Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть определение качественное

    Для получения поляризационных кривых полярограмм) в этих методах пользуются в качестве катода струей ртути, непрерывно по каплям вытекающей из отверстия, а в качестве анода применяется электрод с большой поверхностью, обычно тоже ртутный. Ток применяется очень слабый, порядка 10 а. Анод, вследствие большой поверхности его и связанной с этим малой плотности тока, практически не поляризуется. Поэтому налагаемое напряжение расходуется лишь на поляризацию катода и на прохождение тока через раствор. В результате, измеряя силу тока при различных напряжениях, можно определять поляризацию на катоде. Различного вида ионам свойственны разные потенциалы их восстановления на катоде. Применяя среды кислые, нейтральные или щелочные, можно охватить все важнейшие виды ионов, выполняя как качественный, так в определенных условиях и количественный анализ раствора. Полярографический метод является очень чувствительным и дает возможность обнаружить и часто приближенно определить составные части, содержащиеся в очень малой концентрации. Полярографический метод находит применение в различных работах, где используется катодное восстановление.  [c.449]


    В сухой электролизер помещают точно по 10 мл этих растворов (если их два) или по 6,7 мл (при наличии трех катионов в смеси), добавляют 0,5 г сухого ЫагЗОз и через 5 мин снимают полярограмму при той же чувствительности гальванометра и тех же условиях капания ртути, при которых снимали полярограмму анализируемой смеси. Измеряют высоты волн определяемых катионов на полярограмме, полученной при качественном их определении, и высоты волн этих же катионов на полярограмме стандартных растворов и делают расчет. [c.171]

    В широком смысле качество —это то, что отличает один объект (предмет, явление, процесс) от других то, благодаря чему он является именно этим, а не другим объектом. Качество — философская категория, смысл и значение которой раскрывает диалектический материализм. Качество сообщает своеобразие и специфику каждому веществу. Взгляните на материальные предметы окружающего нас мира. Никто не станет спорить, что стакан, ложка, книга, камень — разные предметы, а дождь и солнечное затмение — разные природные явления. Никто не спутает ель с березой, воду со ртутью, сахар с углем. Почему Очевидно потому, что они имеют различный внешний вид (форму) и проявляют различные свойства. (Форма — это также одно из свойств объекта.) Стало быть, качество обнаруживается в сочетании свойств, а свойство есть не что иное, как способ проявления определенной стороны качества объекта по отношению к другим объектам. Каждое вещество обладает множеством свойств, поскольку находится в бесконечных связях с другими объектами. Например, сахар белый, следовательно, по отношению к свету он обладает отражающей способностью, воспринимаемой нашим зрением. На вкус — сладкий. По отношению к воде — растворимый. Хрупкий, легко разрушается и т. д. Все это свойства, в которых проявляется качественное своеобразие вещества, названного сахаром. [c.23]

    Алкалоиды дают простые и комплексные соединения с различными реагентами, чаще всего кислотами. Некоторые из этих соединений могут быть использованы для качественного определения алкалоидов, если они образуют нерастворимые осадки или дают окрашенные вещества. К числу таких общих реактивов на алкалоиды относится таннин, фосфорно-молибденовая, фосфорно-вольфрамовая, кремне-воль-фрамовая, пикриновая и хлорная кислоты, раствор иода в иодистом калии, двойные соли иодистого калия с иодистой ртутью, с иодистым висмутом, сулемой, хлористой медью н др. [c.121]

    Углеводород А, плотность которого по воздуху меньше 1, присоединяет в присутствии хлорида ртути (И) хлороводород и превращается при этом в вещество В, которое при определенных условиях образует вещество С, имеющее тот же качественный и количественный состав, на гораздо большую относительную молекулярную массу. Приведите формулы веществ А, В, С. Напишите уравнения реакций. [c.329]


    Методом, дающим возможность легко сочетать качественное обнаружение ртути в виде йодида с количественным определением Hg +, является колориметрический метод Полежаева, рекомендованный А. Ф. Рубцовым для судебно-химической практи- [c.343]

    Чаще всего полярографический анализ применяется для определения ионов металлов, которые электролитически восстанавливаются на ртутном катоде. Для этого в испытуемый раствор опускают два электрода один из них, как правило, катод, имеет малую поверхность, например капли ртути, вытекающие из очень тонкого капилляра. Анод представляет собой слой ртути с большой поверхностью на дне электролитического сосуда. Электроды соединяют с источником постоянного тока и постепенно повышают напряжение, наблюдая за изменением силы тока в зависимости от приложенного напряжения. Эта зависимость имеет неравномерный характер и выражается кривой с перегибами — волнами. Напряжение, при котором возникают эти волны, зависит от состава электролита и характерно для того или другого иона металла. Высота этих волн зависит от концентрации восстанавливающегося иона. Таким образом, по кривой зависимости силы тока от приложенного напряжения в данных условиях можно судить о составе и концентрации электролита, т. е. провести качественный и количественный анализ раствора. [c.209]

    Удачное решение для метода вычитания было предложено в работе [12]. Реакции проводили в системе, содержащей две фазы воду и тетрахлорид углерода. Анализируемую смесь, представляющую собой водный раствор органических соединений, использовали как одну из двух фаз (водную). После добавления к ней тетрахлорида углерода и, следовательно, образования двухфазной системы жидкость — жидкость, для уско,рения установления равновесия систему встряхивали и после расслоения анализировали газохроматографическим методом тетрахлорид углерода с экстрагированными соединениями. Обработка гидросульфитом привела к исчезновению пиков карбонильных - соединений или к их существенному уменьшению. Таким образом, этот метод может быть рекомендован для качественного, а в ряде случаев и количественного определения карбонильных соединений. В этой же работе описан метод вычитания сернистых соединений (меркаптанов) при использовании хлорида ртути как реагента. [c.144]

    Введение гидроксильной группы в бензольное кольцо сдвигает полосы поглощения в УФ-спектрах в длинноволновую область и усиливает их фенол поглощает в области 210,5 (е 6200) и 270 (е 1450) нм. Исследовано влияние заместителей и растворителя на положение этих максимумов [9а]. В основной среде для растворов фенолов отмечен батохромный сдвиг подобный сдвиг оказывается полезным для установления фенольной структуры и применяется при анализе [96]. Ряд реакций фенолов используют для получения продуктов, поглощающих в видимой области они могут применяться для качественного определения фенолов, а в некоторых случаях и для количественного анализа. Так, фенол окрашивает нейтральный раствор хлорида железа(И1) в зеленовато-голубой цвет (красно-фиолетовый с фенолами, содержащими орто-карбонильную группу), а раствор нитрата ртути в азотной кислоте — в красный цвет (проба Миллона). Для фенолов, не содержащих заместителей в /гара-положении, применяют реагент Гиббса (2,б-дихлорхинон-4-хлоримин). Для количественных определений можно использовать сочетание с ионами диазония и реакцию с антипирином подробности можно почерпнуть в работах Файгля [10а] и Цвейга [106]. [c.180]

    Присутствие сероводорода в нефти и хроматографических фракциях определялось качественно по медной пластинке. Во всех случаях был получен отрицательный результат. Также отрицательным был результат определения элементарной серы с помощью металлической ртути. [c.346]

    Наряду с медной пластинкой для качественного обнаружения свободной серы применяют металлическую ртуть, преимущество которой только в том, что определение производится путем встряхивания на холоду в течение 15—20 мин. Вязкие образцы перед испытанием разбавляются петролейным эфиром, предварительно обработанным ртутью. Появление сероватого налета на поверхности ртути свидетельствует о присутствии только следов серы, а при большом содержании появляется черный налет или даже осадок [280, 281]. Органические перекиси также мешают определению и поэтому их необходимо разрушить перед испытанием. [c.31]

    Васильева Е. В. Качественное открытие ионов серебра и ртути и их количественное (колориметрическое) определение. ЖАХ, [c.138]

    Для качественного определения гремучей ртути, ее после растворения в соляной кислоте или растворе тиосульфата осаждают сероводородом для получения сернистой ртути. [c.681]


    Можно также остановиться на качественном определении азота (при прокаливании органических соединений с натронной известью). Следует указать, что образующийся аммиак определяют по запаху или по почернению бумаги, смоченной азотнокислой ртутью. Данный качественней анализ элементов необходимо пповести как демонстрационный опыт. Простейший прибор для наглядного проведения качественного анализа показан в книге С. А. Зониса и С. М. Мазурова, стр. 19. [c.70]

    При скрининге применяются тщательно отработанные методы анализа, в том числе качественные и полуколичественные, например цветные реакции в индикаторных трубках [25,26]. В последних газообразную пробу пропускают через слой сорбента, модифицированного селективным реагентом. Микрофаммовые количества ДДТ и альдрина в растениях можно обнаружить по окрашенным пятнам на индикаторной бумаге, пропитанной 1%-ным раствором о-толуидина в ацетоне достаточно выдержать влажный срез растения в контакте с бумагой в течение 30 с [27]. Предложены также индикаторные бумаги для определения ртути, кобальта и других тяжелых металлов [28,29]. Следует заметить, что в настоящее время ощ> щается большая потребность в достаточно простьгх и чувствительных методах определения высокотоксичных веществ [c.157]

    Реакция взаимодействия солей Нд(1) с аммиаком служит для качественного определения иона Нд2 , так как при этом, кроме белого осадка амидомеркурохлорида, выделяется черный осадок металлической ртути. В присутствии аммиака разложение Hg2 l2 (каломели) идет мгновенно по реакции  [c.245]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Заслуга Р. Бойля в том, что он впервые дал правильное толкование понятию химического элемента. Отрицая понятие элементы перпнатетиков (огонь, вода, воздух, земля) п понятие принципы алхимиков и иатрохимиков (ртуть, сера, соль), Р. Бойль предложил химико-аналитическое определение элемента, которое вписывалось в программу работ хпмиков-аналитиков того периода. Перед химией вставала новая задача — научиться выделять в чистом виде отдельные вещества и устанавливать их состав, т. о. определять, из каких конкретных частей состоит данное тело и каким комплексом физико-химических свойств оно обладает. Для этого предстояло значительно усовершенствовать качественный и количественный анализы, убедиться в воспроизводимости экспериментальных результатов. [c.41]

    Соединения ртути катализируют эту реакцию. При добавлении к раствору [Fe( N)в] нитробензола ( вH6N0) образуется ион [Fe( N)5 вH5NO] , который окрашен в красно-фиолетовый цвет ( ах = 528 нм) [406]. Наибольшая скорость реакции наблюдается при pH 4. Реакция чувствительна к свету. Метод применим для качественного и количественного определения до 0,005 мкг/мл Нд [406, 1315]. [c.120]

    Отделение мышьяка в виде арсина с поглощением его фильтровальной бумагой, пропитанной бромидом ртути, используется для высокочувствительного определения мышьяка рентгенофлуоресцентным методом в различных материалах и с высокой точностью [765] (см, раздел Рентгенофлуоресцептный метод ). Ряд методов качественного обнаруя ения также непосредственно связан с выделением мышьяка в виде арсина (см, гл. III). В связи с этим в указанных разделах подробно изложены соответствующие модификации метода отделения мышьяка отгонкой в виде арсина. [c.144]

    Элементный анализ используют для количественного определения органических и элементорганических соединений, содержащих азот, галогены, серу, а также мышьяк, висмут, ртуть, сурьму н другие элементы. Элементный анализ может быть также применен для качественного подтверждения нгшичия этих элементов в составе исследуемого соединения или для установления или подтверждения брутто-формулы вещества. [c.126]

    Руководство к распознаванию ядов, противоядий и важнейшему определению первых как в организме, так и вне оного посредством химических средств, названных реактивами . Книгу А. А. Иовского можно рассматривать как попытку химическими сведениями оказать помощь судебно-медицинским экспертам при обсуждении последними случаев отравления. Это было первое руководство русского автора по судебной химии. В книге приведен список веществ, встречавшихся в то время в качестве ядов кислоты, щелочи, некоторые соли ядовитых кислот, например нитраты, а также соединения ртути, мышьяка, меди, свинца, висмута и сурьмы. Описаны признаки отравления и средства избавления от яда , а также указаны реактивы для открытия ядов. В книге А. А. Иовского не получила отражения специфика химико-токсикологических анализов, в ней нет еще и упоминания об изолировании ядовитых веществ из биологического материала. Весь анализ на наличие ядов по этому руководству сводится к обычному качественному исследованию. [c.12]

    Для качественного анализа 10—20 мл хлороформного извлечения упаривают до 0,5 мл и наносят на новую хроматографическую пластинку в виде полосы длиной 3—4 см. Метчик 0,5—2 мл извлечения. Хроматографируют при описанных выше условиях. Часть пластинки с метчиком проявляют 0,02% растворохМ дифенилкарбазона и сульфата ртути. С другой половины пластинки параллельно проявленным пятнам снимают участок сорбента площадью 4—5 см , на фильтре промывают 5 мл смеси спирта и эфира в соотношении 1 1 и подвергают исследованиям на тот или иной барбитурат (ориентирует предварительное исследование и соответствующее значение К ) микрокристаллическими реакциями. Для количественного определения барбитурата аналогичным путем подвергают хроматографированию 5—10 мл хлороформного раствора, с той только разницей, что элюирование производится 2 раза по 10 мл (настаивание 5 минут) борат-ным буфером pH 10,0 (для внутренних органов трупа). Элюаты отфильтровывают под вакуумом, доводят буфером до объема 25 мл и исследуют спектрофотометрически (стр. 150). [c.144]

    Метод определения концентрации паров ртути в воздухе представляет собой видоизменение качественного метода с помощью реактивной бумаги по окраске ul-Hglj. [c.239]

    В настоящее время проводится исследование каталитической волны перекиси водорода, образующейся в присутствии вольфрамат-иона, с целью аналитического применения ее для определения малых количеств вольфрама. Обнаруженный Кольтгофом и Перри [20] каталитический эффект вольфрама на восстановление Н2О2 качественно подтверждается, однако получение воспроизводимых количественных значений каталитического тока затрудняется вследствие параллельно протекающих процессов диспропорцио-нирования продуктов электродной реакции, разложения перекисных соединений и других процессов. В связи с этим изучено влияние различных факторов (концентрации Н2О2 и Ш0 ", природы электролита, pH раствора, температуры, давления столба ртути над капилляром и др.) на величину каталитического тока Н2О2 в присутствии вольфрамат-иона. Обнаружен большой температурный коэффициент этой реакции, а также влияние времени контакта реагирующих компонентов на величину тока. На основании экспериментальных данных устанавливаются оптимальные условия для получения воспроизводимых количественных результатов при определении вольфрама по каталитической волне перекиси водорода при его содержании до 10" %. [c.197]

    Для некоторых реакций, таких как восстановление катиона металла на поверхности ртути с образованием амальгамы, активационный сверхпотенциал, необходимый для быстрого переноса электронов, мал. Для других процессов, которые сводятся к образованию или разрыву химических связей, активационный сверхпотенциал, необходимый для быстрого переноса электрона, значительно больше. Хотя невозможно предсказать значение активационного сверхпотенциала, при котором начнется реакция электронного переноса, протекающая с определенной скоростью, существуют некоторые качественные закономерности. Во-первых, активационный сверхпотенциал повышается, иногда довольно резко, с увеличением плотности тока (ток на единицу поверхности электрода). Во-вторых, с повышением температуры активационный сверхпотенциал понижается, поскольку часть энергии активации процесса переноса электронов обеспечивается за счет термической энергии. В-третьих, что характерно, активационные сверхпотенциалы больше для реакций, связанных с выделением газов, окислением или восстановлением органических молекул и с многоэлектрон-переносами. В-четвертых, выделение одного металла на поверхности электрода из другого металла часто происходит с некоторым активационным сверхпотенциалом вплоть до момента, когда поверхность электрода полностью покрывается слоем выделяемого на нем металла. В-пятых, для электродных процессов, происходящих на поверхности [c.409]

    Это определение можно выполнить амперометрически, если раствор таллия(1) поместить в полярографическую ячейку с ртутным капающим электродом и насыщенным каломельным электродом сравнения. Из рис. 13-2 следует, что в результате восстановления таллия (I) получается хорошо выраженная полярограмма с областью предельного тока от —О, до —1,6 В относительно Нас. КЭ. Иодид-ион дает анодную волну вследствие окисления ртути до иодида ртути (II), однако эта волна проявляется при потенциалах, более положительных, чем 0,1 В, и никакого значительного тока не протекает при потенциалах от —0,3 до —1,8 В. Эти полярографические характеристики таллия(I) и иодид-иона качественно изображены на левой части рис. 13-9а кривыми, обозначенными соответственно буквами X и Т. Если потенциал ртутного капающего электрода поддерживать равным 0,8 В относительно Нас. КЭ, то протекает только ток, который обусловлен восстановлением таллия (I). По мере прибавления небольшими порциями титранта иодида калия таллий(I) будет осаждаться в виде нерастворимого иодида таллия, и с каждой добавленной порцией титранта ток будет уменьшаться пропорционально количеству таллия(I), удаляемого из раствора. Когда таллий(I) полностью оттитрован, ток падает практически до нуля и остается неизменным по мере введения избытка титранта. [c.463]

    Котина [391, исследуя распределение серы в 12 нефтях месторождений Зольный Овраг, Яблоневый Овраг, Красноярка и Муханово, не установила наличия элементарной серы в этих нефтях качественной реакцией со ртутью. Скрипник с сотр. [401 обнаружили элементарную серу в нефтях этих же месторождений (в 7 образцах из 10). Данные полярографического определения [411 не подтверждают данных упомянутых выше авторов (табл.1). [c.6]

    Осаждение хрома в виде хромата серебра Ag2 r04, хромата ртути Hg2 r04 и хромата бария ВаСг04 представляет интерес главным образом для группового разделения и качественного испытания на хром, а не для количественного его определения, так как многие другие элементы также образуют нерастворимые соединения с этими реагентами. [c.597]

    Реакцию образования HgDz используют в качественном анализе для обнаружения ионов Hg2+ [ЗЗ , 372 ] эту же реакцию использовали для количественного определения ртути в присутствии ионов других металлов после маскирования последних с помощью пирофосфата. [c.163]

    Реакция свободной серы с медью и ртутью, наряду с другими методами, используется не только для качественного открытия, но и для количественного ее определения. Аналогичные методы применяются в резиновой промышленности при определении свободной серы в вулканизированном каучуке [294]. Так, Гарнер и Эванс [274] кипятили анализируемые образцы с порошком медной бронзы, образовавшийся сульфид меди окисляли в сульфат и заканчивали определение весовым методом. Диттрих [295] пользовался порошком меди и заканчивал определение колориметрически, после прибавления избытка соли меди. Левин и Стер [296] разлагали сульфид меди, осажденный на сетке, кислотой и выделившийся сероводород определяли иодометрически (сравни [294]). Некоторые авторы [275, 278] рекомендуют пользоваться эталонными шкалами в виде набора медных полосок, предварительно прокорродированных в растворах с известным содержанием серы. [c.32]

    При добавлении к раствору белка реактива Миллона, содержащего азотную и азотистую закисную ртуть, образуется вначале белый осадок, который при нагревании делается красным. Реакция эта обусловлена образованием ртутной соли нитросоединения тирозина. Тирптофан дает желтоватое окрашивание. Красное окрашивание с реактивом Миллона дают фенол, салициловый альдегид, пирокатехин и другие полифенолы и алкалоиды, содержащие фенольную группу. Однако в белке только тирозин может давать с реактивом. Миллона красное окрашивание и поэтому эта реакция употребляется для качественного и количественного определения тирозина в белке и гидролизатах белка. Реакция не может быть применена для определения тирозина в присутствии большого количества неорганических солей (например, в моче) или в сильно щелочных растворах. [c.160]


Смотреть страницы где упоминается термин Ртуть определение качественное: [c.101]    [c.141]    [c.204]    [c.572]    [c.147]    [c.679]    [c.140]    [c.48]    [c.174]    [c.115]    [c.95]    [c.36]   
Газовый анализ (1955) -- [ c.118 ]

Газовый анализ (1961) -- [ c.118 ]




ПОИСК







© 2025 chem21.info Реклама на сайте