Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз потенциале электрода

    Если в растворе присутствует только окисленная форма деполяризатора, то, как следует из уравнения, перед началом электролиза потенциал электрода будет положительнее потенциала восстановления вещества. [c.135]

    При электролизе потенциал электрода смещается от равновесного значения на величину поляризации. Эту величину называют также перенапряжением. Таким образом, потенциал катода более отрицателен, чем равновесный, на величину перенапряжения водорода, а потенциал анода — более положителен на величину перенапряжения кислорода. [c.12]


    Общеизвестно, что электрохимическое поведение металлов определяется величиной их электродных потенциалов. При электролизе растворов, содержащих различные ионы, на катоде в первую очередь происходит разряд тех ионов, которые характеризуются наиболее положительным потенциалом на аноде же в первую очередь происходит разряд ионов, характеризующихся наименее, положительным потенциалом. Известно также, что в процессе электролиза потенциал электрода не соответствует величине равновесного потенциала, определяемого формулой Нернста, а сдвигается при катодном процессе в сторону электроотрицательных значений, при анодном — в сторону электроположительных. Происходит так называемая поляризация электродов, которая проявляется тем сильнее, чем больше плотность тока на электродах. Зависимость между потенциалом электрода [c.132]

    Электролитическое осаждение ионов тяжелых металлов из различных растворов на металлических электродах часто является очень полезным методом разделения при определении следов [136—139, 259—261]. Поведение элемента при электроосаждении в основном зависит от состава электро- пита, материала и формы электродов, типа электролитической ячейки и других условий эксперимента. Электролиз при контролируемом потенциале, когда в процессе электролиза потенциал электрода поддерживается постоянным по отношению к электроду сравнения (например, каломельному электроду), позволяет разделить тяжелые металлы, имеющие различные потенциалы осаждения. [c.103]

    Такое равновесие достигается в некотором весьма значительном интервале изменения потенциалов пластин (электродов). Однако по мере увеличения потенциала электродов наступает момент, при котором установления такого равновесия уже не наблюдается, и между электродами начинает течь постоянный ток, подчиняющийся закону Ома. Процесс сопровождается химическими реакциями на электродах (электролиз). Потенциал, при котором в растворе начинает течь постоянный ток, получил название потенциала разложения. [c.553]

    Рекомбинационная теория. Длительное время наибольшим признанием пользовалась рекомбинационная теория перенапряжения, выдвинутая Тафелем еще в 1905 г. Согласно этой теории, наиболее медленной является стадия молизации адсорбированного водорода, поэтому в процессе электролиза концентрация атомного водорода на поверхности увеличивается по сравнению с равновесной с молекулярным водородом (газ), что и приводит к сдвигу потенциала электрода в отрицательную сторону. [c.622]


    Потенциостатическая кулонометрия основана на измерении количества электричества, затраченного на электрохимическое окисление или восстановление определяемого вещества, причем при электролизе потенциал рабочего электрода поддерживается постоянным, и значение его таково, что электрохимическая реакция протекает со 100%-ной эффективностью тока. [c.174]

    Ограниченная скорость электрохимической реакции оказывает существенное влияние на поляризацию электрода, выражающуюся в отклонении электродного потенциала от его равновесного значения при прохождении в цепи сравнительно небольших токов. Очевидно, что в растворах обратимых систем наблюдается лишь незначительная поляризация электрода. Вследствие того, что электродный потенциал однозначно определяется активностями потенциалопределяющих ионов и при небольших величинах тока лишь незначительная их доля участвует в процессе электролиза, на электроде быстро устанавливается потенциал, мало отличающийся от первоначального равновесного значения. [c.17]

    На практике для проведения электролиза потенциал рабочего электрода устанавливают более отрицательным (при восстановлении) или более положительным (при окислении) относительно наблюдаемого значения Е. Величина сдвига АЕ определяется желаемой степенью завершенности электрохимического превращения вещества. Как видно из рис. 5.4 для степени завершенности 90 % этот сдвиг, в случае одноэлектронной реакции (п= 1) составляет 120 мВ. В этом случае сила тока, протекающего при электролизе в стационарных условиях, определяется уравнением (катодный процесс)  [c.253]

    До начала электролиза равновесный потенциал электрода ра- [c.291]

    При электролизе концентрация электролита у поверхности электрода С1 вследствие разряда падает, поэтому потенциал электрода смещается в отрицательную сторону и становится равным  [c.292]

    Другой способ состоит в измерении потенциала электрода, реагирующего на изменение концентрации определяемых ионов. В конечной точке обычно наблюдается резкое изменение потенциала этого индикаторного электрода, указывающее на необходимость прекращения электролиза. Примером такого потенциометрического способа установления конца электролиза может служить кулонометрическое определение ионов двухвалентного железа посредством его окисления в трехвалентное. Во время окисления измеряют потенциал погруженного в раствор платинового электрода этот потенциал зависит от соотношения концентраций ионов двух- и трехвалентного железа в растворе  [c.230]

    Для снятия поляризационных кривых и контроля потенциала электрода в процессе электролиза используют измерительные схемы. Схема установки для измерения электродных потенциалов показана на рис. П. В цепь поляризующего тока включен реостат, играющий роль делителя напряжения постоянного тока (/ ), Для расширения интервала и более плавного регулирования тока, что необходимо для получения поляризационных зависимостей, служит реостат Лз. [c.265]

    Зависимость адсорбции реагирующего вещества от потенциала электрода, а также адсорбция продукта электролиза существенно осложняют изучение электродных процессов с участием органических веществ. [c.397]

    Широкое использование ртутного капельного электрода в электрохимии и аналитической химии связано с рядом причин, которые уже были отмечены ранее (см. 1.1). Идеальное обновление поверхности обусловливает независимость тока на каплях от времени электролиза, и полярографическая кривая получается одинаковой независимо от направления изменения потенциала электрода. [c.223]

    На рис. Х.5 схематически показан прибор для измерения перенапряжения водорода, в котором определяется потенциал электрода в процессе электролиза. Для этого катод /( поляризуется внешней э. д. с. с использованием вспомогатель- [c.199]

    Сущность катодной защиты заключается в том, что защищаемое изделие подключается к отрицательному полюсу внешнего источника постоянного тока, поэтому оно становится катодом, а анодом служит вспомогательный, обычно стальной электрод. При электролизе вспомогательный электрод (анод) растворяется, на защищаемом сооружении (катоде) выделяется водород. Если вспомогательный анод изготовлен из металла, имеющего более отрицательный потенциал, чем защищаемый металл, то возникает гальванический элемент. При этом отпадает необходимость в наложении тока от внешнего источника. Анод растворяется со скоростью, достаточной для создания в [c.221]

    Из приведенного уравнения (4) следует, что теоретически I стремится к нулю при бесконечной продолжительности электролиза. В действительности даже при бесконечном продолжении электролиза сила тока по достижении некоторого малого значения перестает далее уменьшаться и остается постоянной. Этот ток, названный остаточным током, вызван электролизом разных примесей — деполяризаторов, например кислорода, или медленным разрядом водорода и другими причинами. Поэтому электролиз следует считать оконченным в момент, когда сила тока перестает изменяться в течение некоторого времени. Однако и в этом случае продолжительность электролиза остается довольно большой, что несколько снижает ценность метода. Если руководствоваться заданной точностью результатов анализа, то нет необходимости продолжать процесс до прекращения изменения силы тока в цепи. Остановив электролиз при величине сила тока, равной 0,01 г о или 0,001 о, можно завершить электрохимическое превращение вещества с точностью 1 или 0,1% соответственно. Однако надо учесть, что для обеспечения максимальной скорости электролиза потенциал рабочего электрода следует поддерживать в пределах площадки предельного тока (см., например, рис. 62), т. е. потенциал Е при анодной и 2—при катодной реакциях, так как в этих условиях наблюдается не только 100%-ный выход по току, но и максимально возможная сила тока, обусловленная переносом вещества. [c.194]


    Ранее было показано, что при определенном значении налагаемого напряжения на электроды можно практически занершить выделение металла в процессе электролиза. Различные значения потенциалов разложения у разных ионов металлов позволяют при соответствующем выборе налагаемого напряжения определять их в смеси. Однако в процессе электролиза, как было показано ранее, э. д. с. образуемой системы постепенно возрастает, и по мере уменьшения потенциала катода может наступить момент, когда потенциал катода станет настолько низким, что начнется выделение второго компонента смеси. Для того чтобы избежать этого явления, необходимо строго контролировать потенциал катода и поддерживать его значение, отвечающим количественному выделеннк более электроположительного катиона. При этом в конце процесса электролиза ток падает практически до нуля, что и является критерием завершения электролиза данного катиона. Далее, изменяя потенциал электрода до значения, необ.ко-димого для количественного выделения второго, более электроотрицательного компонента, можно осуществить и это определение и т. д. Для проведения электролиза с контролируемым потенциалом служат так называемые потенцио-статы — приборы, поддерживающие строго заданные потенциалы катода или анода. Электролиз с контролируемым потенциалом обеспечивает большую селективность электрогравиметрического метода анализа, позволяет проводить разделение и последовательное определение ионов с близкими потенциалами разло жеиия Метод этот пригоден и для определения весьма малых количеств веществ. [c.439]

    Термин фазовое перенапряжение т]ф, предложенный С. В. Горбачевым, весьма удачно отражает природу явления, лежащего в его основе. Отклонение потенциала электрода под током от равновесного значения вызвано в этом случае затруднениями, связанными с зарождением и развитием новой фазы в условиях электролиза. Уместно поэтому напомнить некоторые общие положения о фазо--вьтх превращениях. [c.328]

    Ранее считалось, как само собой разумеющееся, что поверхность катода всегда отрицательна, причем тем более отрицательна, чем менее электроположителен электродный металл. Эта точка зрения, сохранившая известное распространение и в настоящее время, ошибочна. Заряд поверхности металла не определяется ни той ролью, какую металл играет в электрохимическом процессе (т. е. является ли он катодом или анодом), ни его электродным потенциалом в данных условиях. Заряд поверхности электрода можно оценить, если воспользоваться предложенной Л. И. Антроповым приведенной, или ф-шкалой потенциалов. Потенциал электрода в ф-шкале представляет собой разность между его потенциалом II данных конкретных условиях (например, в процессе электроосаждеиия металла) и соответствующей нулевой точкой. Потенциал электрода в приведенной шкале служит мерой заряда поверхности и позволяет предвидеть, адсорбция каких именно ионов будет наиболее вероятной в данных условиях. Это положение можно проиллюстрировать на примере катодного выделения никеля, цинка, кадмия н сви1ща из растворов их простых солей. Все эти металлы выделяются при отрицательных потенциалах (по водоро/ ной шкале), которые в обычных режимах электролиза имеют следующие значения —0,80 В (Ni), —0,80 В (Zn), —0,45 В ( d) и —0,15 В (РЬ). Их потенциалы в приведенной шкале, т. е. заряды, можно оценить, воспользовавшись данными о нулевых точках этих металлов (см. табл. 11.6)  [c.469]

    При включении большего напряжения происходит дальнейший процесс заряжения и изменения потенциала электродов, который будет продолжаться до тех пор, пока поляризация не приведет к возникновению электрохимических процессов, сопровождающихся потреблением и получением электронов. Тогда нгчнется электролиз в полном смысле этого слова и через систему начнет протекать уже стационарный ток. В этоц случае проявляется полностью электрохимическая (химическая) поляризация со своей э.д.с., направленной против приложенной извне разности потенциалов. [c.613]

    Количественно электрохимические процессы описыв тся законами Фарадея. Эффективность электролиза характеризуется такими факторами, как сила и плотность тока, напряжение, выход по току и веществу, расход электроэнергии на единицу массы полученного продукта. Особенность электрохимических методов заключается в селективности, зависящей от потенциала электрода. [c.187]

    Поляризация электродов — отклонение потенциала от равновесного значения в реальных условиях электролиза. Поляризация электродов вызвана замедленностью протекання промежуточных или диффузионных стадий электродного процесса она обусловливает перенапряжение и, следовательно, повышение электродных потенциалов. [c.79]

    В технологии электрохимических производств большое значение имеют электролиз и химические источники тока (аккумуляторы, электрохимические элементы). Ток протекает через электролитическую ячейку и электроды, равновесие в системе отсутствует и элёкт-родные потенциалы отличаются от равновесных. Отклонение потенциала электрода от равновесного значения при протекании тока через электрод называется перенапряжением. [c.380]

    При постепенном сдвиге потенциала электрода от его равновесного значения в какой-то момент времени появится и будет постепенно возрастать ток. После достижения некоторого значения потенциала величина тока электролиза остается постоянной (предельный ток) до тех пор, пока при некотором новом значении потенциала не начнется электропревращение других веществ или в их отсутствие - самого растворителя, в частном случае - воды или ее ионов. Величина предельного тока зависит от концентрации вещества в растворе, тык как при потенциалах, соответствующих площадке предельного тока, последний обеспечивается лишь переносом вещества из раствора к поверхности электрода, где оно разряжается. Если в растворе присутствуют несколько веществ, способных к электропревращению при заданном потенциале электрода, то в отсутствие побочных процессов из-за аддитивности тока величина его представляет сумму величин всех составляк>-щих частных токов, пропорциональных концентрациям отдельных компонентов. [c.13]

    Если реакция идет в диффузионном режиме, а сила постоянного тока установлена при значении большем i p для реагирующего электродноактивного вещества, то довольно скоро расход вещества вследствие электролиза превысит диффузионный подвод его к электроду и потенциал электрода быстро сместится к значению, определяемому следующей возможной реакцией. Токи обеих реакций суммируются, в результате чего и определение делается невозможным. Таким образом, для проведения электролиза в амперостатическом режиме с выходом, близким к 100%, надо вести электролиз при силе тока значительно меньшей i p. [c.255]

    Ограничения использования амперостатической кулонометрии обусловлены трудностью поддержания постоянным при заданной силе тока значения потенциала электрода, при котором окисляется или (восстанавливается) только определяемое веще ство. В то же время амперостатическая методика привлекательна возможностью простого определения количества электричества пошедшего на электролиз определяемого вещества. Оно равно произведению силы тока на время электролиза  [c.256]

    Рассмотрим подробнее механизм возникновения и протекания диффузионного процесса. До начала электролиза концентрации электродиоактивных веществ в объеме раствора и на границе раздела электрод — раствор одинаковы. В ходе поляризации потенциал электрода достигает значения, при котором электродноактивное вещество вступает в реакцию, что сопровождается исчезновением из приэлектродной области части реагирующих частиц (ионов, если электролизу подвергается соль, или нейтральных молекул, особенно в случае органических соединений). [c.274]

    В осциллографической полярографии зависимость тока от потенциала электрода имеет максимум, характеризуемый велсотой Яр (или /р) и потенциалом р. Величины Яр(/р) пропорциональны концентрации вещества в растворе и являются количественными характеристиками метода. р — качественная характеристика, она зависит от природы деполяризатора и состава фонового электролита. В начале кривой обычно наблюдается небольшой подъем, обусловленный емкостным током. Далее подъем переходит в горизонтальный участок, за которым следует резкое увеличение тока, вызванное разрядом деполяризатора при достижении потенциала восстановления данного иона. Ток достигает максимума, а затем падает, что связано с уменьшением концентрации ионов деполяризатора в приэлектродном слое вследствие электролиза (рис. 53). При достаточно больших скоростях изменения [c.160]

    Напряжение разложения Mg l2 в расплаве с. хлоридами щелочных металлов будет зависеть от активности ионов магния. При электролизе потенциал катода равен —2,7 --2,9 В по отношению к хлорному электроду сравнения. При этом потенциа- [c.144]

    В действительности при прохождении электролиза вблизи электродов происходит изменение концентрации ионов Ме+, связанное с восстановлением их на катоде (по уравнению Ме++е —>-Ме) и с окислением на аноде (Ме—>-Ме+ + е ). Эти изменения концентраций вблизи электродов нельзя полностью устранить даже при интенсивном перемешивании раствора в процессе пропускания тока. Они, естественно, тем больше, чем больше сила тока и чем меньше размер электродов. Поэтому ме+ ме+ и 6а и к уже не рзвны Ёа увеличивается, а е уменьшается. Разность этих потенциалов противоположна приложенному напряжению и поэтому ее называют противопотен-циалом или концентрационным перенапряжением (Up). Приложенное напряжение должно быть больше потенциала перенапряжения. Если для начальной стадии электролиза соотношение между величинами можно было выразить формулой Rz = = (где — сопротивление ячейки г —сила тока  [c.257]

    В практике электрохимических и аналитических исследований широко применяется хронопотенциометрия, основанная на определении зависимости потенциала Е от времени I при заданном токе или при изменении тока по заданному закону. Наиболее простой разновидностью хронопотенциометрии является хронопотенциометрия при постоянном токе /=сопз1. При этом условии градиент концентрации реагирующего вещества у поверхности электрода остается постоянным, однако сама концентрация у поверхности (с- ) постепенно уменьшается. Когда падает до нуля, потенциал электрода резко смещается до значений, при которых вступают в реакцию другие компоненты системы. Время от начала электролиза до скачка потенциала называют переходным временем т. Если электродный процесс лимитируется диффузией реагирующего вещества к поверхности электрода, то объемная концентрация этого вещества с , плотность тока г и переходное время связаны уравнением (Г. Сэнд, 1901 ) [c.231]

    При одном и том же значении потенциала электрода скорость и даже направление электродных процессов могут существенным образом зависеть от адсорбции компонентов раствора. Так, сильное влияние на кинетику и механизм превращений органических веществ на окисленном электроде оказывает природа аниона и катиона фона. Это коррелирует с их различной адсорбируемостью, а также с возможностью специфического каталитического действия заряженных частиц (например, при внедрении их в оксидный слой). Так, при окислении на Р1-электроде фенилуксусной кислоты в метанольно-пиридиновых растворах добавление СЮ4 -анионов приводит к резкому снижению выхода димера в области потенциалов электросинтеза Кольбе, а основным продуктом становится бензилметиловый эфир. Это можно объяснить конкурирующей адсорбцией РЬ СН и С104 . Специфическая адсорбция катионов положительно влияет на выход димеров по Кольбе и Брауну—Уокеру. При электролизе растворов ацетатов в зависимости от природы катиона выход этана возрастает в ряду Li+нитрат-анионы — с другой, по-разному влияют на селективность анодных превращений ацетата в щелочных водных растворах в частности, первые из них увеличивают, а вторые практически не изменяют выход спирта. [c.290]

    Зависимость скорости алектродной реакции от потенциала электрода. Задачи теории электрохимической кинетики сводятся к установлению характера зависимости скорости электрохимического превращения I от потенциала электрода ф или перенапряжения Т1. Искомая зависимость определяется механизмом электродного процесса. Обратная задача состоит в установлении механизма путем анализа зависимости скорости от условий проведения электролиза и налагаемого электродного потенциала. [c.304]

    Если кривые = (Е) определяемого вещества и мешающих компонентов расположены достаточно далеко друг от друга, то можно вначале провести электролиз мешающего вещества при потенциале, отвечающем области его предельного тока (иначе говоря, предэлектролиз для очистки растворов от примесей), затем, фиксируя потенциал электрода, при котором происходит электропревращение определяемого ве--щества, измерить количество электричества, израсходованного на его полное восстановление или окисление. [c.193]

    Принцип метода. В методе используется сохранение заданной силы тока электролиза э постоянной в течение всего процесса анализа и измерение продолжительности электролиза Тэ- Но так как в отличие от прямой амперостатической кулонометрии в данном случае метод применяется для определения растворенных веществ, в процессе электролиза невозможно одновременное сохранение и силы тока, и потенциала электрода постоянными. Поэтому, как было указано ранее, при работе с постоянной силой тока электролиза из-за изменения потенциала электрода неизбежны побочные электрохимические процессы и не обеспечивается 100%-ная эффективность тока для необходимой электродной реакции. Для предупреждения затраты электричества на побочные электрохимические реакции в испытуемый раствор вносят электроактивное вещество (вспомогательный реагент), которое с самого начала или после некоторого периода электролиза (в зависимости от условий) участвует в электрохимической реакции. При этом необходимо, чтобы продукт реакции (промежуточный реагент) был способен количественно химически взаимодействовать с определяемым веществом. [c.198]

    В качестве материалов для генераторных электродов могут быть использованы платина, золото, серебро, ртуть, амальгамы, графит и иногда вольфрам, медь, свинец, хром и пр. Наиболее часто применяются платина и ртуть платина более пригодна для анодных процессов, а для катодных процессов — в тех случаях, когда электропревращение вещества протекает при более положительных значениях потенциала электрода, чем выделение водорода (из-за малого перенапряжения водорода иа платине). На ртутном электроде можно осуществить почти все катодные процессы благодаря большому перенапряжению водорода на нем. Однако из-за легкости анодного растворения ртути проведение электролиза при несколько более положительных значениях потенциала, чем потенциал НВЭ, недопустимо. Таким образом, эти два электрода дополняют друг друга. [c.208]


Смотреть страницы где упоминается термин Электролиз потенциале электрода: [c.458]    [c.484]    [c.166]    [c.279]    [c.162]    [c.205]    [c.228]    [c.25]    [c.192]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.18 , c.19 , c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал электрода



© 2025 chem21.info Реклама на сайте