Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы измерений в количественном анализе

    Развитие количественных методов анализа исторически тесно связано с созданием новой измерительной техники. Так, возможность разложения света в спектр обусловила появление разнообразных и чрезвычайно ценных оптических методов анализа, дальнейшая разработка которых продолжается и, в настоящее время. В свою очередь, применение этих методов в количественном анализе вызвало необходимость точных электрических способов измерения интенсивности светового потока. Изучение закономерностей электрических процессов и создание точных приборов для измерения силы тока и напряжения стало основой возникновения и развития электрохимических методов анализа. Затем появились термические методы, анализа, основанные на точном измерении температуры с помощью термоэлементов и термисторов, и радиохимические методы анализа, в которых осуществляется чувствительная регистрация радиоактивных излучений. [c.254]


    Применение этого метода для количественного анализа требует весьма точных измерений температуры. Например, примесь 0,1% воды понижает точку замерзания уксусной кислоты на 0,2 °С при определении около 0,005% воды в уксусной кислоте чувствительность и правильность измерения температуры должны быть выше 0,01 °С [50]. Для обеспечения таких условий анализа при определении точки замерзания измерения проводят в защищенных трубках. На рис. 11-17 изображен удобный прибор, основу которого составляет сосуд с рубашкой и с капиллярным кончиком для затравочных кристаллов. В одном из вариантов такого прибора имеется вакуумная рубашка, внутри которой находится трубка, обмотанная проводом высокого сопротивления, что позволяет производить измерения при температуре выше комнатной. Перед тем как снимать кривую замерзания, выступающий капиллярный кончик погружают в охлаждающую баню с температурой ниже [c.580]

    Методы, основанные на флуоресценции веществ, большей частью разработаны в области органического анализа. В неорганическом анализе они нашли применение сравнительно недавно Флуоресцентный анализ заключается в исследовании света, испускаемого веществом, облучаемым ультрафиолетовыми лучами (обычно длиной волны между 3000 и 4000 А). Используются также и другие средства возбуждения флуоресценции, как, например, рентгеновские и катодные лучи. При использовании этого метода для количественного анализа необходимо тщательно продумать выбор источника возбуждения, светофильтров условий подготовки образца и способа измерения интенсивности флуоресценции. [c.176]

    А. К- Бабко и А. Т. Пилипенко, Колориметрический анализ, Госхимиздат, 1951 Д. А. Давыдов, Фотоэлектрический метод в количественном анализе. Труды Всесоюзной конференции по аналитической химии АН СССР, т, 11, 1943 П. В Тимофеев, Фотоэлементы и методы измерения света при помощи их. Там же, т. 1, 1939 [c.487]

    Если система неоднородна, то при взаимодействии электромагнитного излучения с веществом помимо процесса поглощения будет происходить также рассеяние лучистой энергии. На этом основаны такие методы количественного анализа, как нефелометрия (измерение в отраженном потоке) и турбидиметрия (измерение в проходящем потоке), которые в настоящей главе рассматриваться не будут. [c.458]

    Метод, основан на получении эмиссионных спектров анализируемого вещества на фотографической пластинке, помещенной в фокальной плоскости камерного объектива спектрального прибора (спектрографы различных типов). Спектральные линии элементов (качественный анализ) в полученном спектре идентифицируют относительно спектра известного элемента (обычно железа), фотографируемого рядом со спектром анализируемого вещества. В специальных атласах спектральных линий приведены фотографии спектров л<елеза, где относительно спектральных линий железа указано положение спектральных линий всех элементов с их длинами волн. Для проведения качественного анализа используют спектропроекторы или измерительные микроскопы. Количественный анализ проводят по результатам измерения относительных почернений спектральных линий гомологической пары и их сравнением с соответствующими величинами стандартных образцов. Почернения спектральных линий измеряют при помощи микрофотометров фотоэлектрическим способом. [c.25]


    Измерение хроматографических пиков может привести к существенным погрешностям и оказать влияние на точность количественного анализа. Поэтому ко всем методам измерения пиков предъявляются следующие требования они должны обеспечивать хорошую воспроизводимость измерений даже в случае частичного наложения пиков каждое измерение должно выполняться не менее 3—5 раз с тем, чтобы иметь возможность пользоваться средними величинами измеряемые величины должны линейно зависеть от концентрации или потока вещества во всем диапазоне измерений. [c.130]

    Завершающей стадией количественного анализа химического состава вещества любым методом является статистическая обработка результатов измерений. Она позволяет оценить систематические и случайные погрешности измерений .  [c.25]

    Вторая группа методов количественного анализа основана на измерении количества реактива, затраченного на реакцию с определяемым веществом. Для этой цели, очевидно [см. уравнение (1), стр. 22], необходимо к отмеренному количеству анализируемого вещества X постепенно прибавлять реактив Р до тех пор, пока не будет достигнуто эквивалентное отношение между ними. Тогда по количеству затраченного реактива можно рассчитать количество анализируемого вещества X. [c.24]

    Третья группа методов количественного анализа основана на измерении каких-либо изменений в системе в связи с тем, что определяемое вещество в результате реакции практически исчезает вследствие превращения в те или другие продукты. Такие методы имеют меньшее значение, так как, очевидно, их можно применять только в тех (довольно редких) случаях, когда само определяемое вещество имеет какие-либо сильно выраженные особые физические свойства, которые удобно измерять. [c.26]

    Электрохимические методы количественного анализа можно разделить на три группы (см, 5). Так, к первой группе методов, основанных на измерении количества продукта реакции, относится электровесовой анализ и электрохимические методы разделения элементов. Эти методы были рассмотрены подробно в гл. 9 и 10. С этой же группой тесно связан (в отношении методики) полярографический анализ (см. гл. 11) хотя он и занимает несколько особое положение. В практическом отношении электровесовой анализ особенно успешно применяется, главным образом, для определения больших количеств цветных металлов, а полярографический анализ — для определения малых количеств этих же металлов. Приблизительно в таком же отношении друг к другу находятся весовой анализ и колориметрия, которые применяются для определения больших (весовой анализ) или малых (колориметрический анализ) количеств почти всех элементов. [c.434]

    Для анализа газов применяют все три группы методов, рассмотренные в разделе о классификации методов количественного анализа. Для определения отдельных компонентов газовой смеси иногда применяют методы, основанные на измерении количества продукта реакции. Так, например, содержание СО, в смеси газов в некоторых случаях определяют следующим образом. Определенный объем газа пропускают через взвешенный поглотитель, содержащий едкую щелочь. При реакции образуется углекислая соль  [c.446]

    Н. С. Полуэктов. Методы анализа по фотометрии пламени. Госхимиздат, 1959, (231 стр.). Описана аппаратура и методы количественного анализа щелочных, щелочноземельных и некоторых др. элементов по измерению интенсивности их излучения в пламени. [c.488]

    В количественном анализе используют также оптические методы, из которых наиболее широко применяются колориметрические методы, основанные на измерении интенсивности светового потока, прошедшего через окрашенный раствор. [c.76]

    Определение количества вещества основано на измерении какого-либо физического или химического свойства этого вещества, являющегося функцией его массы. Все методы количественного анализа можно подразделить на две категории 1) методы, основанные на непосредственном измерении массы определяемого компонента, т.е. на непосредственном взвешивании на весах  [c.4]

    В принципе почти все характерные физические свойства элемента или соединения могут быть использованы в методах количественного анализа. Но на практике крайне редко непосредственно измеряют физическое свойство вещества. Обычно определяют изменение физической величины относительно известного стандарта и таким образом находят неизвестное количество вещества. Тем самым измерение физической величины-янляется лишь средством, позволяющим сравнить, концентра-дию определяемого соединения в анализируемом образце и стандарте. [c.254]

    Методы измерений в количественном анализе [c.454]

    Метод градуировки. Целью количественного анализа является определение содержания какого-либо элемента или соединения X. Поэтому необходимо точно знать функциональную зависимость между измеряемой величиной у и содержанием х (рис. Д.194). Желательно, чтобы эта зависимость не была многозначной (а). В случае двузначной зависимости, например для активной составляющей метода осциллометрии, нужно определить, в какой области должно находиться значение у для получения правильных результатов для х (б). Даже однозначная функциональная зависимость не всегда является идеальной (в), так как при наличии кривизны функции существует сильная зависимость чувствительности измерений от содержания компонента. Такая ситуация возникает, напр/ мер, при подавлении максимумов первого рода в постояннотоковой полярографии при определении содержания примесей поверхностно-активных веществ в воде. В таких случаях используют специальные приемы, например измеряют объем пробы, при добавлении которого сигнал уменьшается наполовину. Фиксируют значение у и определяют X при соответствующем разбавлении пробы. Как правило, для аналитических определений необходимо наличие однозначной линейной функциональной зависимости (г). Тогда градуировочный график можно описать уравнением у = ув+Ъх. При х =0, т. е. в отсутствие определяемого компонента, у=ув, поэтому ув называют сигналом фона. Причинами возникновения сигнала фона могут служить примеси определяемых компонентов в реактивах и растворителе, а также наложение сигналов, перекрывающих сигналы определяемых компонентов. Сигнал фона стараются в каждом конкретном случае уменьшить (при- [c.455]


    Таким образом, для количественной оценки результатов измерений желательно знать значение Ь. Поскольку стехиометрический гравиметрический фактор можно рассматривать как достаточно постоянную величину, то гравиметрию можно считать абсолютным методом. В объемных же методах анализа необходима градуировка, так как эти методы связаны с определением в онцентрации титрантов. Градуировка необходима также для всех инструментальных методов количественного анализа. [c.458]

    Настоящий раздел содержит задачи на так называемые классические методы количественного анализа — гравиметрический (весовой) и титриметрические (объемные). В этом разделе приведены задачи, в которых точка эквивалентности фиксируется при помощи индикаторов (т. е. по изменению цвета раствора или выпадению осадка). Задачи на титриметрические методы, в которых точка эквивалентности определяется с помощью физико-химических измерений (потенциометрическое титрование, амперометрическое и т. д.), а также задачи на кулонометрию и некоторые другие вынесены в раздел физико-химических методов анализа. [c.60]

    Обработка данных количественного анализа методом математической статистики по малому числу измерений. Статистическая обработка результатов анализа дает возможность объективно оценить используемый метод по важным показателям, а также объективно сравнить его с другими методами. Обработка результатов хроматографического анализа методом математической статистики сводится к следующему. [c.132]

    В процессе развития хроматографии как метода качественного и количественного анализа выявились не менее существенные ее возможности для измерения различных физико-химических характеристик изотерм адсорбции и распределения, теплот сорбции и энтропийного фактора сорбции (адсорбции и растворения), удельной поверхности адсорбентов, коэффициента активности, коэффициента диффузии и др. [c.187]

    Количественный анализ в ТСХ возник на ранних этапах развития метода. Первые попытки количественной оценки хроматограмм, основанные на измерении размеров пятен, были сделаны Фишером в 1948 г. [18]. В 1962 г. предложен [19] метод количественного анализа, основанный на использовании эмпирического соотношения между площадью пятна и количеством содержащегося в нем вещества. При последующем развитии количественной ТСХ с пластинки снимался слой адсорбента в области хроматографических пятен и из него вымывалось исследуемое вещество, которое затем анализировалось каким-либо физическим или физико-химическим методом. Начиная с 1967 г., намечается переход от методов извле-"чения вещества из тонкослойной пластинки (так называемых элюционных методов) к количественному анализу in situ, т. е. анализу непосредственно на слое путем сканирования пятен ж отыскания распределения вещества путем измерения свето-поглощения, флуоресценции, радиоактивности или каких-либо других свойств (например, электропроводности [20]). [c.267]

    Количественные измерения. Количественный анализ обычно основан на измерении характеристик пика, получаемого с помощью детектора, или характеристик полосы, получаемой с помощью регистрирующего денситометра. Джонсон [132] провел сравнение методов количественной интерпретации данных газохроматографического метода, в том числе перекрывание пиков, появление хвостов, неустойчивость нулевой линии. Для газохроматографическнх детекторов теплопроводности сигнал обычно прямо пропорционален концентрации растворенного вещества в газе-носителе. В этом случае масса компонента пропорциональна площади пика. Поскольку чувствительность детектора зависит от природы компонента, коэффициент пропорциональности следует определять для каждого компонента путем калибровки. [c.561]

    Как и при фотографическом методе ( 78), количественный анализ лучше всего проводить по интенсивностям в максимуме линий. При этом получаются наилучшие условия для разрешения записанных линий. В качестве табличных данных для проведения анализа можно использовать интенсивности /о, полученные на приборе ИСП-51 фотографическим методом. Но при этом необходимо соблюдать определенные условия работы, чтобы соотношения /о для широких и узких линий были такими же, как и в таблицах. Интенсивности /о, измеренные фотоэлектрическим методом на приборе с большой дисперсией и узкими щелями, которые можно было бы использовать как табличные значения, известны только для ограниченного числа молекул. Обычно интенсивности в максимуме /о вьфажаются для единицы объема в условной шкале линии 802 циклогексана ( 78)  [c.342]

    В микро- и полумикрометодах количественного анализа используют навески от 1 до 50 мг и объемы раствора от десятых долей миллилитра до нескольких миллилитров. Для микро- и по-лумикроопределений применяют более чувствительные весы, например микровесы (точность взвешивания до 0,001 мг), а также более точную аппаратуру для измерения объемов растворов или газов. Основными достоинствами микро- и полумикрометодов являются большая скорость выполнения анализов и возможность проводить их, располагая очень малым количеством исследуемого вещества. Однако наиболее распространен все же макрометод, являющийся наиболее удобным методом для изучения количественного состава веществ. [c.14]

    Ароматические углеводороды. Для количественного анализа типов ароматических углеводородов или структурных групп колебательные спектры применялись лишь в ограниченном числе случаев. Метод определения общего содержания ароматических соединений был описан Хейглем н др. [21], использовавшими линию комбинационного рассеяния в области 1600 см— , относящуюся к колебаниям сопряженной С=С связи ароматического кольца. Метод измерений аналогичен методу, предложенному этими авторами для определения общей непредельности. Для снижения влияния изменения положения линии в спектре для различных индивидуальных ароматических соединений бралось произведение коэффициента рассеяния на ширину линии у основания. Эта величина линейно связана с площадью под регистрируемым пиком. Среднее отклонение этой величины для 22 алкилбензолов составляло приблизительно 10%. [c.333]

    Сначала представляло интерес точное определение относительных количеств этих изотопов. Фотографический метод, использовавшийся тогда в масс-спектрографах для измерения масс изотопов, не отвечал требованиям точных определений относительных количеств изотопов, и в результате попыток преодолеть это затруднение был создан масс-спектрометр с электронной регистрацией. По мере развития работ с этим прибором стало ясно, что вещества, более слоншые, чем элементы, иоинзируются, образуя характерные заряженные осколы . Систематическая разработка этих вопросов привела I тому, что масс-спектрометрия стала изящным методом качественного и количественного анализа органических соедине-тт. [c.335]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    Для дисперсионного количественного анализа мелкой части катализатора можно использовать седиментациои-ные методы, основанные иа измерении скорости оседания илп витания (парепия) частиц в различных средах. [c.18]

    Описан метод измерения скоростей потока в неподвижном зернистом слое с помощью пневмометрпческого насадка, нечувствительного к скосам потока и обеспечивающего локальность измерения в точке размером не более 0,5 мм. Представлены результаты исследования полей скорости в случайной плотной упакованной структуре сферических частиц размером d = 4 мм в аппарате диаметром 125 мм. С помощью статистического анализа флуктуаций скорости проведена количественная оценка радиальной функции распределения, отражающей ближний порядок в расположении частиц в слое. Экспериментально показано, что конфигурация частиц первой координационной сферы близка к структуре плотнейшей упаковки со случайно распределенными дырками в узлах решетки. Табл. 1. Нл. 6. Библиогр. 7. [c.173]

    Студенты изучают принцип действия прибора, который заключается в излучениии маломощной рентгеновской трубкой и фиксировании определенных длин волн излучения. Наличие характерных спектральных линий свидетельствует об элементном составе образца. Интенсивность линий связана с количественным содержанием. Студенты учатся рассчитывать количественные содержания химических элементов с помощью микропроцессора или персонального компьютера путем сравнения с результатами анализа стандартных образцов, осваивают пробоподготовку, метод измерений, рассчитывают нормы погрешностей спектрального анализа. [c.56]

    Инфракрасная спектрометрия относится к числу наиболее важных и распространенных методов исследования кинетики и меха-ргизма химических реакций. Инфракрасные (ИК) спектры приме-пя.отся для идентификации соединений и установления их чистоты, опм используются для качественного и количественного анализа смесей, для контроля за ходом процесса и для кинетических измерений важную роль они играют при выяснении строения новых со( дииений и неустойчивых реакционноспособных частиц, а также ра лнчиых молекулярных ассоциатов. [c.199]

    Например, только линейная молекула с центром симметрии может иметь полосу поглощения с такой тонкой структурой, как у приведенной на рис. 17. / полосы этина (ацетилена) таки.м образом, может быть достаточно одних качественных особенностей спектра для однозначного определения формы молекулы. Из количественного анализа тонкой структуры ряда полос можно определить межатомные расстояния я уг.лы между связями с большей точностью, чем любыми не спектральными методами. Точность спектральных определений молекулярных размеров на порядок величины и более превог-ходит точность электронографических измерений. [c.482]

    Потенциометрия как электрохимический метод исследования и анализа заключается в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалопределяюшего компонента в растворе. Используя эту зависимость, можно установить не только активность ионов, но и ряд характеристик изучаемых равновесных химических, биологических и других систем. С другой стороны, проследив во время химической реакции за изменением электродного потенциала, можно судить об изменении концентрации реагирующих веществ в растворе. Таким приемом, например, пользуются в производстве при непрерывном технологическом контроле химических процессов и при количественном определении веществ. В последнем случае имеется в виду широко используемый в аналитической химии метод потенциометрической индикации конечной точки титрования (к.т.т.). [c.19]

    Количественный анализ методом простой нормировки проводят следующим образом. Находят площадь каждого пика, умножая высоту пика на его щирину, измеренную на полувы-соте пика, суммируют площади всех пиков и делят площадь каждого пика отдельного компонента (5,) на сумму площадей (25 ). Содержание компонентов (в %) вычисляют по формуле  [c.354]

    Гравиметрическим анализом называется метод количественного анализа, основанный на то>5ном измерении массы определяемого вещества или его составных частей, выделенных в виде соединений точно известного постоянного состава. Методы гравиметрического анализа делятся на несколько групп  [c.191]

    Некоторые данные термогравиметрического анализа представляют также интерес для количественного анализа. Так, термогравиметриче-скими измерениями было установлено, что температура полного обезвоживания гидроокиси алюминия различна в зависимости от того, какой реактив применялся для осаждения. Гидроокись алюминия, полученная осаждением гидроокисью аммония, полностью обезвоживается только при температуре более 1000°, в то время как применение для осаждения углекислого или сернистого аммония снижает температуру обезвоживания приблизительно до 420 . Этим же методом было найдено, что превращение магнийаммоннйфссфата в пирофосфат магния достигается уже при температуре около 500 Оксихинолинаты многих металлов имеют после высушивания вполне определенный состав, и их можно применять для весового определения ряда элементов. Однако это ке относится к ок-сихинолинату титана, который при повышении температуры не дает горизонтальной площадки на кривой термолиза его вес медленно уменьшается при повышении температуры вплоть до полного превращения в двуокись титана .  [c.89]

    Анализ газов представляет собой определение отдельных компонентов в газовых смесях. Газообъемные методы (или газоволюметрия) принадлежат, собственно, к первой группе методов количественного анализа (см. 5), т. е. методов, основанных на измерении количества продукта реакции. Газообъемным методом называют метод количественного анализа, при котором определяемый компонент переводят в газообразное соединение, после чего измеряют объем газообразного продукта реакции. [c.445]

    Русское издание справочника состоит из четырех томов, разделенных на 0 выпусков. В первом выпуске первого тома содержатся сведения по организации и п[юек-тированию лабораторий, по отбору проб и организации работы. Далее описаны ос швы качественного анализа иеоргаиических и органически.х соединений, а также методы количественного анализа объемный анализ, электроанализ, потенциометрия и конду1Сто-метрия. Во втором выпуске первого тома описаны физические методы исследований измерение температуры, давления, удельного веса и др., оптические измерения (1 оло-риметрия, спектральный анализ, поляриметрия, рентгеновский анализ), а также методы TexHH4f K0r0 анализа газов, микрохимического и коллоидно-химического анализа. Первый выпуск первой части второго тома содержит описание методов анг.лиза топлива, воды и воздуха. [c.485]

    Пособие является практическим руководством к лабораторным занятиям по общей химии с элементами количественного анализа для студентов медицинских вузов. В пособии описаиы методика и техника выполнения лабораторных работ. Каждой лабораторной работе предшествует краткое введение, в котором рассматриваются теоретические основы применяемых методов измерения. Даются также указания по методам расчета и обработки экспериментальных данных. В конце каждой главы помещены вопросы и задачи. [c.2]

    В части Б, написанной доц. К.-Х. Хекнером (термодинамика и кинетика) и проф. Р. Ландсбергом (электрохимия), мы ввели безразмерные переменные и пояснили преимущества их употребления. Кроме того, в главу, посвященную электрохимии, включен раздел, посвященный уравнению Лютера. Д-р В. Шмидт — автор первых разделов части В — написал дополнительный раздел по химии твердого тела, а в целом часть В сокращена. Некоторые дополнения внесены в главу Количественный анализ части Г. В эту часть внесены существенные изменения в соответствии с современными воззрениями. Главы Методы и проблемы анализа следовых количеств веществ и Теория измерений в аналитической химии паписаны заново. [c.7]

    АБСОРБЦИОННАЯ спектроскопия (лат. аЬ8огр11о — поглощение) — физические методы исследования, основанные на измерении поглощения излучения определенной длины волны. К А. с. относят спектроскопию в УФ, видимой и ИК частях спектра и др. А. с. применяется для качественного и количественного анализа химических соединений, установления химического строения и степени чистоты веществ, изучения кинетики химических реакций и др. Метод [c.5]


Смотреть страницы где упоминается термин Методы измерений в количественном анализе: [c.375]    [c.163]    [c.293]   
Смотреть главы в:

Анорганикум. Т.2 -> Методы измерений в количественном анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный

Количественный методы



© 2025 chem21.info Реклама на сайте