Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система термодинамическая термодинамическое

    Лиофобные дисперсные системы являются термодинамически неравновесными. В отличие от молекулярных растворов - гомогенных систем они обладают большим запасом свободной поверхностной энергии, самопроизвольное уменьшение которой происходит вследствие уменьшения поверхности раздела фаз. Таким образом, процесс слипания частиц - коагуляция является термодинамически выгодным и самопроизвольным. [c.44]


    Параметры определяют состояние системы в целом, так называемое макросостояние. Совокупность координат, скоростей и квантовых уровней энергии частиц системы определяет ее микросостояние. Молекулы газа, находящегося в условиях определенного объема, давления и температуры, т.е. в определенном макросостоянии, постоянно и хаотично движутся, а потому микросостояния чередуются. Число микросостояний, соответствующих данному макросостоянию системы, называется термодинамической вероятностью. Иначе, это число способов, которыми может быть осуществлено данное макросостояние.  [c.90]

    Система отсчета термодинамических величин была принята единой. За начало отсчета брали полные энтальпии Оа, СОа, Н О, N3 в виде газов при температуре 20° С. Все энтальпии и константы равновесия реакций брались из таблиц термодинамических свойств вещества [11. [c.93]

    Необходимость наличия избыточного потенциала для осуществления реакции в подобных случаях можно объяснить с помощью теории энергетического барьера Банкрофта [27, 28]. Этот энергетический барьер представляет собой по Банкрофту практически то же самое, что и энергия активации, но с тем отличием, что, по его мнению, некоторые реакции могут быть необратимыми на 100%. В обратимых системах, где реакции протекают без энергии активации, нет и энергетического барьера между восстановителем и сопряженным с ним окислителем. В тех случаях, когда окисление или восстановление или и то и другое протекают медленно, система должна иметь достаточную энергию, говоря точнее, достаточную потенциальную энергию для того, чтобы молекулы могли перевалить через барьер. Высота барьера представляет собой разность между потенциалом, который был бы необходим, если бы система была термодинамически обратима, и потенциалом, который фактически требуется для осуществления реакции. Банкрофт следующими словами Связывает эту концепцию с явлением перенапряжения [286] Если реакция может протекать электролитически, то высота энергетического барьера определяется как разность между свободной энергией системы и разностью потенциалов, необходимой для проведения реакции . [c.283]

    Раствор, как и любая система, характеризуется термодинамическими величинами объемом V, внутренней энергией I). энтропией 5, изобарно-изотермическим потенциалом О, энтальпией Я и т. д. Однако обычно не пользуются абсолютными значениями этих величин, так как достаточно определить разность между термодинамическими величинами системы в двух каких-либо ее состояниях АС = С2—Ой АН = N2—Я и т. д. Для процессов растворения принято определять разность между термодинамическими функциями раствора и этими же функциями компонентов до растворения  [c.335]


    Когда химический состав и фазовое состояние системы однозначно определены, термодинамические величины Ср(Р, Т), 5(Р, Т), Н[Р, Т)—Н° 0), 0 Р, Т) Н°(0), Ч (Р, Т), Ф(Р, Г), отнесенные к единице массы системы, называются термодинамическими свойствами вещества системы. Термодинамические свойства смесей известного химического и фазового состава могут быть вычислены, если известны термодинамические свойства образующих их индивидуальных веществ. Поэтому одной из важнейших задач химической термодинамики является определение термодинамических свойств индивидуальных химических веществ в достаточно широких пределах изменения температуры и давления. При этом прежде всего определяются термодинамические свойства индивидуальных веществ при стандартном давлении [Ср[Т), 5°(Т), Я°(Г)-Я°(0), Ф°(Г)), которые [c.94]

    Если система является термодинамически неустойчивой, то она со временем стремится к термодинамически равновесному состоянию, т. е. изменяется во времени. Это изменение может ускоряться внешними воздействиями в процессе эксплуатации материала, например, вследствие повышения температуры, циклических деформаций, изменения давления и др. Однако в большинстве случаев изменение комплекса эксплуатационных свойств протекает столь медленно, что материал исчерпывает ресурс времени эксплуатации по другим причинам, не связанным с диффузионными процессами перемешивания и расслаивания компонентов. Удобной характеристикой оценки устойчивости материала, состоящего из смеси различных компонентов, служит так называемая эксплуатационная устойчивость . Под этой характеристикой подразумевают время, в течение которого изменение показателей средств системы вследствие ее перехода из термодинамически неравновесного в равновесное состояние не выходит за пределы значений, допустимых по условиям эксплуатации [9, с. 293]. [c.24]

    Стандартные потенциалы дают представления о возможном направлении окислительно-восстановительных химических реакций, однако в реальных условиях это направление может быть иным по следующим причинам. Окислительно-восстановительные системы, в зависимости от скорости реакций, протекающих на электродах, подразделяются на обратимые и необратимые. Стандартные потенциалы обратимых систем измерены непосредственно описанным выше способом, тогда как стандартные потенциалы необратимых систем в большинстве случаев находят путем термодинамических расчетов. Вследствие этого на практике их величины оказываются иными, так как на них оказывают большое влияние многие факторы. Например, для необратимых систем не наблюдается закономерного изменения потенциала в соответствии с изменением концентрации компонентов системы, и расчеты, проведенные с использованием стандартных окислительных потенциалов и концентраций компонентов, носят скорее иллюстративный характер, чем отвечают действительным данным. Поэтому гораздо большее практическое значение имеют формальные (реальные) потенциалы окислительно-восстановительных систем. Формальные потенциалы ( ф) находят, измерением э. д. с. гальванического элемента, в котором начальные концентрации компонентов окисли- [c.350]

    Вряд ли необходимо доказывать, какую неоценимую помощь могут оказать эти обобщенные зависимости (диаграммы /Ср—Т, р) для проектирования, контроля и анализа разработки нефтегазовых залежей. Между тем приходится, к сожалению, констатировать тот факт, что эти обобщенные зависимости по величинам Кр чаще всего не характеризуют термодинамическое состояние потока нефти и газа в залежи. Иначе говоря, набор величин /Ср, собранный в графиках, на диаграммах и в таблицах при различных значениях давления и температуры для какой-либо конкретной газонефтяной системы, логически не связан с другими важнейшими параметрами системы, характеризующими термодинамическое состояние (ср, А, г, 5, АС). Значения Кр, представленные в литературе, при различных величинах Тир для какого-либо конкретного состава углеводородов или газонефтяного пласта, даются в отрыве от остальных (а они указываются) важнейших термодинамических [c.92]

    Если для простоты рассмотреть некоторое количество газа в жестко 1 сосуде с совершенно не пропускающими стенками, то очевидно, что он будет равномерно распределен по всему сосуду и система будет характеризоваться состоянием равновесия, т. е. определенной энергией и одинаковыми давлением и температурой по всему сосуду. С молекулярной точки зрения давление возникает в результате хаотических отклонений молекул со стенками, и энергия системы просто равна сумме энергий отдельных молекул. Если бы мы каким-либо путем получили сведения не об отдельных молекулах, а о числе молекул, имеющих данную скорость , то, используя несколько простых предположений, нетрудно было бы показать, что, исходя из этого, можно вычислить термодинамические свойства газа. [c.114]

    В системе ро-координат термодинамический цикл изображается замкнутым контуром. Если линия расширения в этом контуре лежит выше линии сжатия, то цикл протекает по направлению вращения часовой стрелки. Такие циклы называются прямыми. Прямые циклы — это циклы тепловых двигателей. Термодинамический цикл может протекать и в обратном направлении. В этом случае линия расширения лежит ниже линии сжатия. Такие циклы называются обратными и являются циклами холодильных машин. [c.31]


    В отличие от стеклования, которое в пределах доступного для наблюдения времени не является фазовым переходом, кристаллизация представляет собой фазовый переход I рода, признаками которого являются скачкообразные изменения удельного объема, энтальпии и энтропии системы. Термодинамической константой этого перехода является равновесная температура плавления кристаллов Гпл. Она представляет собой верхний температурный предел. выше которого существование кристаллической фазы невозможно. Кристаллизация развивается при Т <Тпл и состоит из двух элементарных процессов — образования зародышей, а также роста и формирования кристаллитов. Первичными кристаллическими образованиями в нерастянутых полимерах являются ламели, представляющие сложенные на себя молекулярные цепи. Из них затем формируются вторичные поликристаллические образования — сферолиты, дендриты и др. [c.46]

    Совокупность изучаемых термодинамикой свойств (так называемых термодинамических параметров) системы определяет термодинамическое состояние системы. Изменение любых термодинамических свойств (хотя бы только одного) приводит к изменению термодинамического состояния системы. [c.27]

    Если из N молекул системы, имеющей объем V, в одну половину этого объема попадают в другую N2=N—молекул, то число возможных распределений различимых молекул, отвечающих указанному суммарному распределению между двумя половинами объема (число микросостояний, т. е. термодинамическая вероятность), W определяется формулой  [c.104]

    Ha основании этого сопоставления можно сформулировать условия равновесия системы следующим образом в состоянии равновесия системы термодинамические потенциалы ее имеют минимальное значение ири постоянстве своих естественных переменных, а энтропия имеет максимальное значение при постоянстве внутренней энергии и объема системы. [c.125]

    Система термодинамически устойчива в течение всей кристаллизации, если процесс охлаждения вести очень медленно. При этом ранее образовавшиеся кристаллы успевают за счет протекающей внутри их объема диффузии изменять свой состав так, чтобы сохранялось их равновесие с расплавом, состав которого постепенно меняется при охлаждении. При высоких температурах это достижимо, и состав кристаллов постепенно меняется от х до X, а состав расплава от х до х". При низких температурах [c.404]

    Прежде всего следует определить границы системы, для которой составляется баланс. При составлении теплового баланса нужно учесть, что процесс может быть адиабатическим, либо неадиабатическим. Для математического описания системы нужны термодинамические величины — давление, температура, объем и концентрация. Если процесс происходит при переменном объеме, то система либо сама совершает работу, либо работа совершается над системой. Система может быть замкнутой или открытой с проходящим через нее потоком массы. [c.149]

    Понятие равновесия играет исключительную роль в химической кинетике, поскольку оно определяет предел возможных изменений состояний реагирующей системы и зависит только от начальных условий и свойств самой системы, а не от условий проведения процесса. Несколько упрощая существо дела, термодинамику можно определить как пауку о равновесии или как учение о направленности процесса, в то время как кинетика — наука о его скорости. Более строго термодинамика — часть физики, изучающая общие свойства систем, находящихся в стационарном равновесном состоянии. Термодинамическим процессом называется всякое изменение состояния системы. Термодинамический процесс называется обратимым (равновесным или квазистатическим), если он протекает таким образом, что в ходе процесса изолированная система последовательно занимает ряд равновесных (точнее говоря, почти равновесных) состояний. Если в результате некоторого процесса система вернется в исходное состояние, то такой процесс называется циклом. Результатом обратимого цикла является возвращение системы в состояние, тождественно эквивалентное исходному. [c.21]

    Равновесность — более узкое понятие, оно применимо лишь для изолированных систем, для которых понятия стационарность и равновесность эквивалентны. В микроскопическом смысле под равновесным (стационарным) состоянием системы понимают такое ее состояние, когда при заданных и фиксированных макроскопических состояниях микроскопические параметры с точностью до малых флуктуаций, обусловленных молекулярным строением системы, однозначно определены и имеют конкретные численные значения. Подчеркнем, что это справедливо лишь для системы, находящейся в состоянии равновесия — для неравновесного состояния задание макроскопических параметров не определяет однозначно микроскопических свойств системы. Термодинамической вероятностью W называется число микроскопических, состояний, соответствующих одному и тому же макроскопическому состоянию. В отличие от математической вероятности Р, нормированной в пределах О < Р <С 1, термодинамическая вероятность, как число допустимых состояний может иметь любые численные значения в пределах 0< РУ<оо. [c.22]

    Экстенсивными называются величины, аддитивные ио своей природе и определяемые в виде суммы в отдельных частях системы. Как правило, они зависят от массы системы. Все термодинамические нотенциалы являются экстенсивными величинами. Экстенсивные по своему характеру величины часто называют термодинамическими потоками 3. Интенсивными считают величины, которые в неравновесной системе стремятся к значению, одинаковому для всех частей системы при достижении равновесия. Как правило, они не зависят от массы вещества (температуры, скорости и т. д.). Величины, интенсивные по своему характеру, часто называют термодинамическими силами X. [c.38]

    О системах, обладающих термодинамической памятью, см. [50]. [c.114]

    Эмульсии и аэрозоли широко используются в химической технологии как для развития межфазных поверхностей в реагирующих системах, так и для получения различных продуктов и полупродуктов. Процессы эмульгирования и распыливания происходят, с увеличением межфазной поверхности, поэтому образующиеся системы термодинамически неустойчивы при этом самопроизвольно протекают обратные процессы, обусловленные коалесценцией капель. [c.121]

    Для однородной по химическому составу гомогенной системы ее термодинамические функции зависят от Р, V, Т, а также <т — поверхностного натяжения, В — напряженности магнитного поля, g — силы тяжести, д — заряда и — напряженности электрического поля. Главное уравнение термодинамики можно представить для этой системы в таком виде  [c.144]

    Химический потенциал, подобно Т и Р, выравнивается в юде протекания процесса химического превращения веществ и обмена веществами между фазами. Однако в отличие от Р и Г химический потенциал нельзя опытно измерить, его величину только рассчитывают. Для химически неоднородной или гетерогенной системы термодинамические функции можно уже представить в таком виде  [c.145]

    Термодинамические процессы. Если, наблюдая за какой-то конкретной системой, установим, что в ней изменяется во времени хотя бы одно из термодинамических свойств, то это значит, что в системе протекает термодинамический процесс. Если при протекании процесса наблюдается изменение химического состава системы, то его (процесс) называют химической реакцией. [c.184]

    Следовательно, при самопроизвольном протекании любого физикохимического или химического процесса в закрытой системе термодинамические потенциалы при постоянстве соответствующих параметров системы должны уменьшаться. При достижении равновесия в системе термодинамические потенциалы при соответствующих параметрах достигают минимальной величины. Отсюда, критериями равновесия в системе будут соотношения  [c.231]

    Электрохимическая цепь представляет собой систему, состоящую из различных фаз, содержащих заряженные компоненты — ионы и электроны (рис. 169). На границах раздела фаз происходит переход заряженных частиц из одной фазы в другую, что объясняется стремлением системы к термодинамическому равновесию. При этом на границах раздела фаз возникают скачки потенциала. Э. д. с. цепи определяется как суммарный результат всех процессов, происходящих на границах раздела фаз. [c.468]

    Состояние системы. Совокупность термодинамических свойств системы назьшается ее состоянием. Важнейшими термодинамическими свойствами являются Р, Т, V, состав, и, Н, 8, С, Р и др. В качестве основных термодинамических параметров системы обычно выбирают- [c.12]

    Коалесценция глобул воды в нефтяной эмульсии - процесс необратимый, поскольку дисперсная система является термодинамически неравновесной. [c.17]

    Все двухфазные дисперсные системы делятся на две группы по величине удельной свободной межфазной энергии, измеряемой поверхностным натяжением а. К первой группе относятся лиофобные дисперсные системы — термодинамически агрегативно неустойчивые, характеризующиеся некоторым временем существования, с относительно высоким межфазным натяжением а большим граничного значения а . Ко второй группе относятся лиофильные дисперсные системы — термодинамически устойчивые, самопроизвольно образующиеся эмульсии со значением межфазной поверхностной энергии, меньшим граничного значения а ,. [c.15]

    Здесь ДЯ и AS — изменения энтальпии и энтропии, которые, согласно (52.2), соответствуют уравнению химической реакции. Таким образом измерением электродвижущей силы и ее температурной зависимости можно определить величины ДС, ДЯ и Д5 для реакции (52.2). Так как все три величины являются функциями состояния, то их значения ие зависят от того, протекает ли реакция (при постоянной температуре и постоянном давлении) необратимо (случай б".) или обратимо (случай в".). Напротив, теплота, принятая системой (которая зависит от пути в пространстве состояния), при необратимом протекании равна ДЯ, при обратимом процессе равна ГД5, в то время как в последнем случае, согласно (52.31), ДЯ равна сумме подведенной теплоты и электрической работы, подведенной потенциометром к системе. Термодинамическое исследование гетерогенной реакции с помощью обратимых гальванических элементов играет также важную роль при экспериментальной проверке теплового закона Нернста ( 38). [c.270]

    Коллоидные системы, дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском двих<ении, противостоят седиментации (оседание частиц на дно) в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиболее важны и многообразны коллоидные системы с жидкой дисперсионной средой. Их делят на лиофильные и лиофобные. В первых частицы дисперсной фазы интенсивно взаимодействуют с окружающей жидкостью, поверхностное натяжение на границе фаз очень мало, вследствие чего эти коллоидные системы термодинамически устойчивы. К лиофильным коллоидным системам относят мицеллярные (мицелла - коллоидная частица), растворы ПАВ (поверхностно активные вещества), растворы некоторых высокомолекулярных веществ, органических пигментов и красителей, критических эмульсий (образующиеся вблизи критической температуры смешения двух жидких фаз), а также водные дисперсии некоторых минералов. В лиофобных коллоидных системах частицы слабо взаимодействуют с дисперсионной средой, межфазное натяжение довольно велико, система обладает значительным избытком свободной энергии и термодинамически неустойчива. Агрегативная устойчивость лиофобных коллоидных систем обычно обеспечивается присутствием в системе стабилизирующего вещества, которое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению (коагуляции - образованию агрегатов). Типичные лиофобные коллоидные системы - золи металлов, оксидов и сульфидов, латексы (водные дисперсии синтетических полимеров), а также гели (структурированные коллоидные системы с жидкой дисперсионной средой), возникающие при коагуляции и структурировании золей. [c.116]

    I, Дайта определение термодинамической системы, термодинамического процесса. [c.42]

    Всс значения термодинамических функций в настоящее время приведены к единым, так называемым ста и д а рт н ы м условиям (/ = 25° С и Я = 1 ата) состояния системы. Величины термодинамических функци ) приведены в стандартных таблицах (см. табл. 22), которые являются очень удобными в пользовании и позволяют вести расчеты с наибольшей точностью. Эти таблицы содержат а) изменение тенлосодерлония АР (илн, что то же, теплоту образования изменение свободной энергии AF° химических соединений при стандартных условиях [c.161]

    Термодинамическая поверхность вещества, охватывающая широкую область параметров состояния (от состояния идеального газа до кривой плавления), разделена на две зоны по критической изохоре. Для каждой зоны составлены взаимосогласованные уравнения состояния, обеспечивающие плавный переход термодинамической поверхности через линию раздела и строгое соблюдение условий в критической точке (параметры в ней обозначаются с индексом кр). Основное уравнение системы имеет вид [26] [c.35]

    Практикум содержит работы iio основным paJдeлaм фнничсско химии. В пособии рассмотрены методы физико-химических измерении, обработки экспериментальных данных и способы их расчетг)в. Большое внимание уделено строению вещесто, первому началу термодинамики, фазовому равновесию 13 одно-, двух- и многокомпонентных системах, химическому равновесию в гомогенных системах и др. Интерес представляют работы по молекулярной спектроскопии и кинетике гомогенных и гетерогенных [)еакций. Изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. Введены работы по расчету сумм состояния и термодинамических функций. [c.2]

    После продолжительных дискуссий авторы решили поступить с единицами системы СИ следующим образом. Существует традиционная привязанность к калории как единице тепла, и пройдет еще немало времени, пока она исчезнет из научной литературы. Тем не менее ясная логика системы СИ, легкость пользования ее единицами и обеспечиваемая ими очевидность взаимосвязи между теплотой, работой и энергией-все это говорит в пользу перехода к единицам, которые будут стандартными для следующего поколения химиков. Единицы системы СИ и их обоснование даются в приложении 1. Калория упоминается в этой книге постольку, поскольку каждый ученый должен знать, что она собой представляет, но все расчеты проводятся в джоулях. Термодинамические таблицы в приложении 3 и в других разделах книги составлены в джоулях. В то же время авторам не хочется быть чрезмерно педантичными и выплеснуть вместе с водой и ребенка . Поэтому стандартная атмосфера (101 325 паскалей) рассматривается как удобная производная единица в расчетах, связанных с газовыми законами, а элементарный заряд электрона (0,16022 аттокуло-на)-как удобная единица для выражения заряда ионов. Внимательный читатель обнаружит, кроме того, в тексте и ангстремы, за которые мы не собираемся приносить извинения. Нашей задачей является воспитание грамотных ученых и эрудированных людей, которые смогут читать, понимать и использовать как старую, так и новую научную литературу. [c.11]

    Выше отмечены сложности определения активностей для реальных растворов органических веществ. Поэтому приведенные общие соотношения иллюстрируют лишь возможный подход. Б каждом конкретном случае газожидкостной реакции в неидеальных системах термодинамический расчет ставит ряд ориги-яальных проблем. [c.94]

    Учение о химическом равновесии получило термодинамическую основу в работах Вант-Гоффа, Гельмгольца, Потылицина, Горст-мана в 70—80 годах (уравнения изотермы химической реакции, уравнение изобары и изохоры реакции и др.). В то же время Гиббсом были разработаны общая термодинамическая теория равновесий и система термодинамических функций, которые в последующий период послужили основой термодинамики химических реакций. [c.17]

    Предложен общий метод для решения обратной задачи в случае обработки экспериментальных данных по равновесиям в газовой фазе. Метод позволяет проанализировать все возможные гипотезы о молекулярном составе изучаемой системы, рассчитать термодинамические характеристики независимых реакций, получить взаимно-согласованные значения термодинамических свойств системы, а также наметить пути планирования уточняющих экспериментов. Метод иллюстрируется на примерах обработки данных статического метода, метода потока и метода взрыва для системы кревший—хлор—водород. [c.192]

    Реакционная способность химической системы при заданных условиях характеризуется скоростью и возможной глубиной химической реакции. Направление и глубина химической реакции определяются законами химической термодинамики. Согласно второму закону термодинамики условия направленности и равновесия химических реакций при постоянных Я и Г записываются в форме О (см. гл. X). В качестве меры химического сродства реакции принимается значение нормального (стандартного) сродства Afi° 298) (см. 75). Нормальное сродство мэжет быть меньше и больше нуля. Термодинамически наиболее вероятны реакции, у которых значения нормального сродства наиболее отрицательны. По значению (298) можно судить о вероятности той или иной реакции при парциальных давлениях (активностях) исходных и конечных продуктов, равных единице. Однако не следует делать вывод, что реакция вообще неосуществима, если А ° Т) > 0. Изменив парциальные давления начальных или конечных продуктов, можно создать условия, когда А О(Т) будет меньше нуля, и реакция пойдет слева направо. В табл. 28 привета б л и ц а 28. Степень превращения исходных веществ (х) и (2Я8) процесса, протекающего до равновесного состояния при отсутствии продуктов реакции в исходной системе [c.522]

    На основании температур начала кристаллизации двухкомпонентной системы 1) постройте диаграмму фазового состояния (диаграмму плавкости) системы А —В 2) обозначьте точками / — жидкий расплав, содержащий а % вещества А при температуре Тй II — расплав, содержащий а % вещества А, находящийся в равновесии с кристаллами химического соединения III — систему, состоящую из твердого вещества А, находящегося в равновесии с расплавом, содержащим Ь % вещества А IV — равновесие фаз одинакового состава V — равновесие трех фаз 3) определите состав устойчивого химического соединения 4) определите качественный и количественный составы эвтек-тик 5) вычертите все типы кривых охлаждения, возможные для данной системы, укажите, каким составам на диаграмме плавкости эти кривые соответствуют 6) в каком фазовом состоянии находятся системы, содержащие с, е % вещества А при температуре Т Что произойдет с этими системами, если их охладить до температуры Т 7) определите число фаз и число условных термодинамических степеней свободы системы при эвтектической температуре и молярной доле компонента А 95 и 5 % 8) при какой температуре начнет отвердевать расплав, содержащий с % вещества А При какой температуре он отвердеет полностью Каков состав первых кристаллов 9) при какой температуре начнет плавиться система, содержащая й % вещества А При какой температуре она расплавится полностью Каков состав первых капель расплава 10) вычислите теплоты плавления веществ А и В 11) какой компонент и сколько его выкристаллизуется из системы, если 2 кг расплава, содержащего а % вещества А, охладить от Тх до Г,  [c.247]

    Ко второй гр л1пе относятся так называемые критические лиофиль-ные эмульси11 днсперсные системы, термодинамически устойчивые, самопроизвольно образующиеся эмульсии с межфазной поверхностной энергией, меньшей граничной энергии а . Лиофильные системы являются полуколлоидами (семиколлоидами) и характеризуются высокой дисперсностью. Предельный случай лиофильных систем соответствует безграничной взаимной растворимости, когда а=0, т. е. образованию однофазной системы — истинного раствора. Непрерывный переход от лиофобных к лио-фильным системам, т. е. от грубо дисперсных систем через полуколлоиды [c.15]


Смотреть страницы где упоминается термин Система термодинамическая термодинамическое: [c.178]    [c.58]    [c.28]    [c.320]    [c.405]    [c.618]    [c.146]    [c.155]   
Основы химической термодинамики и кинетики химических реакций (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Система термодинамическая



© 2025 chem21.info Реклама на сайте