Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензины азотистые соединения

    Азотсодержащие соединения попадают в бензин из нефтей при переработке. Содержание азота в нефтях составляет 0,3—0,5%, что соответствует 2—4% азотистых соединений. А в высокосмолистых нефтях может содержаться до 10% азотистых. соединений. Однако подавляющая часть азотистых соединений концентрируется в тяжелых фракциях нефти и остаточных продуктах. [c.25]


    Азотистые соединения в отличие от соединений серы обладают значительной термической устойчивостью, не разлагаются во вторичных процессах, их содержание в бензинах термического и каталитического крекинга так же мало, как и в бензинах прямой перегонки нефти. Несмотря на малое содержание, азотистые соединения могут оказывать существенное влияние на свойства бензинов, в первую очередь на его окисление при хранении и использовании на двигателях. Примером этому может [c.76]

    Азотистые соединения в бензиновых фракциях представлены пирролами и пиридинами, а в высококипящих фракциях — хинолинами. Возможно присутствие иных соединений, попадающих в бензиновые фракции на стадии пер ичной переработки нефти. Содержание азотистых соединений в прямогонных бензиновых фракциях невелико в бензинах вторичного происхождения содержание азотистых соединений значительно выше (в 5—10 раз). При гидроочистке азотистые соединения превращаются примерно по следующей схеме  [c.29]

    Соединения азота, переходящие в условиях риформинга в аммиак, подавляют кислотные функции катализатора, что приводит к снижению скоростей реакций изомеризации, гидрокрекинга и дегидроциклизации парафинов, дегидроизомеризации нафтенов ряда циклопентана. Конечный результат отравления катализатора соединениями азота — снижение выхода и концентрации ароматических углеводородов, снижение октанового числа бензина риформинга. Отравление азотистыми соединениями обратимо. [c.122]

    Азотистые основания используются как дезинфицирующие средства, антисептики, ингибиторы коррозии, как добавки к смазочным маслам и битумам, антиокислители и т. д. Однако наряду с положительным влиянием азотистых соединений они обладают и нежелательными свойствами — снижают активность катализаторов в процессах деструктивной переработки нефти, вызывают осмоление и потемнение нефтепродуктов. Высокая концентрация азотистых соединений в бензинах (1- Ю вес. %) приводит к усиленному коксо-и газообразованию при их каталитическом риформинге. Даже небольшое количество азотистых соединений в бензине способствует усилению лакообразования в поршневой группе двигателя и отложению смол в карбюраторе. Наиболее полно удаляются азотистые соединения из нефтяных фракций 25%-ным раствором серной кислоты. [c.30]


    Общее содержание и групповой состав сернистых соединений в прямогонных бензинах колеблется в широких пределах и зависит от происхождения нефти и пределов кипения сырьевой фракции. В табл. 5.21 приведены для примера данные по содержанию сернистых соединений в бензиновых фракциях ряда пермских нефтей. В бензинах вторичного происхождения содержание сернистых и азотистых соединений, как правило, значительно выше, чем в прямогонных, и при их использовании в качестве сырья риформинга необходима двухступенчатая очистка. [c.157]

    С развитием переработки нефти и получением из нее кроме керосина смазочных масел, затем бензина и других нефтепродуктов при изучении как состава и свойств самих нефтей, так и получаемых нефтепродуктов стали решать новые задачи. Были разработаны и стандартизованы специальная методика и приборы для более детальной разгонки нефти и нефтепродуктов — бензина, керосинов и др. (разгонка по Энглеру). Стали испытывать свойства нефтепродуктов — температуру застывания и вспышки, вязкость, показатель преломления света и др. В нефтях и остатках после ее переработки определяли примесь серы и кислорода. Было установлено присутствие в нефтях, помимо углеводородов, некоторых сернистых, кислородных, а также азотистых соединений. [c.218]

    Значительно труднее осуществить гидроочистку бензинов вторичного происхождения, например процессов термического и термоконтактного крекинга, коксования и др. Эти продукты содержат много сернистых и азотистых соединений, а также непредельных углеводородов. Например, серы содержится до 1 вес. %, а йодное число может быть более 100 г Ь/ЮО г [46]. В эхом случае сырье, пригодное для каталитического риформинга на алюмоплатиновом катализаторе, можно получить при проведении гидроочистки в две ступени. Первую ступень осуществляют в тех же условиях, что и очистку прямогонных бензиновых фракций. На второй ступени гидроочистке подвергают гидрогенизат первой ступени. [c.79]

    Установлено, что некоторые типы углеводородов содержатся в этих бензинах в большом количестве, а остальных соединений немного. Тем не менее выпускаемые промышленностью бензины имеют очень сложный состав, так как приготовляются смешением фракций, полученных из различных нефтей и различными путями (прямой гонкой, крекингом). Кроме того, сырые бензины содержат в небольших количествах органические сернистые компоненты наряду со следами кислородных и азотистых соединений. Последние удаляются при очистке достаточно полно, но избавиться полностью от сернистых соединений обычно пе удается. [c.386]

    Содержание азотистых соединений в бензиновых фракциях, полученных термической переработкой твердых горючих ископаемых, значительно выше, чем в бензинах из нефти. Особенно много их в сланцевых бензинах. Например, во фракции 67—213° С, полученной из смолы колорадских сланцев, содержание общего азота достигает 1,21%, что составляет 10—12% азотистых соединений [68]. [c.25]

    Содержание сернистых и азотистых соединений в бензинах при расчетах обычно не учитывают. [c.83]

    При переработке утяжеленного сырья, свойственного современному каталитическому крекингу, катализатор может отравляться азотистыми и металлоорганическими соединениями. Отравление металлами выражается повышением коксоотложений на катализаторе и увеличением доли водорода в газах крекинга. Оба эти явления объясняются каталитическим действием металлов на реакции дегидрирования, протекающие на поверхности катализатора. Азотистые соединения значительно снижают выход бензина. Отмечена большая стабильность цеолитов к металлоорганическим и особенно к азотистым соединениям по сравнению с аморфными алюмосиликатами. [c.130]

    Общее давление и парциальное давление водорода. При гидроочистке бензиновых фракций, находящихся при температурах процесса в газовой фазе, термодинамические ограничения гидрирования сернистых и азотистых соединений и олефинов определяют глубину гидроочистки при парциальных давлениях водорода ниже 2,5—3 МПа (25—30 кгс/см ). При более высоких парциальных давлениях водорода термодинамические ограничения отсутствуют. Дальнейшее повышение общего давления при заданном соотношении водород сырье мало влияет на глубину очистки, так как поверхность катализатора насыщена водородом повышение давления в этом случае увеличивает время реакции. При постоянн01М общем давлении и повышении парциального давления водорода в результате увеличения отношения водород сырье глубина очистки понижается вследствие уменьшения парциального давления сырья. При общем давлении 4—5 МПа (40—50 кгс/см ) и парциальном давлении водорода 3,5—4 МПа (35—40 кгс/см ) достигается очень глубокая очистка бензинов прямой перегонки нефти. [c.270]


    При сернокислотной очистке некоторых нефтяных фракций получают ценные побочные продукты. Бензин и керосин обрабатывают серной кислотой для удаления сернистых и азотистых соединений. При этом происходит полимеризация, а также в некоторой степени сульфирование углеводородов. Образующийся в результате сернокислотной очистки кислый гудрон обычно подвергают переработке с целью выделения из него смеси углеводородов и серной кислоты. [c.398]

    Для гидроочистки бензинов вторичного происхождения требуются [251] более жесткие условия, чем для прямогонных. Это, видимо, объясняется наличием в бензина.ч вторичного происхождения основной доли серы в виде прочных органических соединений. Кроме того, бензины деструктивных процессов характеризуются повышенным содержанием азотистых соединений, для удаления которых требуется поддерживать более высокие температуры очистки [251]. [c.129]

    На рис. 75 представлена типичная схема НПЗ США, включающая в свой состав процессы каталитического крекинга и гидрокрекинга вакуумного дистиллята, а также коксования гудрона. Нефть подвергают обезвоживанию и обессоливанию, а затем ректификации, т. е. разделению на фракции бензиновую, средние дистилляты, вакуумный газойль и гудрон. Легкие бензиновые фракции направляют на изомеризацию. Тяжелые бензиновые фракции поступают на риформинг, где происходит превращение парафиновых и нафтеновых углеводородов в ароматические риформат в дальнейщем идет на смешение с другими бензиновыми фракциями для получения высокооктановых бензинов классов Регуляр и Премиум. Средние дистилляты проходят стадию ректификации, где разделяются на керосиновые и дизельные фракции, затем поступают на установки гидроочиетки для удаления сернистых и азотистых соединений. [c.336]

    Во всех перерабатываемых нефтях содержатся соединения, имеющие в углеводородной структуре азот. Эти соединения в основном (>90%) сосредоточены во фракциях нефти, выкипающих при температуре выше 450°С. В топливные дистилляты (бензин, керосин, дизельное топливо) переходит только 4—6% азотистых соединений. По мере облегчения фракций содержание в них азотистых соединений (в % на дистиллят) уменьшается [19]  [c.76]

    Содержание азоторганических соединений в ефтях СССР может достигать 0,6% (масс.). Как правило, оно увеличивается по мере роста молекулярной массы компонентов. Наибольшее количество этих соединений сосредоточено в тяжелых остаточных продуктах переработки нефти — до 80% (масс.). По некоторым дан- ым, преобладающими ейтральными азотистыми соединениями в нефтях являются циклические амиды ароматических кислот, которые отравляют многие катализаторы. Поэтому важиой задачей гидрогенизационных процессов является удаление азотсодержащих соединений из бензино-лигроиновых фракций (сырья для каталитического риформинга), средних дистиллятов и более тяжелого сырья для каталитического крекинга. В результате гидрогенизации азотсодержащих соединений образуются парафиновые или ароматические углеводороды с короткими алкильными цепями (С1—Сз) и аммиак. [c.213]

    Влияние азотистых соединений практически не исследовалось ввиду их крайне незначительного содержания в современных нефтяных бензинах — не более 0,02% (см. главу 3). [c.287]

    Для пол> чения максимального выхода бензина в большинстве случаев используют двухступенчатый процесс с удалением сернистых и азотистых соединений на первой ступени гидрокрекинга. Давление в реакторах обеих ступеней 10-15 МПа, температура 370-420°С, кратность циркуляции водорода 1000 м на 1 сырья. [c.76]

    Бензины содержат незначительное количество азотистых соединений (0,01-0,03%), практически не влияющих на эксплуатационные свойства топлива. Эти соединения представлены азотистыми основаниями (пиридины, хинолины, изохинолины, акридины, амины) и нейтральными вещества.ми (пирролы, индолы, карбазолы, порфирины). [c.15]

    Участие азотистых соединений в реакциях окисления и уплотнения подтверждается обязательным присутствием азота во всех смолах, осадках и отложениях, образующихся при применении бензинов. Азотистые соединения бензинов в основном представлены соединениями трехвалентного азота (неокислен-ными). Неокисленные азотистые соединения условно делят на две группы — основного и нейтрального характера [18]. К азотистым основаниям относятся неароматические и ароматические соединения, например производные хинолина, изохино-лина, пиридина и акридина, а также амины. Нейтральные азотистые соединения могут включать производные пиролла, индола, карбазола, а также порфирины [19]. [c.77]

    В бензинах азотистые соединения усиливают процессы лакот образования на поверхности поршневой группы двигателя внутреннего сгорания и приводят к смолообразованию в карбюраторе. [c.15]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    Азотистые соединения в бензинах представлены пирродами, пиридинами и в высококипящих бензиновых фракциях-— хиноли-нами. Возможно присутствие и иных соединений, попадающих в бензины из стадии первичной переработки нефти. Содержание азотистых соединений в прямогонных бензинах невелико, а во вторичных — в 5—10 раз выше, чем в прямогонных. [c.25]

    По групповому химическому составу для сырья каталитического крекинга наиболее благоприятны нафтеновые углеводороды и изопарафины, так как их крекинг идет с высокими скоростями и сопровождается большим выходом бензина. Это объясняется наличием третичного атома углерода, требующего более низкие затраты энергии на отрыв третичного гидрйдного иона. Наиболее нежелательными являются голоядерные полициклические ароматические соединения, блокирую1дие активные центры катализатора и вызывающаие усиленное коксообразование. Кроме того, в сырье присутствуют компоненты, вызывающие необратимое дезактивирование катализатора. К таким компонентам относятся азотистые соединения и металлы (N1, V, Ре, Ма) [4.9]. Влияние содержания металлов в сырье крекинга на скорость догрузки свежего катализатора в систему для поддержания заданной степени конверсии сырья показано в табл. 4.1 (данные различных зарубежных фирм [4.10-4.14]). [c.103]

    Прямогонные дистилляты — бензины, керосино-газойлевые и масляные фракции — подвергают гидроочистке главным образом с целью удаления сернистых соединений. При этом получаются малосерпистые дистилляты, представляющие собой очень хорошее сырье для каталитического крекинга, каталитического риформинга [144, 166, 184, 200—205] и производства смазочных масел. Гидроочистка дает возможность существенно улучшать качества остаточных продуктов (напр, котельных топлив) и даже сырых нефтей [101, 104, 121]. К числу эксплуатационных свойств нефтепродуктов различных классов, улучшающихся при гидроочистке, соответственно относятся прдемистость к ингибиторам окисления, легкость деэмульсации, индекс вязкости кислотное число, коксуемость по Конрадсону, антиокислительная стабильность масел, содержание металлов, кислородных и азотистых соединений. [c.251]

    Из этого пространного исследования примесей в нефтях можно заключить, что проблема очистки бензинов и смазочных масел за- ключается в удалении сернистых производных, углеводородов ди-, этиленового ряда и смоло- и асфальтообразных продуктов. Кислые свойсйш, кислородных продуктов, рассмотренных уже нами, слабый, основной характер азотистых соединений обусловливают легкую их удаляемость под действием щелочей и кислот. [c.170]

    Соединения азота в нефти, в отличие от соединений серы, обладают значительно большей термической устойчивостью и даже во вторичных процессах переработки нефти, как правило, не подвергаются разложению и не переходят в более легкие фракции. Поэтому в бензинах крекинга и риформинга азотистых соединений содержится так же мало, как и в бензинах прямой перегонки нефти [88]. Так, в бензине каталитического крекинга вакуумного газойля т уйма-зинской нефти — 0,02% азота, а в бензине прямой перегонки этой же нефти — 0,025%. Таким образом, в товарных автомобильных бензинах соединения азота или полностью отсутствуют или содержатся в очень малых количествах. [c.25]

    Разработана двухступенчатая схема переработки JOS остатка (>200 -С) перегонки продукта гидрирования (ступень бензинирования) буроугольной смолы. Выход бензина 45%, содержание в нем ароматичерких углеводородов 35%. Отбензиненный гидрогенизат первой ступени гидрируется, давая реактивное топливо с т. заст. —61 °С. Основными затруднениями на первой ступени были отравление катализатора азотистыми соединениями и отложение кокса, которые были устранены отмывкой циркуляционного газа и конструктивным усовершенствованием реактора [c.29]

    В верхней части отстойной зоны колонны отбирается фракция выше 420 °С, которая после охлаждения выводится с установки. Боковыми потоками через отпарные колонны 11 и 12 выводятся фракции 195—270° и 270—420 °С. С верха колонны выводится смесь паров, жирного газа, бензина и воды, которая проходит конденсаторы-холодильники 13, водяной холодильник 14 и поступает в газосепаратор 15. Там она разделяется на жирный газ, бензин и водный конденсат. Жирный газ через аккумулятор 16 подается на вход компрессоров жирного газа 17 и после компримировання и охлаждения направляется в секцию 3. Нестабильный бензин из газосепаратора 15 также подается в секцию 3. Водный конденсат после очистки от сернистых и азотистых соединений выводится с установки. [c.118]

    Иногда, кроме того, приходится удалять азотистые соединения и органнчес1лИе кислоты (в бензинах прямой гонки), а в бензинах, получаемых из смол, также и фенолы. Методы очисткн многочисленны п разнообразны. Однако метод очистки серной кислотой и щелочью, впервые принятый для очистки буроугольных и сланцевых смол еще в начале XIX в. и перенесенный затем в. 50-х годах XIX в. в нефтеперерабатывающую промышленность, до сих нор счне не вытеснен более совершенным или более дешевым. [c.302]

    Бензин типа АИ-93 можно получить также комбинированным процессом гидрокрекинга и каталитического риформинга, разработанным во ВНИИНефтехим и ВНИИ НП и названным процессом изориформинг [И—13]. Бензиновую фракцию 105—180°С или 140—180 °С подвергают частичному гидрокрекингу. В продуктах гидрокрекинга содержатся главным образом изомеры бутана, пентана и гексана. Одновременно происходит облагораживание всего полученного катализата гидрокрекинга — удаляются сернистые и азотистые соединения, а также увеличивается содержание в нем нафтеновых и ароматических углеводородов. Катализат после отделения ректификацией фракции, выкипающей до 85 °С, — изокомпонента s—Сб, направляют на каталитический риформинг. Водородсодержащий газ, получаемый при каталитическом риформинге, используется в блоке гидрокрекинга. Смешением бензина каталитического риформинга с изокомпонентом С5—Се получают автомобильный бензин АИ-93. [c.103]

    Фракция н. к.— 180 °С гидроочищенного дистиллята имеет октановое число 66 (моторный метод) и характеризуется повышенным содержанием фактических смол и азотистых соединений. Для получения компонента высокооктанового автомобильного бензина требуется ее глубокая гидрочистка и последующий риформинг. Дизельная фракция вследствие высокого содержания ароматических углеводородов отличается относительно низким цетановым числом [88]. Фракция с температурой кипения 300—400°С, часть которой используют как компонент пастообразователя, может служить сырьем для гидро-тфекинга с получением бензиновой и дизельной фракций. Материальный баланс гидрогенизации бурого угля Канско-Ачинского бассейна по двум вариантам технологии ИГИ представлен ниже (в числителе I вариант — переработка шлама до содержания твердых веществ 70%, в зн-аменателе II вариант— тоже, 50%) [74]  [c.86]

    Хотя азотистые соединения (АС) были открыты в нефти еще. в начале прошлого века [5], до последнего времени им уделялось довольно мало внимания. В противоположность сернистым соединениям считалось, что АС не влияют ни на процессы переработки нефти, ни на свойства получаемых нефтепродуктов. В настоящее время взгляды на роль АС кардинально изменились. Например, имеются утверждения [6], что такие соединения, как пиридины, хи-нолины и пиррол, уменьшают стабильность горючих масел при хранении. АС в бензине ускоряют процессы лакообразования в автомоторах и являются причиной смолообразования в карбюраторах [7]. В присутствии АС образуется кокс на катализаторах крекинга, поэтому последние частично дезактивируются. При этом снижается выход каталитического бензина, газа и легкого газойля [c.277]

    На глубину превращения, выход и состав продуктов реакции, продолжительность работы катализатора большое влияние оказывает подготовка сырья, которое может быть облагорожено предварительной гидроочисткой для снижения содержания сернистых и азотистых соединений, а также частичного перехода полициклических ароматических углеводородов в алкиларома-тические с меньшим числом колец. Предварительная гидроочистка сырья позволяет повысить выход бензина, снизить коксообразование и увеличить срок работы катализатора, а также на порядок уменьшить содержание серы в бензине и газойле. Поэтому установки каталитического крекинга для эффективной переработки тяжелого сернистого сырья комбинируют с установками гидроочистки. Например, в состав современной комбинированной установки Г-43-107 мощностью по сырью 2 млн. т в год входят гидроочистка вакуумного дистиллята, каталитический крекинг, ректификация и газофракционирован ие продуктов крекинга. В блоке каталитического крекинга используется цеолитсодержащий катализатор, который обеспечивает высокий выход бензина и компонента дизельного топлива — легкого газойля. [c.28]

    Если содержащиеся в незначительных количествах азотистые соединения нефтяных бензинов, как правило, не оказывают решающего влияния на их эксплуатационные свойства, а также не затрудняют каталитическую переработку бензинов (капиш-тический риформинг, изомеризация), то при получении бензинов из альтернативного сырья (угля, сланцев) высокая концентрация азота в синтетической нефти (смоле) и выделяемых из нее топливных дистиллятов требует проведения специальных процессов для снижения содержания в них азота до приемлемого уровня. Так, при переработке смолы, полученной из колорадских сланцев, содержание азота в бензинах достигает 1% мае. [21]. Такой бензин должен подвергаться процессу гидроочистки во избежание деактивации катализатора риформинга, необходимого для получения высокооктанового бензина. [c.77]

    Таким образом, динамика превращений нефти сводится к образованию предельно богатых водородом парафинов и предельно бедных им углеродистых минералов. Состав нефти определяет ее возраст наиболее древними нефтями являются парафинистые с сопутствующими им месторождениями метана. Практическими индикаторами превращений нефти являются повышенное содержание легких фракций бензинов, состоящих из парафинов с нормальной цепью, пониженное содержание кислородных и азотистых соединений. Экспериментально показано, что превращения углеводородов, происходящие в природе в течение длительных эпох, и связанные с ними реакции диспропорционирования водорода осуществляются в лабораторных условиях иод действием хлористого алюминия НЛП алюмосиликатных катализаторов, что делает теорию Добрян-ского вполне вероятной и правдоподобной. [c.336]

    Для получения бензина из тяжелых видов нефтяного сырья (прямогонные 7яжелые газойли, вакуумные газойли, тяжелые газойли каталитического крекинга) используют катализаторы с высокой расщепляющей активностью, достаточной гидрирующей активностью по отношению кароматическим углеводородам и стойкостью к отравлению сернистыми и азотистыми соединениями. Высокая расщепляющая активность достигается введением в состав катализаторов цеолитов типа фожазита, в частности поливалентных катионных форм цеолита V, например РЗЭУ со степенью катионного замещения Na 30-80%, или катион-декатионированных форм, например НМ со степенью катионного обмена N3 на Н 45-60% и на Mg 40-45%. Для усиления расщепляющей функции катализаторов в них вводят галогены, дополнительные оксидные добавки или проводят предварительное де-алюминирование [ 266). [c.251]

    Между содержанием азота, серы и смолистых веществ в нефтях имеется несомненная связь. Богаты азотистыми и сернистыми соединениями тяжелые смолистые нефти. Сильно, метанизиро-ванные, легкие, малосмолистые нефти содержат крайне мало азота. Азотистые соединения нефти делятся на два класса ароматические, содержащие ядра пиридина или хинолина, и гидроароматическпе или насыщенные, не содержащие в ядре двойных связей. Область возможного применения азотистых соединений нефти еще не установлена. Имеются отдельные предложения использовать их в качестве стабилизаторов крекинг-бензинов 1ми в качестве присадок, улучшающих свойства смазочных масел. [c.36]


Смотреть страницы где упоминается термин Бензины азотистые соединения: [c.380]    [c.189]    [c.248]    [c.256]    [c.37]    [c.92]    [c.36]    [c.185]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте