Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инициаторы влияние на скорость полимеризации

    На протекание реакции полимеризации этилена оказывает влияние ряд факторов. Влияние давления состоит в том, что при увеличении его возрастает плотность этилена. Это приводит к увеличению вязкости смеси полиэтилен—этилен и скорости иолимеризации. В качестве инициатора полимеризации этилена при высоком давлении применяют молекулярный кислород и органические перекиси. С повышением температуры увеличивается скорость распада инициатора и скорость полимеризации. Давление этилена и количество используемого инициатора влияют на температуру. [c.158]


    Радиационно-инициированная эмульсионная полимеризация (РЭП) имеет свои особенности [42], которые в большинстве случаев являются ее преимуществами 1) в полимере отсутствуют остатки инициаторов, которые впоследствии могут ухудшать его Свойства при переработке и эксплуатации 2) отсутствует передача цепи на инициатор 3) скорость реакции инициирования постоянна во времени 4) можно легко и быстро менять скорость инициирования и тем самым регулировать скорость полимеризации и молекулярную массу 5) скорость радиационного инициирования не зависит от температуры, что позволяет проводить процесс при достаточно низких температурах, избегая нежелательных побочных реакций 6) ионизирующее излучение оказывает специфическое влияние на коллоидные системы, повышая их устойчивость, что дает возможность осуществлять РЭП с приемлемыми скоростями в присутствии малых количеств эмульгатора (ниже ККМ). [c.36]

    На процесс радикальной полимеризации оказывают влияние температура, концентрации инициаторов и мономеров, давление. С повышением температуры процесса и концентрации инициатора суммарная скорость полимеризации увеличивается, а молекулярная масса образующегося полимера уменьшается. [c.147]

    Различное влияние одного и того же инициатора на скорость полимеризации разных мономеров и зависимость скорости от природы инициатора можно объяснить на основе представлений о дезактивации первичных радикалов (с. 95). [c.125]

    Влияние температуры полимеризации на молекулярный вес полимера и строение его макромолекул. Общая энергия активации процесса полимеризации в присутствии инициаторов составляет около 20—22 ккал/моль. Это соответствует повышению скорости полимеризации в 2—3 раза при возрастании температуры реакции на 10°, одновременно с этим уменьшается средний молекулярный вес полимера (рис. 52). Полимеризация стирола в присутствии перекиси бензоила при 20° в атмосфере азота продолжается год, средний молекулярный вес образующегося полимера около 550 000. При 120° эта реакция заканчивается за 24 часа, но средний молекулярный вес полимера снижается до 167 ООО. Полимеризуя метилметакрилат в атмосфере азота при 100°, можно получить полимер, степень полимеризации которого составляет 10 500 в случае полимеризации метилметакрилата при 130° степень полимеризации снижается до 7150, а при 150°—до 5160. [c.128]


    Исследованиями по определению влияния концентрации мономера (М) при одном и том же содержании инициатора на скорость полимеризации установлена прямая пропорциональность между этими параметрами, т. е. М. [c.26]

    Влияние концентрации инициатора. С увеличением концентрации инициатора возрастает скорость полимеризации (рис. 7). Молекулярный вес полимера с увеличением концентрации инициатора понижается (рис. 8). [c.29]

    Влияние 0,1% инициаторов на скорость полимеризации метилметакрилата (температура 93—94°) [c.29]

    Из приведенных данных видно, что природа инициатора оказывает существенное влияние на скорость полимеризации в эмульсии. Наибольшие изменения скорости инициирования наблюдаются в тех случаях, когда инициатор полимеризации может концентрироваться в поверхностных слоях. Можно полагать, что Таблица 1 [c.153]

    Таким образом, при увеличении поверхности раздела фаз независимо от того, каким способом оно достигается, увеличиваются скорости полимеризации и инициирования. Что считать ответственным за это увеличение — изменение скорости разложения инициатора или эффективности инициирования, не всегда можно решить однозначно. Хотя приведенные выше результаты получены при рассмотрении суспензионной полимеризации, для которой характерна меньшая степень дисперсности, чем для истинных эмульсионных систем, влияние диспергирования на реакцию инициирования весьма ощутимо. Вследствие того что природа и концентрация эмульгатора, а также соотношение водной и углеводородной фаз определяют дисперсность эмульсии, становится понятным влияние эмульгатора на скорость инициирования полимеризации в эмульсии. На преимущественное образование инициирующих свободных радикалов в зоне поверхности раздела фаз указывает увеличение скорости разложения инициаторов в эмульсиях, снижение общей энергии активации и энергии активации инициирования (см. табл. 1.1). Эмульгатор при этом обеспечивает высокую степень дисперсности системы и концентрационное перераспределение компонентов полимеризационной системы по фазам. [c.43]

    В результате исследования влияния эмульгатора — гексадецил-сульфата натрия — на скорость полимеризации винилацетата в 3%-ном водном растворе (инициатор — персульфат калия) было обнаружено, что увеличение концентрации эмульгатора выше ККМ (1-10 3 моль) не влияет на скорость процесса [31]. Совпадение кинетических кривых при концентрациях гексадецилсульфата натрия ЫО и 1-10 моль авторы рассматривают как свидетельство того, что прямая атака радикалами мономера, включенного в мицеллы, вносит пренебрежимо малый вклад в общую скорость процесса. Мицеллы служат лишь резервуаром, из которого поставляются молекулы эмульгатора для стабилизации олигомеров, зародышей и растущих частиц. [c.88]

    Если принять необходимые меры для тщательной очистки мономера и полностью исключить влияние кислорода, то можно получить хорошую воспроизводимость для начальных скоростей полимеризации при проведении реакции как в массе, так и в растворе [70, 87]. На рис. 10 сравниваются скорости полимеризации при 60° (инициатор — динитрил [c.98]

    Очевидно, что на основе рассмотренного выше механизма нельзя ожидать простой зависимости между скоростью реакции и скоростью инициирования (или концентрацией инициатора), хотя в отдельных случаях скорость, измеренная в данное время или при данной глубине полимеризации, может быть пропорциональной корню квадратному из концентрации инициатора. Влияние окклюзии всегда проявляется в увеличении показателя степени при концентрации инициатора в уравнении для скорости полимеризации это можно качественно аргументировать следующим образом. Скорость реакции на любой стадии процесса определяется числом и размером имеющихся полимерных частиц и повышается с увеличением обеих величин. Чем больше концентрация инициатора, тем выше скорость образования полимера и, следовательно, возрастание скорости больше, чем это следует из прямой пропорциональности между скоростью и корнем квадратным из концентрации инициатора. Показатель степени при концентрации инициатора по этой причине должен быть больше /г- Более того, сильную окклюзию можно рассматривать как реакцию обрыва, протекающую по первому порядку, а это приводит к увеличению показателя степени при концентрации инициатора. Из этих эффектов в случае акрилонитрила должен преобладать первый, так как только незначительная часть от общего количества радикалов, генерированных при 25°, полностью застревает в полимере [25], [c.139]

Рис. 29. Влияние давления на скорость полимеризации стирола V, кр, ко (при Зб°С) и константу гомолитического распада инициатора кц (перекись бензоила в СС14 при 70°С) (а), а также иа молекулярную массу полимера М (при 60°С) (б) Рис. 29. <a href="/info/30124">Влияние давления</a> на <a href="/info/296003">скорость полимеризации стирола</a> V, кр, ко (при Зб°С) и константу <a href="/info/487138">гомолитического распада</a> инициатора кц (<a href="/info/11016">перекись бензоила</a> в СС14 при 70°С) (а), а также иа <a href="/info/532">молекулярную массу</a> полимера М (при 60°С) (б)

    Аналогичным образом можно рассмотреть влияние температуры на кинетику радикальной полимеризации. Обычно скорость полимеризации возрастает в 2—3 раза при повышении температуры на 10°. Увеличение температуры увеличивает скорость инициирования полимеризации, так как облегчает распад на радикалы инициаторов и облегчает их реакцию с молекулами мономера. Вследствие большей подвижности малых радикалов с повышением температуры увеличивается вероятность их столкновения друг с другом (обрыв цени путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями (ингибиторами). Во всех случаях молекулярная масса полимера уменьшается, т. е. средняя степень полимеризации уменьшается с ростом температуры, и таким образом увеличивается количество низкомолекулярных фракций полимера в, общем балансе расиределения макромолекул по их молекулярным массам, возрастает доля побочных реакций, приводящих к образованию разветвленных молекул, увеличивается химическая нерегулярность построения цепи полимера вследствие возрастания доли типов соединения мономера голова к голове и хвост к хвосту . [c.18]

    Изучено влияние концентрации инициатора и мономера на величину молекулярного веса и на скорость полимеризации пропиленсульфида. Полученные данные [c.34]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    В результате этого общая скорость полимеризации изменяется в той же последовательности. Значительное влияние на кинетику полимеризации оказывают продукты разложения инициатора — алкоголяты и гидроокись лития, причем степень влияния (ускоряющего или замедляющего), которое оказывают эти примеси на ход полимеризации, определяется строением исходного литийалкила и алкоголята. Продукты разложения в процессе хранения втор-бутиллития оказывают ингибирующее влияние на полимеризацию изопрена, способствуют повышению молекулярной массы и расширению ММР [40]. Добавка ерв-бутанолята лития к втор- [c.210]

    Аналогичным образом можно рассмотреть влияние температуры на кинетику радикальной полимеризации. Обычно скорость полимеризации возрастает в 2—3 раза при повышении температуры на 10". Увеличение температуры увеличивает скорость инициирования полимеризации, так как облегчает распад на радикалы инициаторов и их реакцию с молекулами мономера. Вследствие большей подвижности Время, мим малых радикалов с повышением температуры увеличивается вероят-Рис. 1.3. Термическая полимериза- ность ИХ столкновения друг С дру- ZибитГoв (°брыв цепи путем диспропор- [c.28]

    Свободные радикалы — частицы с очень высокой реакционной способностью, и присутствие в реакционной смеси небольших количеств иных веществ кроме инициатора и мономера может резко изменить ход полимеризации. Для получения полимеров с большой молекулярной массой необходимо использовать тщательно очищенные мономеры. Влияние примесей может осуществляться по двум основным направлениям. Примером первого из них служит полимеризация стирола в присутствии небольшого количества тетрахлорида углерода. Полимеризация происходит с такой же скоростью, что и в отсутствие ССЦ, но образующийся полистирол имеет меньшую среднюю молекулярную массу и содержит следы хлора. Это обусловлено явлением передачи цепи , когда обрыв цепи приводит к образованию радикала, способного инициировать цепную полимеризацию находящегося в системе мономера (схемы 10, 11). Число растущих цепей и, следовательно, скорость полимеризации не изменяются, но число элементарных актов на стадии роста цепи до ее обрыва уменьшается. Особенно важен тот случай, когда сами макромолекулы выступают в роли передатчиков цепн. Это приводит к появлению разветвлении (схема 12), причем образующиеся боковые цепн могут быть очень длинными. В тех случаях, когда растущий радикал атакует свою собственную цепь (схема 13), образуются более короткие боковые цепи. Типичными агентами передачи цепи являются тетрахлорид углерода, толуол и тиолы. [c.303]

    Повышение температуры свободнорадикальной полимеризации приводит к увеличению суммарной скорости полимеризации, так как изменение температуры в первую очередь сказывается на ско-рости разложения инициатора, а следовательно, и на числе радикалов, генерируемых в единицу времени. В то же время средняя степень полимеризации образующегося полимера уменьшается, так как согласно уравнению (3-3) скорость обрыва цепи также зависит от концентрации радикалов в системе (см. опыт 3-02). Кроме того, повышение температуры благоприятствует побочным реакциям, например реакциям передачи и разветвления. При полимеризации диенов температура реакции оказывает влияние на микроструктуру повторяющихся звеньев в цепи полимера. [c.114]

    Долимеривация в эвсульснн проводится в системе вода -мономер. В качестве эмульгаторов используй сульфоэфиры высших жирных кислоТ мыла жирных кислот, соли линейных и разветвленных алкилсульфатов, алкиларилсульфонатов и др. Эмульгатор оказывает влияние на скорость полимеризации и свойства латекса. Инициаторами являются окислительно-восстановительные системы, растворимые в воде. Эмульсионная полимеризах(ия клользуется при производстве полиакрилатов, поливинилхлорида, поливинилацетата и бутадиен-стирольного каучука, [c.287]

    Исследование кинетики полимеризации N-винилпирролидона ПОД влиянием ДИНИЗ [34, 36, 37] показало, что скорость полимеризации пропорциональна корню квадратному из концентрации инициатора, что отвечает обычной радикальной винильной полимеризации [38]. При концентрации ДИНИЗ 0,5-10 моль1л скорость полимеризации при 20° С составляет 0,018% в час, а при 50° С — 5,7% в час. [c.71]

    На рис. 1.17 приведены кривые зависимости скорости полимеризации стирола от pH. Хотя влияние pH (наличие максимумов) всюду одинаково, величина максимума различна она наибольшая для бромистого Ы-Октадециламида никотиновой кислоты и наименьшая для Н-октадецил-р-пиколиния. Снижение скорости полимеризации с увеличением pH авторы связывают с ингибированием реакции продуктами распада инициатора или исчерпанием инициатора на ранних стадиях процесса. [c.36]

    Обычно в случае жидкофазной полимеризации наличие экстремальной точки на зависимости выхода от температуры при ее повышении свидетельствует о быстром исчерпании инициатора, превалировании скорости обрыва цепей над скоростью их роста или о возможном начале термодеструкции полимерных продуктов (характерно для высокотемпературных процессов). Однако, при охлаждении и замораживании эти факторы не могли оказывать влияния на выход полимера хотя бы потому, что двукратное уменьшение концентрации инициатора не приводило к существенному снижению выхода при криосинтезе (т. е. не было слишком быстрого исчерпания инициатора), а при постоянной исходной концентрации инициатора в гомофазном процессе при 5-35 °С выход полиакриламида монотонно возрастал (рис. За), т. е. в замороженных образцах ни ускорение обрыва цепей, ни их деструкция тем более не происходили. [c.83]

    В ряде работ было найдено, что при полимеризации мономера в жидкости, в которой происходит осаждение полимера, скорости полимеризации и молекулярные веса полимеров увеличиваются. Норриш и Смит [46] обнаружили такое явление при полимеризации метилметакрилата, а Уайт и Говард [47] получили аналогичные результаты с метилвинилке-тоном. Говард [48] обнаружил еще более ярко выраженный эффект при работе с метилизопропенилкетоном, растворенным в циклогексане, где растворяющие свойства среды изменялись при изменении отношения растворитель/мономер. Поскольку в качестве инициатора Говард использовал перекись бензоила, среда могла оказывать влияние на скорость разложения инициатора (см. гл. 6) далее, зависимость скорости от концентрации мономера не известна, так что трудно оценить влияние гетерогенных условий на результаты наблюдений. Наиболее важным случаем гетерогенной полимеризации в растворе является полимеризация стирола, растворенного в низших алифатических спиртах. Первые опыты с этой системой проводили Эйбр, Голдфингер, Нейдус и Марк [10], но паи- [c.152]

    Подобные определения сделаны для весьма ограниченного числа систем. Интересно сопоставить данные, полученные при полимеризации хлоропрена и изопрена под влиянием дибутил-магния [64—65]. Изменение концентрации возбудителя оценивалось по содержанию бутана в газе, образующемся при разложении пробы реакционной смеси водой. Общая скорость полимеризации в обоих случаях невелика, и процесс растягивается (для хлоропрена при 40°, а для изопрена при 90°) на часы. Для хлоропрена отмечается практически полное исчезновение исходного магний-органического соединения уже через доли минуты после начала реакции. Напротив, при полимеризации изопрена дибутилмагний в сравнимых концентрационных условиях расходуется очень медленно и исчезает полностью примерно через 20 час. конверсия мономера составляет к этому времени 20%. Контроль за расходованием инициатора удалось осуществить с помощью спектроскопической методики при использовании в качестве инициатора флуорениллития (по содержанию флуоренильной группы в реакционной смеси после отделения полимера) [66]. Так, в системе флуорениллитий—метилметакрилат—тетрагидрофуран при —60° инициатор полностью входит в реакцию за несколько секунд. [c.340]

    Сопоставляя эти данные с результатами иолимеризационных опытов, проведенных в присутствии полиоксиэти-ленгликолевого эфира нонилфенола с ге = 30, видим, что скорость процесса возрастает до 50° С, т. е. в данном температурном интервале влияние роста мицеллярного веса благоприятно сказывается на протекании реакции полимеризации. Однако с ростом температуры одновременно увеличивается и скорость распада инициатора КаЗзО , что в свою очередь тоже дол кно приводить к возрастанию скорости полимеризации. Поэтому трудно однозначно определить, какой из указанных факторов является решающим. [c.281]

    Рассмотрение кинетических закономерностей радикальной полимеризации дало возможность сделать ряд важных в практическом и теоретическом отношении выводов о влиянии различных факторов на этот процесс. Установлено, что скорость инициирования пропорциональна концентрации инициатора, а общая скорость полимеризации в стационарном периоде (когда скорость инициирования равна скорости обрыва цепи и, следовательно, общая скорость равна скорости роста цепи) пропорциональна квадратному корню из концентрации инициатора и первой степени концентрации мономера у = К[М][1п] /". Что касается степени полимеризации, т. е. молекулярной массы, то она обратно пропорпиут1 дь а.. квядратному [c.17]

    Известно [2, 4], что скорость полимеризации в эмульсии в большой степени зависит от природы и концентрации применяемых мономеров, инициаторов, эмульгаторов. В связи с этим было исследовано влияние концентрации эмульгатора на скорость сополимеризации бутадиена с метилметакрилатом и метакриловой кислотой. Предварительно для получения латекса с необходимыми технологическими свойствами (вязкость, устойчивость) было определено оптимальное соотношение водной и углеводородной фаз, которое оказалось равным 1 2,2 (рис. 1). Дозировка эмульгатора в рецепте изменялась от 0,5 до 5 мае. ч. Установлено (рис. 2), что увеличение содержания эмульгатора в данном интервале исследуемых значений приводит к увеличению скорости процесса полимеризации. На основании полученных экспериментальных данньтх был рассчитан порядок реакции по эмульгатору, который оказался равным 0,73. [c.74]

    Юрженко и Цветков [770] изучили влияние концентрации инициатора и эмульгатора [771] на скорость полимеризации стирола в эмульсии. В качестве катализатора применяли надсернокислый калий, гидроперекись диметилфенилкарбинола, перекись водорода, перборат натрия и диазоаминобензол, в качестве эмульгатора — натриевую соль дибутилнафталинсульфокисло-ты. Показано, что для всех инициаторов перекисного типа кривые зависимости скорости полимеризации V от концентрации инициатора С имеют максимум, положение которого на кривой зависит от природы инициатора, концентрации эмульгатора и pH среды. [c.213]

    Скорость полимеризации, по данным Томаса и О Шонесси [1168], зависит от природы растворителя. Это объясняется влиянием растворителей на скорость реакции обрыва цепи или на скорость распада инициаторов. Установлено, что следы первичных и вторичных спиртов ингибируют полимеризацию трифторхлорэтилена в растворе. [c.304]

    Мономеры типа акролонитрила, сравнительно хорошо растворимые в воде. Для них под влиянием водорастворимого инициатора образование полимера начинается в водном р-ре. Процесс в мицеллах эмульгатора если и протекает, то с малой скоростью. Полимеризация далее продолжается в полимерно-мономерных частицах, образующихся из выпадающих из водного р-ра макромолекул и макрорадикалов, стабилизованных молекулами ПАВ. [c.483]


Смотреть страницы где упоминается термин Инициаторы влияние на скорость полимеризации: [c.69]    [c.195]    [c.96]    [c.125]    [c.26]    [c.47]    [c.89]    [c.426]    [c.245]    [c.224]    [c.484]    [c.75]    [c.471]   
Основы химии полимеров (1974) -- [ c.166 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации инициатора на скорость полимеризации

Инициаторы

Инициаторы полимеризации

Инициаторы полимеризации влияние на скорость реакции

Инициирование полимеризации влияние на скорость концентрации инициатора

Полимеризация влияние



© 2025 chem21.info Реклама на сайте