 20 см, диаметр 19 мм) с насадкой из колец Фенске и с регулируемым отбором получают чистый 3-нитростирол. При проведении реакции с большими количествами, чем указано, требуется больше времени для синтеза, а выходы получаются ниже [149]. [c.115]


    Чтобы ответить на вопрос о строении первичных структур, необходимо проведение комплексных исследований с применением метода ЭПР, радиоактивных индикаторов и ступенчатой экстракции растворителями. Метод ступенчатой экстракции применялся ранее для изучения различных пеков [43]. Пек растворяли бензолом. Далее растворимую часть разделяли пиридином и хинолином последовательно, а нерастворимую часть смесью л-гексана и бензола в различных соотношениях. Всего получали 9 фракций. Первые семь фракций имели возрастающий молекулярный вес, последние две, очевидно, были составлены карбенами и карбоидами. К сожалению, в экспериментах не использовали метод ЭПР. [c.42]

    Для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов 02-0 и некоторых неуглеводородных компонентов, применяется [2] метод газовой хроматограф в газожидкостном варианте с использованием полярных и неполярных жидких фаз и в адсорбционном варианте с применением природных синтетических и модифицированных адсорбентов [З]. Для исследования пента-амиленовой фракции бензина каталитического крекинга, а также жирного газа этого же бензина термокаталитического разложения в качестве наполнителя колонки применяли фракцию волокнистого углерода, полученного по методике [4] зернением 0,25-0,5 ш, обработанную хинолином в различных процентных соотношениях. Лучшее разделение было получено при загрузке колонки адсорбентом, содержащим 15-20 хинолина. [c.158]

    Границы применения положительный результат указывает на присутствие фенолов или енолов. Большинство оксимов и гидроксамовых кислот дают красное окрашивание, оксипроизводные хинолина и пиридина — красно-коричневое, синее или зеленое. Взаимодействие с оксипроизводными пятичленных ароматических гетероциклов также приводит к окрашиванию в красноватые оттенки. При реакции с аминокислотами и ацетатами — получается соответ-ственно коричневое и красное окрашивание, с дифениламином — зеленое. Многие фенолы не дают этой цветной реакции. [c.302]

    Галогенирование хинолина или изохинолина можно проводить по методу Дербишира — Уотерса [65], применяя концентрированную серную кислоту, сульфат серебра и галоген, по методу Пирсона с применением избытка хлористого алюминия и галогена или по методу Эйча, представляющему собой бромирование в пиридине [661. Этим последним методом из хинолина получают 3-бромхинолин с выходом 82%. Оба первых метода дают одинаковые выход и на-правление присоединения по типу [c.456]


    Из ЭТИХ данных видно, что из технического метилнафталина удаление природных азотистых соединений достигается труднее, чем из вакуумного газойля, в то время, как удаление различных индивидуальных азотистых соединений, добавляемых к белому маслу, осуществляется с исключительной легкостью. Под белым маслом подразумевается минеральное масло, подвергнутое весьма глубокой очистке для фармацевтического применения. Хотя легкость удаления соединений тиш карбазола не исследовалась, из литературы [3] известно, что его поведение во многом аналогично поведению хинолина. Таким образом, очевидно, что удаление.азотистых соединений в значительной степени зависит от присутствия других материалов, которые могут конкурировать за активные центры на поверхности катализатора. Можно с достаточным основанием предположить, что полициклические ароматические углеводороды обладают значительно большей основностью, чем насыщенные (парафиновые и нафтеновые) углеводороды и по- [c.95]

    Например, из анализа двух методов синтеза никотиновой кислоты видно, что при синтезе ее из (3-пиколина с окислением его перманганатом калия затраты на сырье в 3 раза выше, чем при синтезе из хинолина или из 2-метил-5-этилпиридина с применением в качестве окислителя азотной кислоты. Использование в качестве растворителя хлороформа вместо дихлорэтана в производстве тиамина или применение в качестве окислителя перманганата калия вместо гипохлорита натрия в производстве аскорбиновой кислоты резко повышают затраты на сырье. [c.7]

    Другие окислители также изучались в жидкофазном процессе. Сюда относятся нитрозилхлорид [103], гипохлорит натрия [104], хлор в водном растворе [105, 106], перекись водорода [107 ] и др. Однако указанные окислители практического применения не нашли. Что касается окисления МЭП озоном, а также электрохимическим методом [55], то такие исследования широко ведутся преимущественно с хинолином. По этим вопросам опубликован ряд работ (стр. 197). Начаты также исследования и в области МЭП. [c.194]

    Для анализа продуктов парофазного окислительного аммонолиза хинолина разработан метод их газо-жидкостной хроматографии [131—133]. Некоторый интерес представляет каталитическое парофазное окисление хинолина кислородом воздуха. Имеются указания [134] на достижение выхода никотиновой кислоты, равного 75%, при окислении хинолина кислородом воздуха на смешанном катализаторе [5п(У0д)4 ЗпОг = 1 3] и при температуре 400° С. Другие исследователи [135] отмечают, что при применении этого катализатора вообще не удавалось получить никотиновую кислоту. Е. Жданович [130] указывает, что при окислении хинолина кислородом воздуха при температуре 420° С катализатор пятиокись ванадия непригоден ((сгорание хинолина). При смешанных катализаторах (УгО ЗпОг = 1 1,5) выход никотиновой кислоты достигал 20%. Однако при подаче воды в систему (0,42 кг на 1 кг катализатора) выход возрастал до 70—72%. Вторым важным фактором является концентрация кислорода. При увеличении подачи воздуха 1С 4 до 18 молей кислорода на 1 моль хинолина выход никотиновой кислоты возрастал с 26,8 до 72,4 %. Необходимо отметить, что парафазный каталитический процесс окисления хинолина кислородом воздуха без аммонолиза или с его применением имеет в будущем перспективу промышленного использования. Для этого метода не требуются агрессивные среды. Менее жесткие антикоррозийные требования предъявляются к аппаратуре, отсутствует угроза взрывов реакционной массы, процесс осуществляется непре- [c.196]

    Сульфонаты болое высокомолекулярных алкилфенолов также находят широкое применение в виде солей бария и цинка сульфонаты алкил-замещенпых пиридина и хинолинов являются полезными добавками к моторным маслам, однако они еще не нашли широкого применения. [c.511]

    Нитробензол используется главным образом для получения анилина— промежуточного продукта в производстве красителей. Некоторое применение он находит такя е как растворитель. Вследствие дешевизны нитробензол применяется в качестве окислителя в производстве фуксина и хинолина. Анилин — стойкий побочный продукт, получаюш ийся в этой реакции, еще больше способстпуот дальнейшему удешевлению этого синтеза. Значительно меньшее количество нитробензола потребляется для отделки обуви и полировки металлов. Применение нитробензола при производстве ряда продуктои запрещено законом из-за его токсичности. [c.550]

    Участие азотистых соединений в реакциях окисления и уплотнения подтверждается обязательным присутствием азота во всех смолах, осадках и отложениях, образующихся при применении бензинов. Азотистые соединения бензинов в основном представлены соединениями трехвалентного азота (неокислен-ными). Неокисленные азотистые соединения условно делят на две группы — основного и нейтрального характера [18]. К азотистым основаниям относятся неароматические и ароматические соединения, например производные хинолина, изохино-лина, пиридина и акридина, а также амины. Нейтральные азотистые соединения могут включать производные пиролла, индола, карбазола, а также порфирины [19]. [c.77]


    ЭЭДХ, или реактив Белло (2-этоксиэтоксикарбонил-1,2-дигидрохинон), — также конденсирующий агент, нашедший применение в пептидном синтезе [7]. ЭЭДХ легко синтезировать из хинолина и хлоругольного эфира  [c.86]

    Нитробензол (мирба новое масло) представляет собой светло-желтую сильно преломляющую свет жидкость с запахом, напоминающим запах горького миндаля. Соединение это ядовито. В больших количествах нитробензол используется в производстве анилина (стр. 568) кроме того, он находит ограниченное применение в парфюмерной промышленности (в качестве отдушки для мыл), а также в качестве окислителя (см. получение фуксина и хинолина). [c.529]

    Х лорстирол. Декарбоксилирование 4-хлоркоричной кислоты проводят так же, как и декарбоксилирование 2-фторкоричной кислоты (см. стр. 18), выход составляет 50—52% от теорет. [11, или так же, как декарбоксилируют 2-хлоркоричную кислоту [13] (см. стр. 22). Выход 4-хлорстирола в случае применения хинолина и сернокислой меди как катализатора составляет 51% от теорет. При замене хинолина лепидином выход неочищенного 4-хлорстирола равен 58%, а при применении фракции хино-линовых оснований с т. кип. 260—270" выход 4-хлорстирола составляет 61%. Замена сернокислой меди уксуснокислой (основание—хинолин) повышает выход неочищенного 4-хлорстирола до 71%, а применение медного порошка в качестве катализатора дает наибольший выход неочищенного 4-хлорстирола, равный 83% [13]. [c.26]

    Между содержанием азота, серы и смолистых веществ в нефтях имеется несомненная связь. Богаты азотистыми и сернистыми соединениями тяжелые смолистые нефти. Сильно, метанизиро-ванные, легкие, малосмолистые нефти содержат крайне мало азота. Азотистые соединения нефти делятся на два класса ароматические, содержащие ядра пиридина или хинолина, и гидроароматическпе или насыщенные, не содержащие в ядре двойных связей. Область возможного применения азотистых соединений нефти еще не установлена. Имеются отдельные предложения использовать их в качестве стабилизаторов крекинг-бензинов 1ми в качестве присадок, улучшающих свойства смазочных масел. [c.36]

    Декарбоксилирование.Способом получения углеводородов деградацией является метод декарбоксилирования (отщепление двуокиси углерода) карбоновых кислот при нагревании их натриевых солей с известью. Как указано выше, свободный от тиофена бензол был впервые получен именно этим методом (см. 17.1). Удобным способом декарбоксилирования является нагревание вещества в растворе хинолина в присутствии порошкообразной меди как катализатора (Дж. Джонсон, 1930). Этот метод на.ходит применение в синтезе фурана, гетероциклического кислородсодержащего соединения, в некоторой степени обладающего аро1 атическими свойствами. Так, фурфурол, получаемый в технике переработкой кукурузных кочерыжек (см. том I 12.15), превращают по реакции Канниццаро в фурфуриловый спирт и фуранкарбоновую-2 кислоту, которую затем декарбоксилируют  [c.186]

    Различные соединения имеют отличающиеся друг от друга удельные сдвиги (рис. 56). Анализ спектров 41 ЯМР с применением ЛСР невозможен в случае готероатомов с неподеленной парой, сопряженной с непредельными фрагментами молекул. К такому типу соединений относятся пирролы, индолы и карбазолы. Однако амины, пиридины, хинолины и их производные имеют весьма большие удельные сдвиги в характеристических областях и принципиально могут быть пдентифицированы. Полу- [c.166]

    Важнейшая модификация этой реакции—реакция Дёбнера—заключается в замене аммиака пиридином, который берут в некотором избытке, чтобы он служил одновременно и растворителем, и конденсирующим средством. Смесь нагревают 3 часа на водяной бане, затем охлаждают и подкисляют. Лучшие результаты получаются в том случае, если в начале реакции конденсации, когда выделение углекислоты идет особенно энергично, смесь нагревают на водяной бане, а затем переносят на песчаную баню и нагревают при ПО—120°. Кроме аммиака и пиридина, в качестве конденсирующих средств при синтезе Кневенагеля—Дёбнера применяют пиперидин, а также изохинолин, хинолин и другие третичные основания. По-видимому, наиболее эффективным конденсирующим средством является пиперидин, так как при введении в реакционную смесь даже малого его количества выход значительно повышается. В случае применения для синтеза Кневенагеля некоторых аминов происходит перемещение двойной связи в образующейся непредельной кислоте, в результате чего BMe TQ а,Р-ненасыщенной кислоты образуется р,у-ненасыщенная кис-лота . Такое действие оказывают в особенности диметиланилин и три-этаноламин. [c.595]

    Превращение ароматических галогенидов в нитрилы лучше проводить с цианидом меди. Эгот реагент применяют с пиридином, хинолином, диметилформамидом [19] и N-метилпирролидоном [20] в качестве растворителей или без растворителя при 250—260 " С (реакция Розенмунда Брауна). Индукционный период реакции по последнему методу можно сократить добавлением небольшого количества нитрила каталитическое действие проявляют и следы сульфата меди [21]. Из этих методов наиболее предпочтительно использование в качестве растворителей диметилформамида и N-метилпирро-лидона. Применение первого изучено довольно подробно на примере ряда арилхлоридов или арилбромидов выходы составляют 75— 100%. Методика разложения комплекса нитрила с галогенидом меди(1) была в некоторой степени усовершенствована путем применения хлорида железа(П1) или этилендиамина. N-Метилпирролидон [201, хороший растворитель для цианида меди(1), позволяет проводить реакцию за короткое время. Для ограниченного числа галогенидов, главным образом бромидов, выходы колеблются от 82 до 92%. [c.433]

    Помимо амидов ароматических кислот для аналогичных циклизаций используют разнообразные гетероциклические о-заме-щенные карбонамиды. Описано применение производных имидазола [148—151], изоксазола [28, 152], 1, 2, 3-триазола [153], хинолина [154], пиримидина [155], пиразина [ 156- 159]. Один из атомов азота, участвующих в циклизации, может входить в состав циклической системы [160—162]. [c.154]

    Удаление азота в присутствии крекинг-катализатора. Для выяснения роли, которую играют реакции крекинга в удалении азота из хинолина, было проведено несколько опытов с применением промышленного катализатора крекинга вместо обычного алюмокобальтмолибденового катализатора. Полученные результаты сравниваются в табл. 3 с данными, полученными при тех же условиях на обычных катализаторах. То обстоятельство, что в присутствии крекинг-катализатора даже при 450°С достигается лишь незначительная полнога удаления азота, убедительно доказывает преобладающую роль реакций гидрирования в удалении азота. [c.130]

    Полнота удаления азота из хинолина, а также глубина гидрирования ароматического кольца определяются главным образом стадией разложения анилинов. Связь углеоод—азот в анилинах прочнее, чем в алифатических аминах. Это обусловлено присутствием свободной пары электронов при атоме азота, что придает связи углерод—азот в анилинах ненасыщенный характер. Если эта свободная пара электронов находится при атоме азота, то связь углерод—азот должна разрываться легче. Связывание этой электронной пары может быть достигнуто применением катализатора, обладающего более сильным кислотным характером, чем алюмокобальтмолибденовый. Помимо кислотности, оптимальный катализатор должен обладать также высокой гидрирующей активностью. Следует подчеркнуть, что анилин является удобным исходным веществом для исследований на моделирующих соединениях лри поисках такого катализатора. [c.136]

    Аммигк удаляли бар(5отажем азота через продукты реакции. В опытах на неразбавленном хинолине это вызывало весьма незначительные потери испарения, но в опытах с применением растворителя необходимо ввести поправку на эти потери. [c.137]

    Вессели-(1941) и другие авторы синтезировали гликозидные производные диэтилстильбэстрола. Благодаря гликозидной связи наблюдалась повышенная активность соединений (при внутреннем применении). Эти производные получены конденсацией ацетилглюкозы с диэтилстильбэстролом в присутствии толуолсульфокислоты или конденсацией тетраацетобром-глюкозы в присутствии окиси серебра и хинолина, с последующим гидролизом метилатом натрия. [c.603]

    Описаны многочисленные синтезы прогестерона из прегненолона с применением различных окислителей (перманганата калия, перекиси водорода, хромового ангидрида) дегидрирующих веществ — металлических акцепторов водорода Си, А , Аи, Р1, Рс1, N1, 2п), а также кетонов, альдегидов, ненасыщенных соединений, например, коричной, фумаровой кислот, хинолина. [c.606]

    Химическая структура молекулы пиридокснна открывает перспективу многих путей синтеза ее. Казалось, наиболее эффективным должен быть путь синтеза через производное пиридина, как, например, 2-метил-5-этил-пиридин или Р-пиколин. Однако введение заместителей в пиридиновый цикл (кроме Р-положения) является весьма сложным и малодоступным. Следовательно, остаются два варианта возможного осуществления синтеза пиридоксина 1) применение таких производных пиридина или хинолина, которые уже содержали бы заместители в требуемых положениях (2 3 4 и З ), либо 2) синтез из алифатических фрагментов пиридинового цикла с функциональными группами в соответствующих положениях. К первому варианту относится синтез пиридоксина через производные хинолина или изохинолина, а ко второму варианту — синтез пиридоксина а) через производные динитрила цинхомероновой кислоты и б) через производные нитрила никотиновой кислоты. [c.155]

    Были также исследованы [57] методы хлорирования пиридона хлорокисью фосфора в присутствии пиридина (выход 65%), хинолина (выход 56,1%), диэтиламина (выход 52,3%). При применении тионилхлорида в среде хлористого метилена и катализатора диметилформамида выход 92%. Таким образом, на стадии хлорирования пиридона пятихлористый фосфор может быть заменен хлорокисью фосфора или тианилхлоридом [54]. [c.165]

    Никотиновая кислота. Для синтеза витамина РР (р-пиридинкарбоновой кислоты) могут быть использованы как пиридин, так и его производные (замещенные в р-положении). Последние могут быть получены либо из природного сырья, как, например, никотин-основание из отходов табачного листа, анабазин — р-(а-пиперидил)-пиридин из растения Anabasis aphylla, Р-пиколин и хинолин из каменноугольной смолы, либо синтетическим путем, как, например, 2-метил-5-этилпиридин. Рассмотрим основные источники сырья и методы синтеза никотиновой кислоты, имеющие промышленное применение, и выберем те из них, которые представляются наиболее эффективными. [c.187]

    Диозонид и диальдегид хинолина не выделены и их существование в свободном виде неизвестно. Юркина, Русьянова и др. изучали механизм озонолиза хинолина в различных растворителях (хлороформ, метанол, уксусная кислота безводная и с добавлением воды) [137—140]. Ими было показано, что наилучшим растворителем является 90%-ная уксусная кислота что гидролиз диозонида в воде происходит очень быстро в растворе обнаружены пиридин-2,3-диальдегид, глиоксаль, щавелевая кислота и смолистые продукты. Превращение диальдегида в никотиновую кислоту удалось авторам достичь действием на него атомарным кислородом, получаемым при термическом разложении озона. Для этого раствор диозонида в 90%-ной уксусной кислоте нагревали до 106° С и пропускали через него озон в присутствии катализатора — ацетата кобальта. Таким образом, авторы разработали одностадийный процесс превращения хинолина в никотиновую кислоту с применением одного окислителя озона. Процесс проводится в два периода, отличающиеся только температурными условиями. Оптимальными режимами являются для первого периода— температура 20—25° С, концентрация уксусной кислоты — 90%, хинолина 100г/л, расход озона 3 моля на 1 моль хинолина для второго периода — содержание воды 10%, количество ацетата кобальта 0,5—1,0% к массе хинолина, температура 106° С, расход озона 1 моль на 1 моль хинолина. Выход медицинской никотиновой кислоты составляет 80%. [c.197]

    Из приведенных данных следует, что озонолиз является весьма перспективным методом окисления хинолина. Однако для практического применения этого метода необходимы экспериментальные данные о степени взры-ваемости промежуточных продуктов озонолиза хинолина, так как известно, что органические озониды обладают взрывчатыми свойствами. Этот вопрос можно будет решить положительно лишь после длительной эксплуатации по-лузаводской установки с применением предупредительных устройств для безопасной работы. [c.198]

    По электрохимическому окислению хинолина имеются лишь отдельные работы. В среде 50—70%-ной серной кислоты хинолин окисляется на аноде из платины или окиси свинца при температуре 70° С с применением катализаторов V2O5, SeOa и др. Выход хинолиновой кислоты достигал 77% [36]. Другие исследователи [52, 143 ] на свинцовом аноде при температуре 30—40°С получили выход хинолиновой кислоты, равный 60—62%. [c.198]

    Указанные окислители и методы их применения не нашли практического использования. Интерес представляет метод окисления хинолина кислородом воздуха в водно-щелочной среде под давлением 80 кгс см с выходом в 54% [143а]. [c.198]


Смотреть страницы где упоминается термин Хинолин применение: [c.237]    [c.237]    [c.546]    [c.546]    [c.130]    [c.26]    [c.192]    [c.86]    [c.102]    [c.702]    [c.377]    [c.569]    [c.46]    [c.140]    [c.361]    [c.111]    [c.157]    [c.199]   
Основы органической химии 2 Издание 2 (1978) -- [ c.378 ]

Основы органической химии Ч 2 (1968) -- [ c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Хинолин

Хинолинии



© 2025 chem21.info Реклама на сайте