Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионы сплавов

    По тем же причинам часто предпочитают проводить разделение катионов, осаждая некоторые из них в виде гидроокисей или основных солей, образовавшихся в результате процессов гидролиза. Так, при анализе различных руд, шлаков, некоторых сплавов и других объектов иногда применяют осаждение РеЗ+ и А1з+ действием ацетата натрия на предварительно нейтрализованный раствор при кипячении  [c.122]


    Путем электролиза можно получать сплавы различных металлов. Наиболее легко осуществляется совместный разряд катионов металлов, имеющих близкие равновесные потенциалы. Если равновесные потенциалы сильно различаются, то подбирают соответствующие комплексообразователи или поверхностно-активные вещества, сближающие потенциалы разряда осаждаемых металлов. Осаждаемые при электролизе сплавы часто получаются в состоянии, далеком от равновесия, что позволяет получать сплавы таких составов, которые термическим путем получать не удается. [c.365]

    Важной особенностью карбоксильных катионитов является возрастание энергии связи фиксированных ионов к противоионам с ростом величины положительного заряда последних. Исключение составляют ионы водорода энергия связи карбоксильного катионита с протонами столь велика, что даже разбавленными кислотами легко могут быть вытеснены все катионы металлов, независимо от величины их заряда. С повышением содержания в смоле карбоксильных групп на единицу массы катионита различие в сорби-руемости катионов одновалентных и многовалентных металлов резко возрастает. Это облегчает хроматографическое разделение смесей разновалентных металлов, что весьма существенно для практического использования карбоксильных катионитов в анализе минералов и сплавов. [c.64]

    Наиболее обширной областью использования ионообменных процессов в аналитической химии следует, по-ви-димому, считать хроматографическое разделение смеси ионов, а также ионообменный хроматографический анализ металлов и сплавов. Ионный обмен сам по себе не позволяет открыть или определить какие-либо ионы. Эта задача решается при сочетании ионообменных процессов с каким-либо известным качественным или количественным методом определения катионов и анионов. [c.139]

    Ф. Л. Шемякин и Д. В. Романов (1949) разработали хроматографический метод анализа водных растворов смесей катионов металлов на колонках нз пермутита. Предложены пермутиты оптимального состава по треугольнику Гиббса. Для этой же цели можно применять окись алюминия н анализировать металлы и сплавы  [c.144]

    Восстановление металлами можно вести как в кислой, так и в щелочной среде. При восстановлении в кислой среде чаще всего применяют цинк, магний, алюминий, железо, в щелочной среде — алюминий (превращается в алюминат-ион ЛЮ,7), цинк (в цинкат-ион 2пО ), амальгаму натрия и сплав Деварда. Восстановление сплавом Деварда быстрее. В качественном анализе металлами восстанавливают сложные анионы, например МпО , с целью перевода их в катионы. Последние вытесняются из растворов другими металлами. Медь можно выделить из раствора встряхиванием со стружкой А1 на поверхности осаждается медь. [c.153]


    Полярографический метод применяют для определения небольших количеств металлов в сплавах, рудах, шлаках и других материалах металлургического производства. Этим методом можно определять одновременно катионы разных металлов, не прибегая к пред- [c.501]

    Скорость коррозии железоуглеродистых сплавов в растворах нейтральных солей зависит от многих факторов, к числу которых относятся концентрация раствора, природа анионов и катионов, содержание кислорода и др. При очень малых концентрациях солей скорость коррозии железа с возрастанием концентрации солей сначала быстро растет, проходит через максимум (при концентрациях порядка 0,1., .0,2 - Н), а затем сравнительно медленно снижается (рнс. 4), [c.10]

    В качестве хлоридного расплавленного электролита для получения сплава свинец—натрий может быть использован лишь расплав индивидуальной соли хлорида натрия, так как использование многокомпонентных расплавов приводит к выделению на расплавленном свинцовом катоде всех катионов, присутствующих в расплаве, что сильно осложняет последующее извлечение натрия из его сплава со свинцом. [c.217]

    Увеличивает анодную пассивируемость сплавов добавление высокозарядных металлических или металлоидных ионов, которые повышают плотность тока катионных зарядов до необходимого для пассивации уровня. В качестве таких ионов можно использовать металлы Сг, У, V, Мп или металлоиды Si, С, В, Р, 8 и N. Повышают пассивируемость сталей также легированием небольшими добавками электрохимически положительных металлов (Ш, Рс1, Ки, Ке), облагораживающих потенциал коррозии металла положительнее потенциала полной пассивации и обеспечивающих достаточную для пассивации плотность катионного тока. Исследованиями последних лет было показано, что для достижения эффекта повышения коррозионной стойкости металлов достаточно обрабатывать только поверхностные слои металла. [c.73]

    Возможность соосаждения металлов на катоде так же, как и состав получаемых сплавов, зависит от относительных скоростей восстановления их ионов в данных условиях. Необходимым условием для совместного разряда двух или большего числа катионов является равенство потенциалов их восстановления. В наиболее простом случае (если металлы на катоде не взаимо-.действуют) оно имеет вид  [c.254]

    Коррозия металлов в указанной смеси газов (кроме содержащих соединения серы) имеет такой же характер, что и в воздухе или в кислороде. При этом на поверхности металлов образуются плотные тонкие оксидные пленки, которые эффективно тормозят коррозионный процесс. Скорость коррозии в этом случае определяется скоростью диффузии катионов и ионов кислорода через оксидную пленку. Обычно она невысока, поэтому коррозия не является лимитирующим фактором при выборе материала. Это справедливо для перлитных сталей до 500 °С, хромистых нержавеющих — до 600 °С, аустенитных — до 700 °С, никелевых сплавов — до 800 °С. Как правило, определяющим при выборе материалов становятся характеристики жаропрочности. [c.220]

    Ионные компоненты. Установлено, что только анионы хлоридов, бромидов и иодидов ускоряют КР титановых сплавов. Электролит в трещине становится кислым (экспериментально подтверждено [109]) ионы водорода и Т1+ вытесняются другими катионами внутри трещины таким образом, что скорость не зависит от присутствия в среде катионов щелочных и щелочноземельных металлов. Определенные катионы тяжелых металлов, таких как медь, в виде хлорида могут ингибировать процесс КР в условиях без на ложения потенциала, поскольку ионы меди способствуют в хлоридных растворах установлению потенциала в области анодной защиты. [c.397]

    Светло-серый металл ковкий (в присутствии и УС — очень твердый и хрупкий), тугоплавкий. Не тускнеет во влажном воздухе. В виде тонкодисперсного порошка пирофорен. Не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака. В растворе катион V имеет фиолетовую окраску, V — сине-зеленую, — синюю и УО — красную. Реагирует с концентрированными серной и азотной кислотами, царской водкой , фтороводородной кислотой, водородом, кислородом, галогенами, серой, азотом, фосфором, углеродом, аммиаком. Промышленно важен сплав с железом — феррованадий (35—80% V). Получение см. 729 , 73б", 740.  [c.364]

    Полученные на катоде осадки металлов в большинстве случаев вполне удовлетворяют требованиям, предъявляемым и к осаждаемой, и к весовой формам, поэтому электролиз дает возможность очень точно определять содержание некоторых металлов в растворах их солей, а применение соответствующей аппаратуры и проверенных методик позволяет выполнять определения сравнительно быстро. Электрогравиметрический анализ весьма широко применяется на практике, особенно при исследовании цветных металлов и сплавов. Имеется, однако, ряд металлов, которые не дают при электролизе достаточно плотных осадков на электроде . Кроме того, когда в растворе присутствует не один, а нескэлько катионов, может происходить одновременное разряжение и осаждение их на катоде или разряжение вместо определяемого каких-либо посторонних ионов (например, Н -ионов). [c.421]


    Для ряда сплавов было установлено, что менее благородные металлы Ме (Са, Сг, 8 , Т1, 1.] и Мп в меди) образуют легко различимые отдельные слои (прилегающие к поверхности сплава), на которых образуется окисел более благородного легируемого металла Mt (закиси меди Си О). Для того чтобы эти промежуточные слои оказывали защитное действие, необходимо выполнение следующих условий-. I) промежуточный слой должен образовывать когерентное (сцепленное) покрытие на металле без образования таких дополнительных каналов диффузии, как трещины или проницаемые межзеренные границы 2) скорости диффузии катионов (Ме"+ и М "+) и анионов в этом слое должны быть малы 3) пов.ерхност-ные окислы не должны образовывать легкоплавких эвтектик. [c.108]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Скорость коррозии железоуглеродистых сплавов в растворах нейтра./1ьных солей зависит от многих факторов, к числу которых относятся концентрация раствора, природа анионов и катионов, содержание кислорода и др. [c.203]

    С [26]. Диффузия ионов МР наружу происходит по катионным вакансиям в где О < -< 1, а внедрение повышает концентрацию катионных вакансий. В хромоникелевых сплавах, содержащих >40 % Сг, диффузия наружу происходит в окалинах, состоящих из СГаЗд. Внедрение ионов Ni в Сг Зз-окалину снижает концентрацию катионных вакансий, поэтому скорость реакции становится ниже скорости для чистого хрома. При промежуточных составах окалина гетерогенначИ состоит из сульфидов никеля и хрома, причем в сплавах Сг — N1, содержащих >20 % Сг, скорость реакции взаимодействия с серой ниже, чем для чистого хрома. [c.198]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    При осаждении гидроокисью аммония необходимо, чтобы железо в растворе было в окисленной форме. Двухвалентное железо не осаждается количественно гидроокисью аммония кроме того, осадок Ре(0Н)2 очень плохо отделяется фильтрованием. Поэтому при анализе материалов, в которых может присутствовать элементарное железо или его закись, перед осаждением укелеза гидроокисью аммония его необходимо окислить. Иногда при анализе минералов и сплавов перед осаждением гидроокиси железа (или суммы полуторных окислов ) предварительно осаждают сероводородом катионы IV и V аналитических групп. Во время пропускания сероводорода через раствор железо восстанавливается до двухвалентного. Поэтому после отделения осадка сульфидов фильтрованием избыток сероводорода удаляют кипячением, а затем окисляют железо. В качестве окислителя удобнее всего применять перекись водорода или бромную воду. [c.153]

    Из катионов наиболее ярко выраженным пентизирующим действием обладают ионы железа. Поэтому при растворении в азотной кислоте сплавов, содержащих наряду с оловом значительные количества железа, получается иногда совершенно прозрачный коллоидный раствор. [c.172]

    Более устойчивы соединения постпереходных катионов со связями М—Si. Так, синтез Bi(Me3Si)3 проводится при нагревании до 85 °С порошка Bi с MeaSi l в диметоксиэтане (в атмосфере аргона и с добавлением сплава Na/K). [c.91]

    Рассмотрим зависимость АФ от состава опл ава. Для лросто-ты возьмем сплав типа АВ (рис. 126), в котором компоненты образуют непрерывный ряд твердых растворов. Пусть компонент Л будет электроотрицательнее компонента В. Предположим далее, что катионы обоих металлов имеют одинаковый заряд 2. Очевидно, что компонент А начнет разряжаться ета катоде ранее компонента В лишь при лотенциале, положительнее обратимого потенциала компонента А на величину  [c.379]

    Так как Ве и Mg сплава не образуют, присутствие в реакционной смеси избытка Мо вреда не представляет. Когда в 20-е годы в Советском Союзе только организовывалось производство бериллия (активным участником его был академик В. И. Спицын), металлического магния в стране не было и приходилось Ве получать электролизом Вар2-Вер2->Ва [Вер4]. Металлический бериллий выделялся на аноде при меньшем напряжении, чем это требовалось для разрядки катионов Ва + на катоде. Производство это было небезопасным, поскольку электролиз вели при высокой температуре, необходимой для расплав- [c.29]

    Растворение может быть выполнено путем высокотемператур-лого сплавления или спекания с флюсами (ЫагСОз, ЫагОг и др.). Сплав охлаждают и растворяют в растворителе. При переведении лробы в раствор в нее могут попасть вещества, искажающие результат анализа. Например, материал сосуда может растворяться и попасть в пробу или часть пробы адсорбируется сосудом. Анионы адсорбируются слабее, чем катионы, поэтому для уменьшения потерь катионы следует связать в анионные комплексы например, Hg +—>HgI4 , Ag+—>-Ag( N)2 . [c.247]

    Деполяризация разряда катиона металла при образовании сплава на катоде это смещение потенциала разряда в положительную сторону относительно потенциала разряда одного рассматриваемого катиона при той же плотности тока сверхполяризация — смещение потенциала в отрицательную сторону. [c.141]

    Широкое применение, особенно в машиностроении, для защиты от атмосферной коррозии находят гальванические покрытия, которые получаются катодным осаждением заш,ищающего металла или сплава из водных растворов, содержащих катионы металла — покрытия. Металлические покрытия получают также химическими методами путем восстановления ионов металла е помощью веществ-восстановителей, находящихся в растворе. [c.49]

    Скорость коррозии железоуглеродистых сплавов в растворах нейтральных солей определяется содержанием там кислорода, концентрацией соли, а также природой анионов и катионов С ростом концентрации соли скорость коррозии вначале возрас тает, а затем начинает снижаться, поскольку увеличение содержа ния соли в растворе снижает концентрацию кислорода. Роль кис порода здесь двояка он усиливает коррозию, являясь деполяри затором катодного процесса, и ослабляет ее в качестве пассива тора. Депассиваторы (ионы галоидов) усиливают коррозию [c.31]

    Влияние вида катиона в растворах, содержащих ионы С1 , Вг и 1 , может рассматриваться с учетом их положения в электрохимическом ряду напряжений по отношению к титану. Катионы менее благородных, чем титан, металлов, например натрий, калий, литий и др., не оказывают влияния на КР. Более благородные, чем титан, катионы могут влиять на КР. Как было показано 1102], Кгкр сплава Ti—8 А1—1 Мо—1 V может возрасти при добавках u lz. Следует отметить, что этот эффект сильно зависит от термообработки сплава [103]. [c.323]

    Изменение концентрации точечных Д. используется для управления физ.-хим. св-вами твердых в-в и хим. процессами с их участием. Так, допируя галогениды серебра ионами кадмия и увеличивая тем самым в них концентрацию катионных вакансий, удается понизить адсорбцию на них додециламина-коллектора в процессе флотации. Точно так же допирование прир. сульфида свинца (галенита) ионами серебра и висмута изменяет заряд пов-сти н ее способность к адсорбции заряженных молекул коллектора при флотации. Допируя TiOj ионами тантала, можно существенно изменять скорость заполнения межгрануляр-ного пространства при спекании методом горячего прессования. Ионную проводимость ZrOj. возникающую вследствие допирования СаО, связывают с образованием вакансий и своб. ионов 0 . Точечные Д. изменяют скорость полиморфных превращений, коррозии металлов и сплавов, процессов спекания и рекристаллизации керамич. материалов. Т. наз. вакансионные состояния часто предшествуют образованию частиц продукта в виде самостоят. твердой фазы при гетерог хим. р-циях. В ряде случаев получение кристаллов с заданной концентрацией точечных Д. определенного вида необходимо при создании материалов для микроэлектроники, лазерной техники, люминофоров и др. [c.30]

    Из других катионов определению 100 мкг алюминия не мешают 0,5 мг Ni, Со, Мо, Мп, W [9261. По другим данным [831] определению 4—150 мкг алюминия не мешают 3 мг Мп, 0,5 мг Сг и Sn, 0,3 мг Си и 0,15 мг фосфора. 5 мкг алюминия можно определять в присутствии 0,25 г цинка без предварительного отделения [831]. Не мешают заметные количества d, Pb и Sn. Влияние меди можно устранить введением тиосульфата натрия [250]. Таким образом, оказывается возможным опреде тять алюминий в медно-цинковых сплавах без отделения [250. Присутствие мышьяка мешает мало 111951. [c.103]

    Методы, основанные на амфотерности алюминия. Алюминий — амфотерный металл—отделяют как от катионов,так иани-онов сорбцией на катионитах в ЫН4-форме из растворов с pH 2,5—3,0. Для его десорбции используют при этом растворы щелочей [222,238, 239, 356, 357]. Лазарев [222] при определении алюминия в сплавах альнико и бронзах раствор пропускает через колонку с СБС в Н" -форме, затем алюминий извлекает 300 мл 1 N раствора МаОН и 50 мл воды со скоростью 3,5 мл1мин. [c.185]

    Типичные спектрограммы, показывающие зависимость интенсивности рентгеновского излучения от длины волны, полученные при анализе сплава на основе никеля с помощью кристаллов LiF и RAP, приведены на рис. 5.12. Разделение пиков Ка И Ка2 на рис. 5.12 (для 1ванадия 6 эВ) демонстрирует для основных элементов высокое разрешение по энергии, которое можно ожидать для кристалл-дифракционного спектрометра. Две другие возможности, а именно обнаружение легких элементов и измерение сдвига пика, иллюстрируются на рис, 5,13, где приведены наложенные друг на друга /С -линии бора в чистом боре, кубическом и гексагональном нитриде бора, полученные в режиме управления от ЭВМ. Сдвиги линий и сателлитные пики обусловлены сдвигами в энергетических состояниях внешних электронов, связанными с различиями в химической связи. Та-. кого рода измерения могут также использоваться для определения различных состояний окисления катионов в окислах металлов [104]. Более подробно этот вопрос обсуждается в гл. 8. [c.206]

    При электрохимической коррозии происходят электрохими-ческпе процессы, связанные с возникиовением в металле или сплаве на определенных участках микрогальвапнческих пар под действием электролита и разности электрохимических потенциалов отдельных структурных составляющ нх металла. В результате этого возникает электрический ток, происходит передвижение электронов от одного участка металла к другому п взаимодействие нх с положительно заряженными ионами раствора (катионами). Атомы металла теряют при этом электроны и образуют положительно заряженные ноны (катионы), при взаимодействии которых с отрицательно заряженными иопами электролита (анионами) происходит разрушение металлов — коррозия и образование окислов на поверхности металла. Электрохимическая коррозия происходит и при контакте двух разных металлов [c.11]


Смотреть страницы где упоминается термин Катионы сплавов: [c.135]    [c.110]    [c.78]    [c.131]    [c.330]    [c.485]    [c.141]    [c.323]    [c.459]    [c.334]    [c.346]    [c.170]    [c.670]    [c.301]    [c.77]   
Курс аналитической химии Издание 5 (1981) -- [ c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние катионов металлов на коррозию сталей и сплавов в кислых средах



© 2024 chem21.info Реклама на сайте