Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние концентрации инициатора на скорость полимеризации

    Влияние концентрации инициатора. Скорость полимеризации возрастает пропорционально корню квадратному из концентрации инициатора. При этом степень полимеризации и средний молекулярный вес полимера снижаются. [c.225]

    Изучено влияние концентрации инициатора и мономера на величину молекулярного веса и на скорость полимеризации пропиленсульфида. Полученные данные [c.34]


    Влияние концентрации инициатора. С повышением концентрации инициатора число свободных радикалов, образующихся при его распаде, возрастает, что приводит к увеличению числа активных центров, а следовательно, к возрастанию суммарной скорости полимеризации. [c.88]

Рис. 14. Влияние концентрации инициатора в водном растворе на скорость эмульсионной полимеризации. Рис. 14. Влияние концентрации инициатора в <a href="/info/6274">водном растворе</a> на <a href="/info/823104">скорость эмульсионной</a> полимеризации.
    Влияние концентрации инициатора. С увеличением концентрации инициатора возрастает скорость полимеризации (рис. 7). Молекулярный вес полимера с увеличением концентрации инициатора понижается (рис. 8). [c.29]

    Влияние концентрации инициатора и мономера на среднюю степень полимеризации. С повышением концентрации инициатора возрастает число активных центров, а следовательно, возрастает суммарная скорость полимеризации. Молекулярная масса образующегося полимера уменьшается. [c.34]

    Увеличение концентрации инициатора двояким образом влияет на скорость полимеризации. С одной стороны, это приводит к увеличению стационарной концентрации растущих частиц — тривиальному эффекту, обычному для любого полимеризационного процесса, но, кроме того, замечено сильное влияние концентрации инициатора на скорость роста каждой растущей полимерной цепи, что обусловлено повышением концентрации активированного мономера. Это явление не наблюдается в обычном полимеризационном процессе, где скорость роста каждой цепи не зависит от концентрации инициатора. [c.586]

    При неправильном выборе параметров режима длина реактора может не полностью использоваться или, наоборот, реакция полимеризации будет обрываться при максимальной скорости образования полимера. Поэтому при моделировании определяли влияние давления, температуры теплоносителя, концентрации инициатора в каждой зоне на конеч- [c.97]

    На процесс радикальной полимеризации оказывают влияние температура, концентрации инициаторов и мономеров, давление. С повышением температуры процесса и концентрации инициатора суммарная скорость полимеризации увеличивается, а молекулярная масса образующегося полимера уменьшается. [c.147]


    Таким образом, при увеличении поверхности раздела фаз независимо от того, каким способом оно достигается, увеличиваются скорости полимеризации и инициирования. Что считать ответственным за это увеличение — изменение скорости разложения инициатора или эффективности инициирования, не всегда можно решить однозначно. Хотя приведенные выше результаты получены при рассмотрении суспензионной полимеризации, для которой характерна меньшая степень дисперсности, чем для истинных эмульсионных систем, влияние диспергирования на реакцию инициирования весьма ощутимо. Вследствие того что природа и концентрация эмульгатора, а также соотношение водной и углеводородной фаз определяют дисперсность эмульсии, становится понятным влияние эмульгатора на скорость инициирования полимеризации в эмульсии. На преимущественное образование инициирующих свободных радикалов в зоне поверхности раздела фаз указывает увеличение скорости разложения инициаторов в эмульсиях, снижение общей энергии активации и энергии активации инициирования (см. табл. 1.1). Эмульгатор при этом обеспечивает высокую степень дисперсности системы и концентрационное перераспределение компонентов полимеризационной системы по фазам. [c.43]

    По данным Медведева и Хомиковского [3, 10, 16, 88, 102], подробно исследовавших влияние концентрации персульфата калия на скорость эмульсионной полимеризации стирола, максимума на кривой зависимости скорости от концентрации инициатора нет. По-видимому, максимумы, обнаруженные в работах Юрженко, следует связывать с недостаточной очисткой эмульгаторов от примесей электролитов. [c.47]

    В результате исследования влияния эмульгатора — гексадецил-сульфата натрия — на скорость полимеризации винилацетата в 3%-ном водном растворе (инициатор — персульфат калия) было обнаружено, что увеличение концентрации эмульгатора выше ККМ (1-10 3 моль) не влияет на скорость процесса [31]. Совпадение кинетических кривых при концентрациях гексадецилсульфата натрия ЫО и 1-10 моль авторы рассматривают как свидетельство того, что прямая атака радикалами мономера, включенного в мицеллы, вносит пренебрежимо малый вклад в общую скорость процесса. Мицеллы служат лишь резервуаром, из которого поставляются молекулы эмульгатора для стабилизации олигомеров, зародышей и растущих частиц. [c.88]

    Очевидно, что на основе рассмотренного выше механизма нельзя ожидать простой зависимости между скоростью реакции и скоростью инициирования (или концентрацией инициатора), хотя в отдельных случаях скорость, измеренная в данное время или при данной глубине полимеризации, может быть пропорциональной корню квадратному из концентрации инициатора. Влияние окклюзии всегда проявляется в увеличении показателя степени при концентрации инициатора в уравнении для скорости полимеризации это можно качественно аргументировать следующим образом. Скорость реакции на любой стадии процесса определяется числом и размером имеющихся полимерных частиц и повышается с увеличением обеих величин. Чем больше концентрация инициатора, тем выше скорость образования полимера и, следовательно, возрастание скорости больше, чем это следует из прямой пропорциональности между скоростью и корнем квадратным из концентрации инициатора. Показатель степени при концентрации инициатора по этой причине должен быть больше /г- Более того, сильную окклюзию можно рассматривать как реакцию обрыва, протекающую по первому порядку, а это приводит к увеличению показателя степени при концентрации инициатора. Из этих эффектов в случае акрилонитрила должен преобладать первый, так как только незначительная часть от общего количества радикалов, генерированных при 25°, полностью застревает в полимере [25], [c.139]

    Изучено влияние природы и концентрации эмульгаторов и инициаторов на скорость эмульсионной полимеризации винилхлорида При полимеризации под действием персульфата калия в присутствии лаурата натрия и натриевых солей сульфокислот жирного ряда (эмульгаторы) скорость полимеризации пропорциональна концентрации инициатора и эмульгатора в степени Ч2  [c.473]

    Гриценко и Медведев [88] исследовали кинетику полимеризации акрилонитрила в водных растворах при 40—75° с инициатором — гидроперекисью кумола и показали, что с ростом концентрации инициатора скорость полимеризации сначала растет, а затем становится практически независимой от нее. Порядок реакции относительно концентрации мономера равен 3/2, полная энергия активации — 19,6 ккал/моль. Авторы предполагают, что акрилонитрил и гидроперекись кумола образуют окислительно-восстановительную систему, причем окислительным компонентом является гидроперекись, а восстановительным — ионизированная форма акрилонитрила. При добавке в систему восстановителей (Ре304, НагЗОз, ЫаН804 К4ре(СЫ)в и других) скорость полимеризации значительно возрастает, наблюдается значительное снижение суммарной энергии активации процесса. Авторы считают, что при окислительно-восстановительном инициировании эмульсионной полимеризации влияние водной среды состоит в том, что она создает условия для протекания быстрых, требующих малой энергии активации, ионных процессов образования начальных активных центров, вследствии чего интенсифицируется и весь процесс в целом. [c.561]


    Юрженко и Цветков [770] изучили влияние концентрации инициатора и эмульгатора [771] на скорость полимеризации стирола в эмульсии. В качестве катализатора применяли надсернокислый калий, гидроперекись диметилфенилкарбинола, перекись водорода, перборат натрия и диазоаминобензол, в качестве эмульгатора — натриевую соль дибутилнафталинсульфокисло-ты. Показано, что для всех инициаторов перекисного типа кривые зависимости скорости полимеризации V от концентрации инициатора С имеют максимум, положение которого на кривой зависит от природы инициатора, концентрации эмульгатора и pH среды. [c.213]

    Влияние полимера на скорость полимеризации особенно четко видно из данных, приведенных на рис. 4. Кривая I соответствует полимеризации без добавок полимера, кривая 3 — полимеризации в присутствии заранее введенного в полимеризующуюся систему низкомолекулярного полимера. Концентрация полимерных цепей, оцененная из концентрации инициатора, составляет около 10" молъ1л. Из рис. 4 видно, что полимеризация в отсутствие полимера идет достаточно быстро скорость полимеризации составляет 3%1мин. Присутствие низкомолекулярного полимера приводит к замедлению полимеризации выход полимера за ча составляет около 1%. Скорость полимеризации после переконденсации представлена кривой 2. Как видно, скорости полимеризации после переконденсации и в контрольном опыте в отсутствие полимера примерно одинаковы и обе намного больше, чем в присутствии полимера. [c.166]

    Механизм полимеризации винилхлорида в блоке, т. е. в жидкой фазе, в присутствии инициаторов исследовали Бенгоу и Норриш [68], Пра [69], Джен-кель, Экманс и Румбах [701, Брайтенбах и Шиндлер [71] они изучали степень превращения мономера как функцию времени, влияние концентрации инициатора и температуры на скорость полимеризации и молекулярный вес образующегося полимера, влияние ингибиторов, особенно кислорода, и изменение молекулярного веса полимера в ходе полимеризации. Результаты этих исследований показывают, что полимеризация винилхлорида протекает по обычному радикально-цепному механизму, но имеет две специфические особенности 1) возрастание скорости полимеризации от начала реакции до примерно 50%-ного превраще1шя мономера, получившее впоследствии название гель-эффекта, и 2) гораздо большее значение реакции передачи цепи, чем при полимеризации других виниловых соединений. Обе эти особенности реакции полимеризации винилхлорида имеют практическое значение. Первая является причиной непостоянства скорости эмульсионной [721 и капельной или суспензионной [73] полимеризации, которые главным образом и применяются для производства поливинилхлорида в заводском масштабе. Реакции передачи цепи в процессе полимеризации оказывает большое влияние па молекулярный вес получаемого полимера. о [c.67]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    Ряд работ посвящен синтезу, свойствам и применению сополимеров акрилонитрила со стиролом. Так, Мино [647] исследовал сополимеризацию акрилонитрила со стиролом в массе и в водной дисперсии при 90—100° с инициатором 1-азо-бис-1-фе-нилэтаном. Константы совместной полимеризации Гх= 0,4 для акрилонитрила и Гг= 0,04 для стирола. Хансон и Зиммерман [648] приводят простой метод получения сополимеров, в том числе акрилонитрила со стиролом,— метод циклической полимеризации, позволяющий получать сополимеры заранее определенного, постоянного состава. Метод основан на непрерывной частичной сополимеризации смеси мономеров, отделении не вступивших в реакцию мономеров от сополимера и возвращении их в реактор вместе с порцией свежих мономеров. В работах Утида и Нагао [649—651] исследовано влияние эмульгаторов на сополимеризацию акрилонитрила со стиролом. Скорость полимеризации смесей, богатых акрилонитрилом, достигает максимума при содержании анион-активного эмульгатора в количестве 1 %. В отсутствие анион-активного эмульгатора наблюдается максимум скорости реакции, что объясняется затрудненной диффузией радикалов в мицеллы при больших концентрациях эмульгатора. Сэкидзима [652] получал водорастворимый порошкообразный сополимер акрилонитрила со стиролом. Описаны специальные типы сополимеров акрилонитрила со стиролом [653], синтез сополимеров в эмульсии [654], блоке [655, 656] и в гранулах [c.575]

    Пример 50. Полимеризация винилового мономера, концентрация которого в растворе составляет 1,2 моль л", проходит с начальной скоростью 2,2 10 моль - л с при начальной скорости инициирования 8,3- 10 моль -л -с Концентрация растворителя при температуре полимеризации 12,4 моль-л , концентрация инициатора 0,008 моль л . Вычислите начальные скорости передачи цепи на мономер, растворитель и инициатор, если соответствующие относительные константы равны 1,05 100,95 10 и 3,3 10 Сколько актов передачи цепи на мономер, инициатор и растворитель приходится на 10 актов роста цепи Вычислите начальную степень полимеризации и покажите влияние на нее каждой из реакций обрыва и передачи цепи, для чего найдиае значения долей макромолекул, образующихся при помощи той или иной реакции обрыва или передачи цепи. Отношение скоростей рекомбинации и диспропорционирования равно 2 3. [c.33]

    Повышение температуры свободнорадикальной полимеризации приводит к увеличению суммарной скорости полимеризации, так как изменение температуры в первую очередь сказывается на ско-рости разложения инициатора, а следовательно, и на числе радикалов, генерируемых в единицу времени. В то же время средняя степень полимеризации образующегося полимера уменьшается, так как согласно уравнению (3-3) скорость обрыва цепи также зависит от концентрации радикалов в системе (см. опыт 3-02). Кроме того, повышение температуры благоприятствует побочным реакциям, например реакциям передачи и разветвления. При полимеризации диенов температура реакции оказывает влияние на микроструктуру повторяющихся звеньев в цепи полимера. [c.114]

    Исследование кинетики полимеризации N-винилпирролидона ПОД влиянием ДИНИЗ [34, 36, 37] показало, что скорость полимеризации пропорциональна корню квадратному из концентрации инициатора, что отвечает обычной радикальной винильной полимеризации [38]. При концентрации ДИНИЗ 0,5-10 моль1л скорость полимеризации при 20° С составляет 0,018% в час, а при 50° С — 5,7% в час. [c.71]

    В работах Медведева с сотр. [3, 9—16, 88, 102] подробно проанализировано влияние концентрации эмульгатора на скорость ЭП, рассмотрены различные формы этой зависимости, определяющиеся условиями полимеризации. Например, при ЭП стирола скорость пропорциональна корню квадратному из концентрации эмульгатора (мерзолята алия цри инициировании персульфатом калия), прямо пропорциональна концентрации эмульгатора в присутствии инициатора — азо-бис(изобутиронитрила) (до концентрации 5%) или гидроперекиси кумола. В случае изопрена скорость его полимеризации пропорциональна концентрации бромистого це-тилпирцдиния (до концентрации 7%). [c.26]

    Более тщательное исследование было проведено при изучении влияния различных эфиров, используемых в качестве растворителей, на среднюю степень полимеризации ПВА [17]. Авторы показали, что нельзя делать выводы о значении константы скорости передачи цепи, исходя лишь из прямо пропорциональной зависимости между Р и [5]/[М] (где [5] и [Щ — концентрации соответственно растворителя и мономера. Константы -переноса определяли, варьируя концентрацию инициатора — азо-бис (изобутиронитри-ла) и сохраняя постоянной концентрацию мономера. В качестве растворителей использовали метил- и изопропилацетат и диметил-оксалат. [c.197]

    Обычно в случае жидкофазной полимеризации наличие экстремальной точки на зависимости выхода от температуры при ее повышении свидетельствует о быстром исчерпании инициатора, превалировании скорости обрыва цепей над скоростью их роста или о возможном начале термодеструкции полимерных продуктов (характерно для высокотемпературных процессов). Однако, при охлаждении и замораживании эти факторы не могли оказывать влияния на выход полимера хотя бы потому, что двукратное уменьшение концентрации инициатора не приводило к существенному снижению выхода при криосинтезе (т. е. не было слишком быстрого исчерпания инициатора), а при постоянной исходной концентрации инициатора в гомофазном процессе при 5-35 °С выход полиакриламида монотонно возрастал (рис. За), т. е. в замороженных образцах ни ускорение обрыва цепей, ни их деструкция тем более не происходили. [c.83]

    Мелвилл и Уотсон [46] исследовали термическую и каталитическую (перекись бензоила) полимеризацию стирола и метилметакрилата, а также влияние хинона на эти реакции. Рассматривая сначала каталитическую полимеризацию метилметакрилата, следует отметить, что данные, полученные этими исследователями, а также более ранние результаты Норриша и Брукмана [47] показывают, что в отсутствие ингибитора обрыв цепей происходит путем рекомбинации, так как скорость пропорциональна квадратному корню из концентрации инициатора как в случае перекиси бензоила, так и в случае озона (табл. 41). По мере добавления возра- [c.415]

    В ряде работ было найдено, что при полимеризации мономера в жидкости, в которой происходит осаждение полимера, скорости полимеризации и молекулярные веса полимеров увеличиваются. Норриш и Смит [46] обнаружили такое явление при полимеризации метилметакрилата, а Уайт и Говард [47] получили аналогичные результаты с метилвинилке-тоном. Говард [48] обнаружил еще более ярко выраженный эффект при работе с метилизопропенилкетоном, растворенным в циклогексане, где растворяющие свойства среды изменялись при изменении отношения растворитель/мономер. Поскольку в качестве инициатора Говард использовал перекись бензоила, среда могла оказывать влияние на скорость разложения инициатора (см. гл. 6) далее, зависимость скорости от концентрации мономера не известна, так что трудно оценить влияние гетерогенных условий на результаты наблюдений. Наиболее важным случаем гетерогенной полимеризации в растворе является полимеризация стирола, растворенного в низших алифатических спиртах. Первые опыты с этой системой проводили Эйбр, Голдфингер, Нейдус и Марк [10], но паи- [c.152]

    Подобные определения сделаны для весьма ограниченного числа систем. Интересно сопоставить данные, полученные при полимеризации хлоропрена и изопрена под влиянием дибутил-магния [64—65]. Изменение концентрации возбудителя оценивалось по содержанию бутана в газе, образующемся при разложении пробы реакционной смеси водой. Общая скорость полимеризации в обоих случаях невелика, и процесс растягивается (для хлоропрена при 40°, а для изопрена при 90°) на часы. Для хлоропрена отмечается практически полное исчезновение исходного магний-органического соединения уже через доли минуты после начала реакции. Напротив, при полимеризации изопрена дибутилмагний в сравнимых концентрационных условиях расходуется очень медленно и исчезает полностью примерно через 20 час. конверсия мономера составляет к этому времени 20%. Контроль за расходованием инициатора удалось осуществить с помощью спектроскопической методики при использовании в качестве инициатора флуорениллития (по содержанию флуоренильной группы в реакционной смеси после отделения полимера) [66]. Так, в системе флуорениллитий—метилметакрилат—тетрагидрофуран при —60° инициатор полностью входит в реакцию за несколько секунд. [c.340]

    Реактор автоклавный с механической мешалкой. Относится к числу аппаратов идеального перемешивания, поэтому скорость реакции не подвергается влиянию естественной или вихревой диффузии и все показатели процесса в расчете на единицу объема реактора подчиняются одним и тем же кинетическим закономерностям. В таком реакторе в случае экзотермического процесса необходимый температурньхй уровень поддерживается (полностью ипи частично) за счет тепла самой реакции, так называемый "автотермический процесс. Так, при полимеризации этилена тепла реакции 3570 кДж/кг (850 ккал/кг) вполне достаточно для нагрева поступающего этилена до температуры реакции. Хорошее перемешивание реакционной смеси создает благоприятные температурные условия по объему реактора, исключает возможность создания местных значительных концентраций инициатора, перегревов и разложения этилена, обусловливает стабильностдз процесса и хорошее качество продукции. Хорошее перемешивание делает возможным применение сомономеров и других добавок. Используя различные по конструкции мешалки, изменяя число их оборотов, а также количество подаваемого газа и продолжительность пребывания его в реакторе, можно изменить качество получаемого полимера. [c.130]

    Рассмотрение кинетических закономерностей радикальной полимеризации дало возможность сделать ряд важных в практическом и теоретическом отношении выводов о влиянии различных факторов на этот процесс. Установлено, что скорость инициирования пропорциональна концентрации инициатора, а общая скорость полимеризации в стационарном периоде (когда скорость инициирования равна скорости обрыва цепи и, следовательно, общая скорость равна скорости роста цепи) пропорциональна квадратному корню из концентрации инициатора и первой степени концентрации мономера у = К[М][1п] /". Что касается степени полимеризации, т. е. молекулярной массы, то она обратно пропорпиут1 дь а.. квядратному [c.17]

    Известно [2, 4], что скорость полимеризации в эмульсии в большой степени зависит от природы и концентрации применяемых мономеров, инициаторов, эмульгаторов. В связи с этим было исследовано влияние концентрации эмульгатора на скорость сополимеризации бутадиена с метилметакрилатом и метакриловой кислотой. Предварительно для получения латекса с необходимыми технологическими свойствами (вязкость, устойчивость) было определено оптимальное соотношение водной и углеводородной фаз, которое оказалось равным 1 2,2 (рис. 1). Дозировка эмульгатора в рецепте изменялась от 0,5 до 5 мае. ч. Установлено (рис. 2), что увеличение содержания эмульгатора в данном интервале исследуемых значений приводит к увеличению скорости процесса полимеризации. На основании полученных экспериментальных данньтх был рассчитан порядок реакции по эмульгатору, который оказался равным 0,73. [c.74]

    Капур [698] исследовал влияние природы растворителей на молекулярные веса полимеров и определил значения константы к в уравнении [р= 1р 4- 5/М, гдер и средняя степень полимеризации в присутствии и в отсутствие растворителя к = кп/кр, кп — константа скорости реакции передачи цепи через растворитель р —константа скорости роста цепи 5 — концентрация растворителя М — концентрация мономера. Во всех опытах отношение концентрация инициатора концентрация мономера сохранялось постоянным. Молекулярные веса определялись вискозиметрически по формуле  [c.206]

    Величина частиц образующегося полимера зависит от степени диспергирования, которая определяется в основном природой применяемого стабилизатора и скоростью перемешивания. В результате реакции получается суспензия полимера, которая легко отделяется от водной фазы фильтрованием или центрифугированием. Полученный полимер обычно отличается более высокой чистотой по сравнению с эмульсионными полимерами. В работе Банкоффа и Шрива [62] показано, что полимер, полученный путем суспензионной полимеризации, обладает более высокой термостабильностью, чем полимер, полученный эмульсионной полимеризацией, что объясняется более высокой степенью его чистоты. На термостабильность поливинилхлорида оказывает влияние природа инициатора и стабилизатора суспензии. Лучшие результаты были получены в случае применения в качестве инициаторов реакции органических перекисей и стабилизатора — суспензии поливинилового спирта. Повышение концентрации инициатора и температуры реакции снижает термостабильность полимера. [c.264]

    Подробно исследовано влияние различных перекисей на скорость полимеризации стирола при 70° С Начальные скорости полимеризации, отнесенные к квадратному корню из концентрации инициатора, равны для перекисей бензоила — 1,0, ди-п-хлор-бензола — 0,79, ацетила — 26, лаурила и миристила — 1,60, калри-лила— 1,68, ди-2,4-дихлорбензоила— 1,98. [c.15]

    Предполагается, что в случае гомополимеризации в диметилформамиде ионная пара растущей цепи полностью диссоциирована, вследствие чего степень полимеризации не зависит от противоиона и температуры. При гетерогенной полимеризации в петролейном эфире отмечено влияние противоиона (К+и Ма+)9 Ч Изучалась также полимеризация акрилонитрила под действием Ма-диэтилмалоиового эфира 9 . Скорость полимеризации пропорциональна концентрации инициатора и квадрату концентрации мономера. Константа скорости при —40° С равна 1,41 л- -моль -мин К [c.123]

    За обозреваемый период опубликовано значительное количество статей ° 2-19б2 JJ патентов1070 относящихся к изучению эмульсионной полимеризации хлоропрена. Многие исследования были направлены на изучение влияния природы и концентрации эмульгато ров и инициаторов ° 2-1055 а также влияния температуры полимеризации на скорость полимеризации хлоропрена [c.816]


Смотреть страницы где упоминается термин Влияние концентрации инициатора на скорость полимеризации: [c.195]    [c.630]    [c.131]    [c.218]    [c.549]    [c.96]    [c.26]    [c.206]    [c.426]    [c.232]    [c.49]    [c.130]   
Смотреть главы в:

Основы химии полимеров -> Влияние концентрации инициатора на скорость полимеризации




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации

Инициаторы

Инициаторы влияние на скорость полимеризации

Инициаторы полимеризации

Инициирование полимеризации влияние на скорость концентрации инициатора

Полимеризация влияние

Полимеризация концентрации инициатора



© 2024 chem21.info Реклама на сайте