Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные металлы, выделение

    В цветной металлургии иониты применяются для извлечения из руд никеля, кобальта и других цветных металлов, а также для выделения благородных металлов золота, платины, серебра. С помощью ионитов производят разделение редкоземельных металлов (ниобия, титана, молибдена, рения и др.), а также выделение радиоактивных элементов из руд и концентратов. [c.404]


    Выделение всей группы редкоземельных металлов из руды не представляет собой очень сложного технологического процесса, но разделение самих редкоземельных металлов чрезвычайно затруднено тем, что они мало отличаются друг от друга по химическим свойствам. [c.279]

    Значение электролиза расплавленных сред. Электролизом водных растворов могут быть получены либо электроположительные металлы, либо такие электроотрицательные металлы, на которых перенапряжение для выделения водорода в условиях электролиза очень велико, например цинк и марганец. Такие же электроотрицательные металлы, потенциалы которых значительно отрицательнее потенциала выделения водорода, как щелочные и щелочноземельные, алюминий и магний, не могут быть получены электролизом водных растворов. Их готовят электролизом расплавленных сред, а также этим методом получают, как правило, и тугоплавкие металлы, такие, как бериллий, цирконий, торий, ниобий, тантал, и редкоземельные металлы. Разрабатываются методы электролитического получения титана и других металлов. Этим же способом получают фтор. [c.211]

    После удаления ртути жидкая или пастообразная амальгама постепенно превращается в серо-черный порошок, содержащий приблизительно 15 весовых процентов редкоземельного металла. После прекращения выделения [c.21]

    Цеолиты термически стабильны и их стабильность возрастает с введением в них катионов щелочноземельных и, особенно редкоземельных металлов. Если в цеолитах X и Y катионы Na" " заменить на двух- и трехвалентные металлы или катион аммония, при последующем прокаливании образуются кислотные центры разной активности. Важнейшее качество цеолитсодержащих катализаторов — это активность, которую принято выражать как выход бензиновых фракций, поскольку целевым продуктом этого процесса является бензин. Цеолиты типа X и У синтезированы в натриевой форме. Одним из важнейших свойств цеолитов является способность к замене ионов одних на другие, например, натриевые ионы могут быть заменены на ионы кальция, марганца, редкоземельных элементов, на ионы аммония. Последние при нагревании до 300-450°С на воздухе разлагаются с выделением аммиака (NHg), а в цеолите остается протон водорода. Активность цеолитов зависит от наличия тех или иных ионов металла в цеолитсодержащем катализаторе. [c.34]


    Редкоземельные металлы осаждаются с гидроокисью бериллия приблизительно в той же области pH, в которой осаждаются эти металлы в отсутствие носителя. Захват кадмия осадком Ве(ОН)2 происходит при pH 7—8 (pH полного выделения гидроокиси кадмия) [646]. В приведенных примерах характер влияния температуры, времени соприкосновения носителя с раствором, концентрация примесей на величину осаждения подтверждают адсорбционную природу захвата примесей гидроокисью бериллия. [c.154]

    Выделенный оксисульфид редкоземельного металла обладает хорошей прилипающей способностью при его повторном использовании для нанесения на кинескоп. Обычно, при выделении люминофор промывают азотной кислотой для травления и очистки наружной поверхности материала. Однако такой способ обработки связан с рядом недостатков, В частности, азотная кислота является слишком дорогим реагентом, ее высокая коррозионная активность приводит к заметному снижению выхода люминофора (на 3—4 % и более) при использовании азотной кислоты необходима тщательная промывка получаемого люминофора. Кроме того, азотная кислота вызывает комкование люминофора, что требует его дополнительного измельчения и просеивания и также приводит к уменьшению выхода люминофора. [c.387]

    Аммиаком осаждаются в виде нерастворимых гидроокисей или основных солей все катионы, за исключением катионов, образуюш,их хорошо растворимые аммиакаты (Ag, d, Си, Ni, Со, Мп, Zn). В количественном анализе аммиак применяется для выделения гидроокисей металлов третьей аналитической группы, включая наряду с катионами трехвалентных железа, алюминия и хрома также катионы бериллия, титана, урана, тория и редкоземельных металлов. [c.92]

    Высокие максимумы щелочноземельных металлов, на которые не действует желатина и которые сопровождаются выделением пузырьков водорода, очевидно, не являются простыми максимумами первого рода [95]. Особые максимумы появляются при восстановлении некоторых катионов из группы редкоземельных металлов природа возникновения этих максимумов до настоящего времени не выяснена [96]. [c.431]

    Ионообменное выделение следов редкоземельных металлов из урана [1897]. [c.317]

    Выло изучено поведение некоторых элементов-примесей во время электролитического выделения висмута. Щелочные и щелочноземельные металлы, бор, алюминий, редкоземельные металлы, титан, ванадий, кремний не осаждаются из водных рас- [c.216]

    В или выше, раствор непрерывно перемешивается. В этих условиях можно удалить из раствора в виде амальгамы или осадка все элементы, которые восстанавливаются до металлического состояния при меньшем потенциале, чем тот, который необходим для выделения водорода на поверхности ртути. Из 0,1—0,2 М раствора серной кислоты осаждаются Ад, Аи, В1, Сс1, Со, Сг, Си, Нд, Ре, N1, Мо, Р(1, Р1, 5п, Т1 и 2п. Ртуть отделяют от водного раствора в конце электролиза. Для того чтобы предотвратить растворение осадка в кислом растворе, который все еще может содержать многие элементы (такие, как А1, Ве,. Vlg, Т1, V, щелочноземельные и редкоземельные металлы), в процессе разделения фаз систему продолжают держать под напряжением. Аналитическое использование этого метода обычно основано на полном удалении из раствора элементов одной группы, с тем чтобы облегчить определение какого-либо элемента другой группы, остающегося в растворе. Метод предварительного разделения с применением ртутного катода был рекомендован для определения А и Мд в цинковых сплавах и А1, V, 2г, Се или Ьа в сталях. [c.429]

    Процесс экстракции растворителем для выделения. урана и редкоземельных металлов из водных растворов. [c.562]

    При исследовании горных Пород, которое может быть приведено в качестве примера, обычный ход анализа требует определения в осадке от аммиака кремнекислоты (оставшейся после выделения главной ее массы в начале анализа), железа р титана. Дальнейшее вычитание из суммы окислов (см. стр. 113) проводят на основании результатов анализов отдельных навесок анализируемого материала. Например, цирконий и редкоземельные металлы определяют в одной навеске, фосфор — в другой, хром и ванадий — в третьей. Такой метод хорош в тех случаях, [c.118]

    В обычном ходе анализа горных пород скандий попадает в осадок от аммиака и принимается за алюминий, если содержание последнего вычисляют по разности. В том случае, когда выделенный аммиаком осадок растворяют во фтористоводородной кислоте и раствор выпаривают для отделения фторидов редкоземельных металлов (стр. 623), скандий также выделяется в осадок и в дальнейшем, в зависимости от способа обработки, сопровождает торий, иттриевые или цериевые металлы. [c.613]

    Определение остаточной кремнекислоты (и бария) в соединенных осадках. Вследствие крайней трудности прямого определения окиси алюминия в смеси окислов при рассматриваемых условиях ее обычно определяют по разности. Для этого вычитают из массы осадка, полученного при осаждении аммиаком, ацетатом натрия или аммиаком и персульфатом аммония, сумму масс всех других окислов, содержащихся в этом осадке. Из последних в данной навеске пробы определяют только окись железа (представляющую все железо анализируемой породы или минерала), двуокись титана, незначительное количество кремнекислоты, которое осталось в растворе после выделения ее методом, подробно описанным на стр. 940, и в редких случаях незначительное количество бария. Окиси фосфора, ванадия, хрома, редкоземельных металлов, циркония, титана (при желании), а иногда и марганца, лучше определять из отдельных навесок пробы, иногда больших, чем те, которые обычно берут для определения главных компонентов (см. главы о соответствующих элементах). То же можно сказать и о бериллии, уране, галлии и индии, если эти элементы присутствуют в исследуемом веществе. Вследствие их редкости и малых количеств, в которых они могут встретиться, на них обычно не обращают внимания, хотя, без сомнения, эти элементы могут содержаться в некоторых породах, в особенности в сильно кремнеземистых, типа гранита. [c.954]


    Здесь AMi — минимальная разница масс между выделяемым и соседними изотопами. Напомним, что соседями упоминавшегося изотопа являются изотопы и Ni. Для его выделения величина АВ/В должна быть не больше 10 . Для разрешения линий ИЦР и получения изотопов редкоземельных металлов требуются ещё более однородные поля АВ/В 10 ). [c.311]

    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Редкоземельные металлы и актиноиды непосредственно реагируют с водородом с выделением тепла (на единицу валентности) примерно того же порядка, как и в случае щелочноземельных металлов (стр. 162, табл. 12). Однако абсорбция водорода у них связана со значительным расширением кристаллической решетки (стр. 163, табл. 13). Этим они отличаются от солеобразных гидридов металлов первой и второй групп и приближаются к металлическим гидридам переходных металлов более высоких групп. С последними их роднит также п склонность к образованию фаз переменного состава значительного протяжения. Состав соединений лантаноидов и актиноидов с водородом, полученных непосредственным гидрированием, показывает значительное отклонение от простых стехиометрических отношений. [c.29]

    Чистые хлориды редкоземельных металлов, тория и их смеси с хлоридами щелочных металлов являются одними из наиболее важных исходных соединений для получения металлов. При этом используются методы металлотермического восстановления хлоридов [359—363] и методы электрохимического выделения металлов из расплавленных сред [364—368], поэтому сведения по химии хлоридов весьма своевременны и необходимы. [c.207]

    Известно шесть методов промышленного выделения цезия и рубидия из радиоактивных отходов. На некоторых зарубежных заводах (например, на заводе Окриджской национальной лаборатории, США) применяют метод соосаждения цезия с алюмо-аммонийными квасцами [10, 211, 213]. При этом радиоактивный раствор первоначально нейтрализуют аммиаком до pH 2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з примесей Ва, La, Се, V, Ru, Тс, Со и др. Затем 50%-ным раствором NaOH, содержащим соду, выделяют основную массу щелочноземельных, редкоземельных металлов и Na2U207. В фильтрате, подкисленном и нагретом до 90°, растворяют алюмо-аммонийные квасцы до достижения их концентрации 240 г/л. После охлаждения раствора до 4—25° квасцы отделяют (извлечение цезия до 90°) и два-три раза перекристаллизовывают. Полученные таким образом [c.132]

    Вряд ли целесообразным может оказаться выделение из нефтей железа, которое распределяется по всему интервалу температур кипения фракций, и его содержание на много порядков ниже по сравнению с содержанием в рудах. Это можно отнести и к аллюминию, меди, кобальту, марганцу и некоторым другим металлам. Редкоземельные металлы в нефтях, возможно, и заслуживают внимания с целью их выделения. Токсичные элементы, подобные ртути, должны быть идентифицированы главным образом для того, чтобы избежать попадания их в атмосферу в процессах нефтепереработки. В больших количествах в нефтях присутствует хлор (порядка Ю %), фтор в них не обнаружен. Йод имеется в низкокипящих, а бром - в высококипяш,их фракциях. [c.91]

    Наконец, необходимо отметить амальгамы, о существовании которых упоминалось сравнительно давно. Рзэ цериевой группы образуют амальгамы легче, чем элементы иттриевой группы. Амальгамы можно получать замещением щелочных металлов редкоземельными металлами из насыщенных спиртовых растворов безводных хлоридов [2031], прямым растворением редкоземельных металлов и ртути или выделением на ртутном катоде при электролизе. Последний метод широко применяется при электролитическом отделении 8т, Ей и УЬ от других элементов. Амальгамы с содержанием до 5% редкоземельного металла еще жидки, но при дальнейшем увеличении его концентрации постепенно переходят в пастообразные смеси. Вакуумной отгонкой можно почти полностью освободить сплав от ртути. Остаточные количества ртути удерживаются довольно прочно, особенно для тяжелых рзэ. При нагревании нлн стоянии на воздухе амальгамы имеют тенденцию к разрушению, которое при соприкосновении с кислородом сопровождается быстрым окислением. [c.29]

    Среди многочисленных способов выделения и разделения рзэ экстракционное фракционирование для определения индивидуальных элементов в сумме не нашло применения в анализе, хотя оно и начинает развиваться в технологии получения редкоземельных препаратов. Зато отделение рзэ от щелочных, щелочноземельных и некоторых трансурановых и редких металлов производится чрезвычайно эффективно и в технологии руд и материалов, и в препаративной и аналитической практике. Здесь будут кратко рассмотрены возможности разделения группы рзэ и более подробно — аналитические проблемы выделения церия и отделения редкоземельных металлов от посторонних элементов. [c.123]

    Более сильными восстановителями являются амальгамы щелочноземельных и, особенно, щелочных металлов. Обменные реакции с амальгамами привлекают внимание потому, что ртутный катод часто используется для выделения некоторых рзэ. Восстановление амальгамами можно вести для Ей, УЬ и 8т как до состояния так и до металлического состояния. Промежуточная стадия фиксируется обычно добавлением в раствор ионов 80" , которые связывают рзэ в мало растворимые осадки Ьп304, а в случае глубокого восстановления редкоземельный металл уходит в амальгаму. Амальгама стронция восстанавливает довольно полно Ей, несколько хуже— УЬ и с большим трудом — 8т. Остальные ионы рзэ ею не восстанавливаются, но при выделении осадков Ьп304 могут в значительной мере захватываться вместе с частицами самой амальгамы [1122, 1290]. При использовании такой методики часть ионов остает- [c.145]

    Осадители. В качестве осадителей для разделения н выделения отдельных компонентов анализируемых смесей применяют разнообразные химические соединения. Главнейшими из них являются сероводород, осаждающий в виде сульфидов ионы V, IV и частично III аналитических групп (см. Книга I, Качественный анализ, гл. VI—VIII), а также разлагающий при опред еленных значениях pH анионы АзОз , АзО , VOз, М0О4 , 04 и др. (см. Книга I, Качественный анализ, гл. XII) водный раствор аммиака, осаждающий катионы бериллия, железа (III), алюминия, таллия, галлия, индия, ниобия, тантала, урана, редкоземельных металлов и др. фосфаты щелочных металлов и аммония ацетат натрия едкие щелочи сульфид аммония и т. д. [c.354]

    Эта схема предусматривает прежде всего выделение остаточной кремнекислоты. Затем отделяют железо, титан и редкоземельные металлы, осаждая их едким натром в присутствии окислителя и карбоната натрия. В фильтрате остаются алюминий, фосфор, ванадий, хром и бериллий. Из осажденных элементов железо выделяют в виде сульфида осаждением сульфидом аммония в присутствии тартрата аммония титан определяют в фильтрате колориметрически, после разрушения винной кислоты цирконий о< аждают в растворе, содержащем перекись водорода, употребленном для определения титана, и, наконец, редкоземельные металлы осаждают вместе с гидроокисью титана в фильтрате от осаждения циркония и отделяют от титана в виде фторидов. Окраска фильтрата, после осаждения едким патром указывает па присутствие хрома или урана, если последние содержатся в количествах, достаточных, чтобы окрасить раствор. Дальше веду-т анализ следующим путем. Сначала, определяют ванадий объемным методом, затем выделяют фосфор в виде фосфоромолибдата аммония и, наконец, осадок, полученный осаждением аммиаком фильтрата от фосформолйбдата, испытывают на алюминий, бериллий и другие элементы. [c.119]

    Осаждению из аммиачных растворов таннин может способствовать вследстаие образования в омнлексных тапниповых соединений вместо гидроокисей, которые осаждает аммиак (как, например, при осаждении алюминия 1, бериллия и рейкоземельных металлов ), или же вследствие образования осадков в растворах, содержащих органические ком-плексообразователи, препятствующие осаждению одним аммиаком (что наблюдается в случае выделения таких элементов, как тантал, ниобий, титан, цирконий, уран, редкоземельные металлы, бериллий и марганец) [c.152]

    Наиболее характерный метод отделения скандия заключается в выделении. его в виде фторида ЗсРз постепенным введением небольших порций фторосиликата натрия Ка 81Рв (2 г,на 100 мл раствора) в энергично перемешиваемый кипящий раствор анализируемого материала в разбавленной (1 10) соляной кислоте. После добавления реагента раствор кипятят 30 мин (сохраняя первонйГчальный объем раствора добавлением горячей воды) ж затем даьэт осадку отстояться. Прозрачный раствор сливают декантацией, после чего осадок переносят на фильтр и промывают 1 %-ным раствором фторосиликата натрия в разбавленной (1 99) соляной кислоте. Помимо скандия, в осадке содержатся кремний и некоторая часть находившихся в растворе редкоземельных металлов и тория. Перед дальнейшей обработкой, которая может потребоваться, осадок нагревают с серной кислотой для удаления фтора. .  [c.614]

    Для определения остальных редкоземельных элементов объединенные фильтраты обрабатывают раствором аммиака до раствореиия образующейся вначале гидроокиси цинка./Осадок отфильтровывают, промывают разбавленным (1 20) раствором аммиака, содержащим 2% нитрата аммония, растворяют в горячей разбавленной (1 5) соляной кислоте й тща-тедьно промывают фильтр горячей водой. Полученный раствор выпаривают, и осаждают редкоземельные Металлы щавелевой кислотой (см. сноску 2, стр. 624). Для определения церия осадок, выделенный окисью цинка, растворяют в горячей разбавленной (1 5) соляной кйслгбте и затем осаждают аммиаком и щавелевой кислотой, как только что было указано . [c.627]

    Осаждение купфероном проводят из сернокислого раствора после отделения кремнекислоты, вольфрама и элементов сероводородной группы. Другие элементы можно предварительно отделять или определять впоследствии в прокаленном остатке, в зависимости от того, что удобнее. Так, например, железо, если оно предварительно Не было выделено сульфидом аммония из аммиачного раствора, содержащего винную кислоту, осаждается совместно с цирконием, и содержание его необходимо определить и вычесть из массы прокаленного остатка Подобно этому, необходимо также ввести поправку на содержание ванадия, если он не был отделен обработко11 щелочами и фильтрованием, например при осаждении едким натром или выщелачивании водой плава с перекисью иди карбонатом натрия. Редкоземельные металлы можно отделить от циркония осаждением фтористоводородной или щавелевой кислотой, но обычно их осаждают, подобно титану, совместно с цирконием, а затем определяют их содержание и вычитают из массы осадка. Осадок купферата циркония Zr[ вH5N(N0)014 нельзя высушить и непосредственно взвесить, а необходимо прокалить до окиси. Прокаливать следует крайне осторожно, особенно в начальной стадии, так как при нагревании влажный осадок расплавляется, и в дальнейшем, в процессе сжигания высушенного осадк , происходит обильное выделение газообразных продуктов. Окись циркония не гигроскопична. [c.643]

    Изложенный метод использовался для определения тория в воде [46, 51], монацитовых концентратах [18], бедных рудах [114]. Б. П. Никольский и А. М. Трофимов применили его для концентрированных растворов, в частности для солей уранила [89]. В работе по спектрофотометрическому определению тория [88 ] производилось сравнение описанного катионообменпого метода с анионообменным выделением из концентрированных солянокислых растворов. Было установлено, что анионообменный метод предпочтительнее в тех случаях, когда анализируемые пробы содержат только уран и железо, Если же в пробах присутствуют и другие элементы, например, щелочные, щелочноземельные и редкоземельные металлы, а также анион SO , то катионообменный метод дает лучшие результаты (ср. [7 ]). Этим методом удобно определять микрограммовые количества тория в силикатных породах [59]. Чтобы облегчить элюирование примесей М НС1, перед пропусканием раствора через колонку железо рекомендуется восстановить до двухвалентного состояния. Титан и цирконий элюируют 0,lAf лимонной кислотой. После промывания колонки водой торий удаляют из нее с помощью Ш H2SO4. [c.334]

    Скандий (8с) — редкоземельный металл серебристого цвета с желтым отливом. Был предсказан в 1870 г. Д. И. Менделеевым, который условно называл его экабором. В 1879 г. скандий был выделен из минерала га-долинита шведским ученым Ларсом Нильсоном, который и дал ему название в честь Скандинавии. [c.187]

    Условия осаждения ионов уранила аммиаком аналогичны условиям для определения бериллия [75]. Комплексон не оказывает влияния на осаждение и количественное выделение диураната аммония. Аммиак не должен содержать карбоната аммония. Поэтому лучше получать раствор аммиака непосредственно в лаборатории пропусканием газа из баллона в дестиллированную прокипяченную воду и предохранять раствор по мере возможности от влияния углекислоты воздуха. Мешающее влияние комплексона, выражающееся в медленном выделении (МН4)2и20,, наблюдалось только при высоком содержании хлорида аммония. Сульфаты и нитраты не мешают. Определение урана можно проводить однократным или двукратным осаждением в присутствии почти всех элементов. Определению мешает присутствие титана и бериллия, затем ниобия, сурьмы и олова. Вольфраматы образуют с ионом уранила нерастворимый вольфрамат уранила иО.,Н4( У04)3-ЗВ. О. Однако небольшие количества вольфрама определению не мешают. Аналогично ведет себя и молибден. При повторном осаждении получаются удовлетворительные результаты. Из анионов мешают фосфат-, арсенит- и арсенат-ионы. При анализе руд и минералов большинство мешающих элементов удаляется в основных операциях хода анализа (олово, сурьма и вольфрам при выпаривании с кислотами, остальные выделяются сероводородом). Определение урана можно проводить в присутствии тория, лантана и остальных редкоземельных металлов. [c.96]


Смотреть страницы где упоминается термин Редкоземельные металлы, выделение: [c.105]    [c.218]    [c.218]    [c.265]    [c.99]    [c.150]    [c.815]    [c.835]    [c.837]    [c.384]    [c.514]    [c.764]    [c.587]    [c.321]    [c.327]   
Утилизация и ликвидация отходов в технологии неорганических веществ (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы выделение из руд

Редкоземельные металлы

Редкоземельные металлы, выделение из фосфогипса

Редкоземельные металлы, выделение при комплексной переработке

Редкоземельные металлы, выделение сырья



© 2025 chem21.info Реклама на сайте