Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды нефти выделение

    Основным компонентом твердых углеводородов остатков от перегонки мазута являются нафтеновые и ароматические углеводороды с длинными боковыми цепями, содержащими от 20 до 28 атомов углерода. В связи с этим в качестве модификаторов структуры изучены индивидуальные к-алканы от эйкозана до тетракозана, соизмеримые по длине с алкановыми цепями в молекулах этих углеводородов нефти. Выделение твердых углеводородов проводилось при обезмасливании петролатума 1 сернистых нефтей и петролатума 2, полученного при переработке малосернистого сырья (табл. 3.11), как наиболее трудно разделяемых продуктов. [c.130]


    В последнее время благодаря развитию методики и техники анализа были определены многие индивидуальные углеводородные компоненты нефтей, главным образом в ее легких фракциях. Нефтяные газы и бензиновые фракции нефтей с температурой кипения до 125°С изучены наиболее полно с определением практически всех индивидуальных соединений. Анализ закономерностей в изменении состава и распределения именно легких углеводородов нефтей выделен в специальный раздел в конце настоящей главы. [c.44]

    Исследования спектров поглощения различных нефтепродуктов в ультрафиолетовой области показали, что они представляют собой гиперболические кривые с небольшим пиком в области 255—260 нм (рис. 2). Различные нефти и нефтепродукты, содержащиеся в равных концентрациях, имеют неодинаковую интенсивность поглощения в зависимости от содержания в них ароматических соединений. Аналогичные спектры были получены для углеводородов нефти, выделенных из загрязненных вод нефтепродуктами (рис. 3). [c.142]

    Изучение состава нефтей и нефтяных дестиллатов затрудняется их сложностью и трудностью выделения из смесей многочисленных отдельных (индивидуальных) углеводородов. Помимо углеводородов нефти содержат кислородные и другие соединения, что еще в большей степени усложняет их исследование. Кроме того, при переработке нефтяного сырья образуется много новых углеводородов, не встречающихся в сырых нефтях. Предстоит выполнить еще значительную работу с целью определения строения сложных углеводородов и внесения большей ясности в существующие представления о химических превращениях их. [c.13]

    Как бы далеко ни продолжалась фракционировка на колонне, получение совершенно чистых индивидов невозможно, и всегда между уд. весами синтетических углеводородов и выделенных из нефти наблюдается некоторая разница, показывающая, что метано-Эые индивиды загрязнены нафтеновыми и наоборот. [c.116]

    Этим и определяются большие технико-экономические преимущества синтеза отдельных индивидуальных парафиновых углеводородов, вместо выделения их из состава нефти. Вот почему основными сырьевыми источниками индивидуальных парафиновых углеводородов являются природный газ, головные фракции сырой нефти и газы термического и каталитического крекинга нефти. [c.25]

    Кристаллизация твердых углеводородов нефти (технических парафинов). Большая часть твердых углеводородов нефти относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одним нз условий появления смешанных кристаллов является наличие длинных алкановых цепей (в основном нормального строения) в н- и изоалканах, нафтеновых и ароматических углеводородах, составляющих твердую фазу, которая выделяется при охлаждении нефтяных фракций. Кристаллы образуются в результате последовательного выделения из раствора и отложения на кристаллической решетке молекул твердых углеводородов с постепенно понижающимися температурами плавления. [c.87]


    В дальнейшем начали применять гидроочистку и гидрокрекинг тяжелых нефтепродуктов, что потребовало организации производства водорода на НПЗ. Сырьем для производства водорода служат углеводороды нефти. Такое сочетание процессов можно было бы также отнести к перераспределению водорода нефти, если бы в производстве водорода не применялся водяной пар. В основных процессах производства Нз (методом паровой каталитической конверсии углеводородов и паро-кислородной газификации углеводородов) к водороду, выделенному из углеводородов, добавляется водород, полученный из водяного пара. На этом последнем этане развития переработки нефти происходит не только перераспределение водорода, но и обогащение им углеводородов нефти. [c.12]

    Огромное число возможных изомеров и близких гомологов высокомолекулярных углеводородов, сглаживание различия в их составе и свойствах и незначительные концентрации отдельных химических индивидуумов в смесях высокомолекулярных углеводородов нефти делают нецелесообразным, а часто и практически неосуществимым применение как основного направления изучения химической природы и свойства высокомолекулярных соединений нефти чисто аналитического метода исследования, т. е. метода выделения индивидуальных соединений из сложных смесей с последующей их характеристикой. [c.29]

    В работах ГрозНИИ и др. [119—121] детально исследованы твердые предельные углеводороды нефтей Кавказских месторождений. Было показано, что твердые парафины, выделенные из сырых нефтей и дистиллятных продуктов, являются кристаллическими веществами. На основании физических свойств все твердые нефтяные парафины были разделены на две группы, различающиеся между собой по форме и размерам кристаллов. [c.79]

    В настоящее время уже никто не сомневается, что твердые углеводороды нефти и озокерита, получившие название парафины и церезины, состоят не полностью из углеводородов гомологического ряда метана (нормального и разветвленного строения), а представляют смесь их с углеводородами гибридного или смешанного строения. Содержание гибридных структур углеводородов в смесях и их строение зависят от химической природы нефти, из которой твердые углеводороды выделены, и от методов выделения (или технологии переработки нефти). Таким образом, даже наиболее простая составляющая высокомолекулярной части нефти представляет собой сложную смесь, которую нелегко разделить методами, не вызывающими химических изменений. Поэтому стали все чаще и успешнее применять физические методы разделения и исследования твердых углеводородов нефти. [c.84]

    Между тем, как установлено нашими прямыми опытами, трициклические конденсированные ароматические системы образуются при длительном нагревании (30—40 ч при 300—350° С) метил-нафталина, а также углеводородных фракций ряда бензола и нафталина (молекулярного веса 400 и выше), выделенных из сырой нефти, которая не подвергалась нагреванию выше 250° С, и не содержавших трициклических конденсированных ароматических углеводородов [2—7]. О довольно интенсивном образовании высококонденсированных ароматических систем при более высоких температурах (600—700° С) хорошо известно из многолетнего опыта работы пиролизных установок, где из керосина наряду с бензолом и его гомологами (толуол, ксилолы и т. д.) получают большие количества конденсированных ароматических углеводородов (нафталин, антрацен, фенантрен, и др.). Кроме того, незамещенные конденсированные ароматические углеводороды типа антрацена, бенз- и дибензантрацена, пентацена, содержащие в своей молекуле 3—5 бензольных колец (С д—Саг) строго говоря, находятся у нижней границы высокомолекулярных углеводородов нефти. [c.115]

    Для их раздельного определения весьма плодотворным оказался метод каталитической дегидрогенизации по Зелинскому. При дегидрогенизации предельного остатка бензиновых и керосиновых фракций на специальном катализаторе (палладий на активированном угле) при 300 °С шестичленные нафтены количественно превращаются в ароматические углеводороды с выделением водорода. Эта реакция очень подробно изучена и с успехом применяется при исследовании советских нефтей. Количество образовавшихся ароматических углеводородов определяется описанными выше методами. По разности между общим содержанием нафтенов и содержанием только циклогексановых судят о количестве циклопентановых нафтенов. Содержащие последних можно установить и прямым анализом физическими методами после дегидрогенизации и выделения образовавшихся ароматических углеводородов. Значения аг из табл. 1 в этом случае надо брать для цикло-пент новых углеводородов. При детализированных исследованиях предельные остатки подвергаются четкой ректификации и в узких фракциях нафтеновые углеводороды идентифицируются спектральными методами и по физическим константам. [c.66]


    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]

    Рассмотрены генетические основы классификации нефтей. Проанализированы критерии выделения генетических типов и факторы, влияющие на формирование состава нефтей. Отмечена унаследованность структурных особенностей углеводородов нефтей от органического вещества пород. Рассмотрены методы прогнозирования свойств и состава нефтей. [c.2]

    Таково влияние на характер нефтей динамометаморфизма . Теоретически говоря, более древние нефти подверглись и большему его влиянию. В общем, это подтверждается примером нефтей Соединенных Штатов, где палеозойские нефти, вообще говоря, легче мезозойских, мезозойские же — легче третичных. Но из этого правила много исключений, объясняемых особенностями исходного материала и геологической обстановкой того или иного месторождения. Из заводской практики нам хорошо известно, что если нефть будет перегрета, то начинается распадение ее тяжелых молекул на более легкие (на этом основан крекинг нефти). Если применить очень высокую температуру, то мы можем всю нефть превратить в газ, в составе которого главную роль будет играть метан. Вероятно, п в природе, если нефтяные залежи попадали в условия чрезвычайно высокого давления или очень больших температур, начиналось разложение нефти, которое заканчивалось разрушением углеводородов с выделением водорода и углерода. Это — крайняя степень метаморфизма органического вещества. Так, вероятно, образовался графпт — один пз крайних членов ряда битумов, а водород вследствие его малого атомного веса и крайней подвижности, вероятно, улетучился из литосферы в-атмосферу. [c.348]

    О действии серной ] и( лоты на углеводороды нефти ...Мак-Ки (1912 г.) опубликовал интересно наблюдение, по которому при очень сильном размешивании (мешалкой, делающей 900 об/мип) парафиновые углеводороды уже нри комнатной температуре и с обыкновенной крепкой Нз304 реагиру.эт с образованием сульфокислот... По опытам Зентке в лаборатории Энглера метановые углеводороды, начиная с пентана и выше, при сильном встряхивании заметно растворяются уже в крепкой НдЗО даже без нагревания постоингкю выделение ЗОз указывает па то, что мы имеем дело не с простым растворением, а с химической реакцией. Мне представляется вероятным, что реагирование предельных углеводородов с кислотой при энергичном встряхивании обусловливается тем, что от углеводородов при этом отрываются чрезвычайно мелкие каили и 1то нри очень малых размерах капель способность ясидкости к химическому реагированию возрастает так же, как и растворимост . и испаряемость... [13]. [c.29]

    Многие сероорганические соединения, содержащиеся в нефтях, тфмически нестабильны и могут разлагаться в процессе перегонки, образуя продукты, которых не было в исходных нефтях. В процессе перегонки сернистых нефтей всегда наблюдается выделение сероводорода, который может образоваться в результате распада сложных сероорганических соединений или взаимодействия углеводородов нефти с элементной серой. Первый процесс, например для радаевской нефти, начинается уже при 115—120 °С, достигает значительной интенсивности при 190—210 °С и наибольшей — при 350—400 °С. Второй процесс идет при 200—250 °С. Наименее термоустойчивы меркаптаны, ди- и полисульфиды, разлагающиеся при относительно низких температурах более устойчивы сульфиды. Высокая термическая устойчивость характерна для циклических сульфидов и особенно для тиофена. [c.25]

    Выделенные из ароматического концентрата (фракция 200— 430° С) моноароиатические углеводороды представляли собой гомологические ряды углеводородов различной структуры, являющиеся в большей части гомологами бензола. В целом именно моноарома-тические углеводороды как обычного, так и смешанного типов строения — соединения, наиболее близки к насыщенным циклическим углеводородам нефтей, представляют, на наш взгляд, значительный интерес для химии и особенно для геохимии нефти. Среди них нередко можно встретить реликтовые структуры, происхождение которых не вызывает сомнения (например, моноароматические стераны и т. д.). К тому же моноароматические углеводороды — это группа углеводородов, которая достаточно легко и однозначно может быть выделена из общей смеси ароматических соединений жидкофазной адсорбцией на оксиде алюминия. [c.155]

    Каталитическое дегидрирование углеводородов ряда циклогексана в ароматические углеводороды, осуществляемое в паровой фазе, было детально разработано в трудах Зелинского и его школы и нашло затем широкое применение для исследования легкокипящих углеводородов нефтей [21. В дальнейшем эти реакции были распространены на более высококипящие углеводороды [3,41. Особенно удобным оказалось дегидрирование высо-кокипящих углеводородов (с т. кип. 300° С), осуществляемое в жидкой фазе. При нагревании углеводородов, имеющих гексаметиленовые кольца, способные к дегидрированию, в присутствии платинированного угля происходит интенсивное выделение-водорода и гексаметиленовые кольца превращаются в ароматические. В качестве катализатора используется обычный платинированный уголь, содержащий 18% платины [51. Реакция протекает весьма гладко и обычно заканчивается через несколько часов. В опытах с модельными углеводородами, содержащими одно или несколько циклогексановых колец, были получены практически с количественными выходами ароматические углеводороды, тождественные соответствующим ароматическим углеводородам, синтезированным обьганымп методами (см. табл. 80). Мы не будем здесь останавливаться на экспериментальных подробностях осуществления этой реакции. Все это изложено в оригинальных работах [3, 41, а также в монографиях [6, 10]. [c.313]

    Полученная искусственная нефть имела высокоциклический характер, содержала сравнительно небольшие количества легкокипящих фракций (до 350° С выкипало лишь 35%) и по своим свойствам несколько напоминала нефти Апшеронского полуострова. Некоторые результаты исследования выделенных из искусственной нефти нафтеновых углеводородов будут нами рассмотрены более подробно, причем в ряде случаев будет проведено сопоставление свойств углеводородов нефтей и углеводородов, полученных из кислот. [c.372]

    Этот процесс имеет большое значение в химической технике. В качестве примеров достаточно указать на разделение природных углеводородов нефти и синтетических углеводородов с целью получения моторных топлив, на выделение индивидуальных газов из их смесей путем предварительного ожиячения и последующей ректификации жидкой смеси. [c.289]

    Если суммировать результаты последований индивидуального состава углеводородов нефти, то к нзстоящему времени число выделенных или с несомненностью определенных составляет свыше 600. Наиболее изучены нормальные алканы. [c.106]

    Изменения в структуре углеродного скелета свидетельствуют о реакции дегидроконденсации, преимущественно за счет гексамети-леновых колец. Особенно рельефно проявляется такой характер изменения углеродного скелета в смолисто-асфальтеновых веществах в процессах высокотемпературной переработки нефти. Этим и обусловлено различие в свойствах и строении нативных асфальтенов и асфальтенов, выделенных из тяжелых нефтяных остатков, полученных на различных стадиях высокотемпературной переработки нефти. Несмотря на аналогию в строении углеродного скелета, наблюдается резкое качественное различие в элементном составе высокомолекулярных углеводородов нефти и нефтяных смол. Первые имеют чисто углеводородную природу, т. е. полностью состоят из атомов углерода и водорода, вторые относятся к высокомолекулярным неуглеводородным компонентам нефти и, кроме углерода и водорода, содержат в своем составе О, 8, N и металлы, суммарное содержание которых может достигать 10% и более. В высокомолекулярных же углеводородах лишь в случае сернистых и высокосернистых нефтей могут присутствовать более или менее значительные примеси сераорганических соединений, близких по строению углеродного скелета к высокомолекулярным углеводородам. [c.40]

    Из приведенных в табл. 36 данных видно, что оба исследованных церезина весьма близки между собой по химической природе углеводородов, их составляющих. Эти церезины характеризуются резко выраженным преобладанием гибридных структур углеводородов парафино-циклопарафинового характера при сравнительно небольшом содержании чисто парафиновых углеводородов и практически полном отсутствии парафино-ароматических структур у шорсинского и незначительном содержании их у бориславского церезина. Интересно также отметить, что чисто парафиновые углеводороды представлены исключительно изомерами нормального строения в гибридных, парафино-циклопарафиновых формах углеводородов также преобладают изомеры с нормальными парафиновыми цепями, хотя наряду с ними присутствуют в значительных количествах структуры с разветвленными парафиновыми цепями. Приведенные здесь основные результаты, которые были получены Черножуковым и Казаковой [58] при длительном изучении твердых углеводородов, выделенных из тяжелых нефтепродуктов и природных церезинов, представляют большой принципиальный научный интерес для химии высокомолекулярных углеводородов нефти. Здесь сделан новый шаг в раскрытии природы так называемых изонарафинов , содержащихся в природных церезинах различных месторождений, а такн<е в сырых нефтях и в тяжелых нефтепродуктах. [c.202]

    Опыты проводились в тех же условиях, т. е. при температуре-315—320 С, в жидкой фазе и с применением в качестве катализатора платины на угле, приготовленной по описанной в литературе-рецептуре [78]. Дегидрогенизации подвергались жидкие парафиновоциклопарафиновые углеводороды, не образующие кристаллических комплексов с тиокарбамидом и выделенные из высокомолекулярной предельной части ромашкинской нефти. Процесс осуществлялся в три стадии при общей продолжительности 30 ч по следующей методике исходную фракцию высокомолекулярных предельных углеводородов нефти нагревали 10 ч с 15—20% катализатора. Количество выделявшегося газа измеряли через определенные промежутки времени (первая стадия) жидкие продукты реакции отделяли от катализатора и подвергали хроматографическому разделению. Во второй стадии при тех же условиях дегидрировали предельные углеводороды, выделенные из катализата первой стадии. Жидкие продукты реакции снова подвергали хроматографическому разделению , на третью стадию дегидрогенизации брали только предельную часть, [c.219]

    Так, Петров [57 1 показал, что при нагревании олеиновой кислоты в автоклаве в присутствии окиси алюминия и воды, под давлением 210—225 ат, при 380—390° С была получена смесь углеводородов, выкипающих в пределах бензино-керосиновых фракций нефти. Выделенные из продуктов реакции кислоты (10%) выкипали в пределах 210—250° С и, в отличие от исходной непредельной кислоты, обладали сравнительно незначительной непредельностью. Превращение этих кислот в углеводороды (через соответствующие спирты й йодиды) и исследование свойств последних показали, что это были нафтеновые кислоты, содержащие 9 атомов углерода в молекуле. Этой работой была доказана принципиальная возможность каталитических превращений широко представлеппой в растительном мире [c.324]

    Бестужев [108] изучал химическую природу сераорганических соединений, выделенных из двух высокосернистых нефтей Среднгто-Врстока. Оп показал, что по углеводородному скелету сераорганические соединения сходны с соответствующими циклическими углеводородами. Среди выделенных и исследованных сераорганических соединений более половины составляют полициклические конденсированные системы, в которых содержится 2—3 ароматических и несколько циклопарафиновых колец. Эти данные согласуются с результатами, полученными нами при исследовании химической природы сераорганических соединений, содержащихся в высокомолекулярной части девонской нефти Ромашкинского месторождения. [c.345]

    Анализ высококипящих углеводородов нефти. Этот анализ осложняется очень большим числом индивидуальных углеводородов, входящих в состав нефтяных фракций. Поэтому полная идентификация даже углеводородов керосиновых фракций газовой хроматографией — трудновыполнимая задача [89]. Однако газовая хроматография дает ценные сведения об индивидуальном составе отдельных групп углеводородов, выделенных различными методами из нефтяных фракций — нормальных алканов, углеводородов изопреноидного строения, алкиладамантанов, аренов (табл. 33). [c.119]

    Одно из выдающихся открытий последних лет — получение белка из углеводородов нефти, точнее из жидких нефтяных парафинов нормального строения, требует нового подхода к процессу карбамидной депарафинизации керосино-газойлевых фракций не только как к процессу, направленному на повышение качества топлив и масел, на получение сырья для производства СЖКи СЖС, но и как к процессу, позволяющему обеспечить, по существу, неограниченной сырьевой базой промышленность микробиологического синтеза. В связи с этим возникает необходимость проектирования и сооружения значительного количества высокопроизводительных установок карбамидной депарафинизации, имея в виду выделение мягкого парафина из всего количества прямогонных керосинов и дизельных топлив, вырабатываемых в стране [216]. [c.133]

    Иетод карбамидной депарафинизации использован В. Г. Николаевой с сотр. [151] для выделения индивидуальных нормальных парафиновых углеводородов из фракции 200—350° С ромашкинской нефти. Выделение проводили двумя способами. По первому способу фракцию обрабатывали кристаллическим карбамидом в присутствии активатора — этанола. Сырые парафины, образующиеся при разрушении тщательно промытого изооктаном карбамидного комплекса и содержащие до 10% ароматических углеводородов, деароматизировали серной кислотой и подвергали вторичной обработке химически чистым карбамидом в количестве 200% в присутствии 10% этанола. Полученные и-парафины разделяли четкой ректификацией и исследовали. Кривая разгонки и начальные температуры кристаллизации узких фракций показаны на рис. 66. [c.191]

    На основании изложенного можно заключить, что при деасфальтизации концентратов нефти причинами, влияющизли на ход процесса, являются способность пропана образовывать насыщенные растворы углеводородов, дисперсионные силы, способные удер-1 живать углеводороды в растворе в противовес эффекту взаимного ) притяжения молекул смол углеводородов и выделения их из I раствора вследствие резкого снижения плотности пропана.  [c.179]

    Если угли легко изменяются под влиянием нагрева даже до относительно невысокой температуры, то нефть значительно стабильнее даже длительный нагрев фракций нефти до температуры 300° С обычно не вызывает заметного разложения. Можно сказать, что возможные превращения материнского вещества нефти в основном уже закончились. Это подтверждается и полным пли почти полным отсутствием в нефтях непредельных углеводородов, в то время как углеводороды битума, выделенного, например, экстрагированием из верхнесилезского каменного угля, на состояли из непредельных соединений и только на 29 /о из предельных (полициклических нафтенов). [c.5]

    В дальнейшем. Брей р сотрудниками показали, что, применяя в качестве растворителя низкомолекулярные п-арафиновые углеводороды, возможно выделение из нефти не только асфальтенов, но также и прочих смолистых веществ и высокомолекулярных углеводородов. [c.78]

    Деградацию углеводородов нефти можно осуществить с помощью штамма Rliodo o us erythiopolis, выделенного автором из природных образцов нефтесодержащих почв Крайнего Севера. Новый штамм обладает выраженной способностью к биодеградации легких и тяжелых фракций в воде и в почве. Из полученных данных следует, что штамм был способен использовать не только легкие фракции, такие, как гексадекан, дизельное топливо, но и в определенной степени тяжелые фракции нефти, т.е. разлагать широкий спектр углеводородов. Максимальная деструкция наблюдалась па 3 сутки и составляла для парафина 90%, дизельного топлива 85%, нефти 80% [5]. [c.87]

    Ароматические углеводороды нефти могут иметь различное происхождение. Во-нервых, ароматические группировки содержатся уже и самом сапропелитовом материале на более или менее глубоких стадиях его изменения. В керогене эстонских сланцев X. Т. Раудсепн нашел до 26% ароматических систем конечно еще ие углеводородного характера, а так как ароматические кольца не уничтожаются, они переходят из одного класса органических соединений в какой-то другой класс и в конце концов в ароматические углеводороды. Постоянное содержание кислорода (часто и серы) в ароматических углеводородах, выделенных из нефти физическими методами, является возможно признаком, унаследованным от исходного материала. Последний мог содер-н ать ароматические системы лигнина водяных растений. Попадавшие в сапропелевые илы в виде растительного детрита остатки наземной флоры также могли повысить ресурсы ароматических структур. Значительное содержание ароматических углеродных атомов в гумусовых углях, несмотря на то что клетчатка их не содержит, иллюстрирует возможность значительного содержания ароматических систем и в исходном материале нефти. Во всяком случае речь мол ет идти только о полициклических ароматических системах, а, следовательно, и об углеводородах этого ряда. С этой точки зрения содержание кислорода именно в высших членах ароматического ряда, выделенных из нефти, показательно в том отношении, что эти углеводороды ближе к иачальному веществу нефти, чем углеводороды прочих рядов, особенно среднего и низкого молекулярного веса. Вместе с тем подкрепляется положение, что во всех нефтях близость группового состава характерна именно для выспщх фракций высокого молекулярного веса. Различные типы нефти в основном зависят от позднейших ее превращений. Разукрупнение высших гибридных углеводородов [c.124]

    Для разделения смолистых веществ в сравнительных целях применяется следующая методика. Сперва навеска нефти растворяется в легком бензине (нефтяном эфире или нентане), не содержащем ароматических углеводородов. Количество нефтяного эфира должно быть не менее чем в 20 раз больше навески. При стоянии из раствора выпадает нерастворимая часть, так называемые асфальтены, которую можно отфильтровать и взвесить. В фи.пьтрате оказываются все углеводороды нефти и часть смол, не осажденная нефтяным эфиром. После этого смолы из раствора поглощаются силикагелем, алюмогелем или активными глинами. Силикагель является более подходящим, потому что на холоду не вызывает существенных изменений в смолах. Поглотитель со смолами хорошо промывается нефтяным эфиром от захваченных углеводородных масел, после чего смолы могут быть вытеснены из силикагеля спиртобензолом. После испарения растворителя получаются так называемые нейтральные смолы, резко отличающиеся по свойствам от асфальтенов. Эта принципиальная методика подвергалась усовершенствованиям, главным образом в части осаждения асфальтенов. Было установлено, что количество выделяющихся асфальтенов прямо связано с природой осадителя. Точно также для десорбции нейтральных смол с силикагеля пользуются не только спиртобензолом, но и другими растворителями, извлекающими дробные фракции смолистых веществ. При этом четкого, разделения, однако, не получается и выделенные фракции обладают переходящими признаками. Иногда различными растворителями обрабатываются уже выделенные спиртобензолом нейтральные смолы. Некоторые исследователи ошибочно приписывают этим аналитическим фракциям генетические взаимоотношения, что обычно заводит в тупик всю проблему генезиса смолистых веществ нефти. [c.144]


Библиография для Углеводороды нефти выделение: [c.107]   
Смотреть страницы где упоминается термин Углеводороды нефти выделение: [c.23]    [c.75]    [c.116]    [c.34]    [c.58]    [c.383]    [c.106]    [c.175]    [c.526]    [c.65]    [c.315]    [c.56]    [c.84]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение углеводородов



© 2025 chem21.info Реклама на сайте