Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамические эффекты поля

    В отличие от полярности, поляризуемость молекул определяется динамическими эффектами которые возникают, когда на атомы, соединенные в молекуле а-связью, воздействуют другие полярные молекулы, ионы или электрические поля, / -эффект играет важную роль в процессах адсорбции и хемосорбции ПАВ на металлических поверхностях, несущих значительные заряды. Имеет особое значение тот факт, что 1а- и / -эффекты меняются в противоположных направлениях. Чем более полярна связь атомов, тем менее она поляризуема, т. е. чем выше разность электроотрицательностей атомов в молекуле, тем больше / -эффект и тем меньше / -эффект. Например, энергия связи С—Р выше, чем у связи С—I, но последняя легче поляризуется. [c.200]


    Все предположенные и принятые в рассматриваемой теории внутримолекулярные смещения электронов можно разделить, во-первых, на смещения вдоль связей с сохранением электронного дублета и на с.мещения со связи на связь, т. е., как говорят, на смещения по индукционному и по таутомерному механизмам, и, во-вторых, на смещения в основном, стационарном состоянии молекулы и на смещения, происходящие под влиянием реагентов или среды, т. е. на смещения статические и динамические. Статическое смещение, идущее по индукционному механизму, обычно называют индукционным, а сходное по механизму динамическое смещение — индуктомерным. Статическое смещение, идущее по таутомерному механизму, называют мезомерным а сходное по механизму динамическое смещение — электромерным. К этим смещениям следует еще добавить смещение, обусловленное эффектом поля . Гипотезы о существовании названных смещений мы рассмотрим, следуя хронологии возникновения этих предположений. [c.105]

    В результате на,ложения этих спектров интенсивности линий складываются через одну и возникает сложная картина, нри которой число линий и их относительная интенсивность меняются от образца к образцу (рис. 2). На общую, достаточно сложную картину накладываются динамические эффекты, благодаря которым число линий меняется с температурой и происходит динамическое сужение сигнала, показывающее, что нри температурах 300—350 К все электроны в чистых образцах освобождаются от кулоновского поля примесей. Эти данные позволили нам со- [c.14]

    В модели ориентированного газа принимаются во внимание только первый и второй члены. Член К/, описывающий возмущение, ответствен в первую очередь за различия между газообразной молекулой и молекулой в кристалле, а также за снятие вырождения колебаний. Это так называемый эффект статического поля . Член описывает динамический эффект в кристаллах, возникающий за счет межионного взаимодействия. [c.417]

    При грубо приближенном рассмотрении молекулярного кристалла как ориентированного газа , т. е. упорядоченного расположения определенным образом ориентированных, но не взаимодействующих частиц, уже можно объяснить отсутствие вращательной структуры и сужение полос, а также разную их поляризацию в зависимости от ориентации кристалла. При учете взаимодействия молекул в реальном кристалле в первом приближении имеются в виду два эффекта. Во-первых, статический эффект поля кристалла на отдельную молекулу, который может приводить к смещению, расщеплению и появлению новых полос из-за сдвига энергетических уровней, снятия их вырождений и запретов на переходы. Во-вторых, динамический эффект резонансного взаимодействия молекул, находящихся в одной элементарной ячейке, называемый также эффектом Давыдова, когда происходит расщепление энергетического уровня (даже не вырожденного) изолированной молекулой и в спектре вместо одной полосы наблюдается мультиплет. [c.205]


    Во-вторых, эффект статического поля не приводит к полному снятию вырождения, поскольку N1 одинаковых молекул, переходящих друг в друга при операциях симметрии пространственной группы кристалла, обладают одной и той же потенциальной энергией. Колебательное взаимодействие между этими N1 идентичными осцилляторами, находящимися в движении, приводит к снятию остаточного вырождения подобное явление хорошо известно в случае механических и электрических осцилляторов. Этот динамический эффект, именуемый также эффектом корреляционного поля, можно учесть, вводя в выражение для потенциальной энергии члены Ф2(тр,аЬ) при таф Ф рь, учитывающие взаимодействие молекул. [c.135]

    Отделить динамические эффекты от статических можно, если ввести изучаемую молекулу в кристаллическую решетку, образуемую изотопическими молекулами [209]. В изотопических решетках статические поля почти одинаковы, тогда как частоты [c.300]

    Индуктивные эффекты вызывают смещение плотности а-элект-ронов и позволяют в общих чертах предвидеть, где именно в данной молекуле можно ожидать сосредоточивания отрицательных, а где положительных зарядов. Электронный остов молекулы не абсолютно жесткий, и, хотя а-связи под влиянием различных соседних групп более или менее поляризованы, приближение к данной связи какого-либо постороннего иона или действие внешнего поля могут усилить или ослабить поляризацию. Этот дополнительный эффект называют динамическим эффектом он, в частности, проявляется в особенно легкой деформируемости -связей углерод — иод по сравнению с деформируемостью связей углерод — фтор или хлор. [c.116]

    Очевидно, деформация молекулярного поля должна сказаться и на транспортных свойствах, а следовательно, и на динамике процесса. Реакция, приведенная выше, может служить удобной моделью для изучения динамического эффекта давления. [c.140]

    В статических условиях отрывной диаметр парового пузыря определяется из условий механического равновесия между подъемной силой, стремящейся оторвать паровой пузырек от поверхности, и силой поверхностного натяжения, удерживающей его на твердой поверхности. На рис. 13-3 показана упрощенная схема роста. В действительности, если даже не учитывать динамического эффекта, следует иметь в виду, что по мере увеличения пузырька форма его будет все более отклоняться от первоначальной сферической. Это объясняется возрастающей ролью сил полей тяжести, стремящихся как бы вытянуть пузырек в направлении от поверхности. [c.300]

    Большинство существующих промышленных процессов в химической и нефтехимической промышленности (реакторные процессы, массообменные и теплообменные процессы, процессы смешения газо-жидкостных и сыпучих сред и т. д.) — это процессы с низкими (малыми) параметрами (давлениями, скоростями, температурами, напряжениями, деформациями). В силу специфики целей и задач химической технологии здесь на передний план выступают процессы химической или физико-химической переработки массы. Поэтому при структурном упрощении обобщенных описаний, как правило, пренебрегают в первую очередь динамическими соотношениями (характеризующими силовое взаимодействие фаз и отдельных составляющих внутри фаз) или учитывают их косвенно при установлении полей скоростей фаз, концентрируя основное внимание на уравнениях баланса массы и тепловой энергии. Кроме того, в самих уравнениях баланса массы и энергии, наряду с чисто гидромеханическими эффектами (градиентами скоростей, эффектами сжимаемости, диффузии и т. п.), первостепенную роль играют [c.13]

    В последнее время магнитные методы снова получают широкое распространение в связи с развитием динамического метода измерения парамагнетизма — метода электронного парамагнитного резонанса (ЭПР). В магнитном поле энергетический уровень неспаренного электрона расщепляется на два подуровня — эффект Зеемана. Эти подуровни отвечают разной ориентации спина электрона. Разность энергии этих двух состояний равна где — напряженность постоянного магнитного поля g — фактор спектроскопического расщепления, который для свободного электрона равен 2,0023 р — магнетон Бора. [c.23]

    Динамическая диффузия. Из гидродинамики известно, что распределение скоростей движения газа по сечению полой цилиндрической трубы описывается параболой с максимумом, соответствующим оси трубы. Как следствие этого в капиллярной колонке происходит дополнительное размывание хроматографической зоны, связанное с так называемой динамической диффузией. В насадоч-. ной колонке сопротивление потоку газа вблизи стенки меньше, чем в центре сечения, поэтому в отличие от полой колонки скорость потока газа у стенок насадочной колонки выше, чем в центре сечения. Такое неравномерное распределение концентраций по сечению вызывает поперечный диффузионный поток и связанное с ним размывание зоны. Это явление получило название стеночного эффекта. [c.29]


    Вначале для объяснения спада тока в разбавленных растворах при переходе через п. н. з. была выдвинута теория замедленного вхождения анионов в двойной слой (теория так называемого динамического 1р1-эффекта). Естественно, что поле двойного слоя при даО должно замедлять подход анионов к поверхности электрода и этот эффект должен проявляться тем сильнее, чем больше отрицательный заряд поверхности, т. е. следует ожидать спада тока электровосстановления анионов при переходе через п. н. з. Максимальную плотность тока вхождения частиц О с зарядом 2о в двойной слой можно рассчитать по формуле [c.264]

    Для объяснения спада тока в разбавленных растворах при переходе через т. н. з. В. Г. Левичем была развита теория неравновесного двойного электрического слоя. Сущность этой теории состоит в том, что поле двойного слоя при отрицательных зарядах электрода замедляет скорость подхода анионов к поверхности металла. Замедленное вхождение анионов в двойной слой (так называемый динамический у х-эффект) должно проявляться тем сильнее, чем больше отрицательный заряд поверхности, т. е. следует ожидать спада тока электровосстановления анионов при переходе через т. н. з. Максимальную плот- [c.280]

    Под действием электрического поля нематические жидкие кристаллы вызывают интересные оптические эффекты, называемые динамическим рассеянием. При этом прозрачная пленка становится мутной. Это свойство используется во многих карманных вычислительных машинах, часах с цифровой индикацией и наручных часах, индикаторные устройства которых выполнены на основе таких жидких кристаллов. [c.49]

    Приближение сильного поля подразумевает инвариантность L по отнощению к поворотам. На гамильтониан Ж не накладывается больще никаких ограничений. Релаксационный супероператор Г может содержать в дополнение к чисто релаксационным членам слагаемые, которые учитывают изменения населенностей, обусловленные химически индуцированной динамической ядерной поляризацией и облучением РЧ-полем, приложенным для получения эффектов Оверхаузера. Химически равновесный обмен описывается супероператором S. Супероператор L описывает систему в стационарном состоянии <7 , а не в равновесном состоянии ао. [c.204]

    Отличие этого интеграла столкновений от получаемого при пренебрежении эффектами динамической поляризации заключается в том, что вероятность перехода определяется матричным элементом не кулоновского потенциала заряда в вакууме, а электрическим потенциальным полем заряда в среде (ср. формулу (31.16)). Такой интеграл столкновений был получен в работах (6,24) и (для слабых отклонений от термодинамического равновесия) в работе [5] (см. также книги (25, 29]). В пределе Й = О полученный интеграл столкновений переходит в классический, найденный в 55. [c.266]

    Использование полей высокой напряженности дает прайму щества и при исследовании динамических эффектов. Как по называет уравнение (VIII. 11), константа скорости k в точ  [c.302]

    Причинами уширения спектра генерируемого излучения как в суперлюминесцентных лазерах, так и в лазерах с резонаторами могут быть играющие важную роль в формировании спектра излучения ДИК-лазера динамический эффект Штарка, т. е. возмущение верхнего рабочего уровня электромагнитным полем излучения резонансной или околорезонансной накачки [И, 12], и двухфотонные эффекты, в известной мере аналогичные комбинационному рассеянию света [13—18]. Показано, в частности, что для получения узкой линии генерации в лазере на фторметане плотность мощности излучения резонансной накачки должна быть меньше 10 кВт/см , чтобы избежать уширения за счет динамического эффекта Штарка [И]. [c.173]

    В пионерских расчетах Поли в приближеиии жестких молекул были получены дисиерсионные кривые и функции распределения частот для гексаметилентетрамина [97], нафталина и антрацена [98]. В работе [98] энергия межмолекулярного взаимодействия вычислялась в атом-атомном приближении, а динамические коэффициенты были найдены численным дифференцированием. Однако расчетные частоты существенно отклонялись от эксперимеитальных значений. Одной из причин этого отклонения могло быть взаимодействие внешних и внутренних молекулярных колебаний. Чтобы учесть этот эффект Поли и Си-вин [99] провели расчет динамики кристалла нафталина, рассматривая динамические коэффициенты как вторые производные потенциальной энергии по смещениям отдельных атомов. Таким образом, молекулы не считались жесткими и могли деформироваться при колебательных движениях. Для нахождения динамических коэффициентов использовались силовые постоянные внутримолекулярных смещений, полученные из частот колебаний в газовой фазе, а силовые постоянные смещений молекул были вычислены двойным дифференцированием потенциала 6—ехр , т. е. по отдельности для каждого атом-атомного контакта. Полученные частоты внутримолекулярных колебаний были заметно выше, чем для свободных молекул (особенно для низкочастотных мод). Напротив, частоты внешних молекулярных колебаний снизились на 5—10 см .  [c.163]

    Рассеяние электронов зонда на атомах объекта может приводить к дифракции первичного пучка с образованием максимумов рассеяния под дискретными углами к падающему пучку. Дифракционные явления относятся к упругому (когерентному) рассеянию. При тонких слоях дифракция осуществляется в результате прохождения пучка через пленку, при массивных объектах дифракционные пучки исходят от поверхности. Различают дифракцию медленных и быстрых электронов с энергиями порядка десятков — сотен электрон-вольт и десятков килоэлектрон-вольт соответственно. При дифракции происходит отражение электронов полями атомов, которые являются суперпозицией кулоновского поля ядер и экранирующего поля электронного облака. В кинематическом описании дифракции считают, что падающий электрон испытывает только одно отражение, взаимодействие между падающей и рассеянной волной отсутствует. При динамическом, подходе учитываются многократные взаимодействия отраженных электронных волн в кристалле. Динамические эффекты возрастают с увеличением толщины объекта. [c.219]

    На втором этлпе необходим учет динамики движения фаз и их силового взаимодействия (с целью идентификации поля скоростей у . Здесь возможны два пути. Первый (теоретический) состоит в том, чтобы дополнить группу уравнений (3.8) уравнениями движения фаз, в которые входят члены силового взаимодействия между составляющими. Этот путь ведет к резкому (и зачастую неоправданному) усложнению конструкции модели и снижению ее практической ценности. Второй путь (полуэмпи-рический) состоит в косвенном учете важнейших особенностей динамического поведения многофазной системы эффектов стесненного движения включений (с помощью конструкции сферической ячеечной модели со свободной поверхностью экстремальных условий), распределений элементов фаз по времени пребывания в аппарате, эффектов дробления и коалесценции включений, основное влияние которых сводится к формированию распределений частиц по размерам. [c.139]

    Энергетический баланс установившегося динамического режима распространения фронта реакции (3.436), представляющий собой взаимно однозначное соответствие между 0 и ю, характеризует отличие процесса распространения в гетерогенных и гомогенных газовых или конденсированных средах, в которых б(со)= 1 и, зна--чит, 0 = 00 + А бадЖ. В гетерогенных системах это условие выполняется только в случае стоячей волны, когда со = 0. Если же м > О, то 0 > 00 + АОадЗ , а если о)<0, то 0 < 0о + АбадЗ . Объясняется этот эффект тем, что вследствие большого различия теплоемкостей твердых и газовых фаз инерционность теплового поля гораздо больше инерционности концентрационного поля, что обусловливает возможность быстрой подачи непрореагировавшего компонента — теплового источника — в медленно перемещающееся тепловое поле. При движении фронта в направлении фильтрации газа максимальная температура выше адиабатической, так как в этом случае тепло, выносимое волной, складывается из адиабатического разогрева и тепла, отдаваемого слоем катализатора при его охлаждении. При движении фронта навстречу потоку газа, наоборот, часть тепла реакции расходуется на прогрев слоя катализатора, вследствие чего максимальная температура в зоне реакции ниже адиабатической. [c.84]

    П. Вторая группа включает как квазистатические методы, чувствительные к макрорелаксации полимерной системы, так и динамические, частотные или импульсные, также характеризующие макрорелаксацию, но уже не в блоке, а в растворе. Из импульсных методов этой группы уместно упомянуть затухание эффекта Керра, позволяющее прямым образом оценивать жесткость полярных макромолекул, мерой которой в данном случае служит корреляция ориентаций электрических диполей вдоль цепи. У абсолютно жестких макромолекул типа алкилполиизоцианатов диполи просто суммируются. Поэтому в постоянном электрическом поле такие макромолекулы ориентируются вдоль силовых линий, образуя псевдо-жидкокристаллическую систему степень порядка в этой системе определяется балансом энергий теплового движения и электрического поля если поле достаточно велико и тепловое движение ока- [c.264]

    В первые же годы возникновения электронных теорий химического сродства стало ясно, что химическая связь не является чем-то раз навсегда данным, что она претерпевает различные изменения, модификации в зависимости от того, какие атомы ее образуют и в каких процессах она принимает участие. Внутреннее электрическое поле молекулы неоднородно, электроны распределяются неравномерно, ввиду различной электроотрицательности атомов. Органическая молекула обычно оказывается поляризованной. Эта поляризация может быть двух типов. Постоянная поляризация обусловлена статическими электронными смещениями динамическая, временная поляризация связана с действием внешних полей. Понимание электронных смещений было результатом исследований английской школы химиков и в первую очередь Льюиса, Лепуорса, Робинсона, Ингольда. Этим исследователям принадлежит разделение эффектов электронных смещений в молекуле на статические и динамические. В свою очередь каждый из этих эффектов, как выяснилось, проявляется по-разному, в зависимости от того, рассматриваются ли а- или я-связи. [c.62]

    С релаксационными эффектами, которые обусловливак ядерпый эффект Оверхаузера, тесно связан процесс, получи ший название химически индуцированная динамическая пол ризация ядер (ХИДПЯ) . Уже спустя несколько лет пo J открытия этого явления оно стало основой мощного метода № следования радикальных реакций. [c.344]

    Сравним R для ряда вепхеств, имеющих систему сопряженных двойных связей (статический дипольный мохмент у которых близок к нулю), со значениями потенциалов полуволны этих соединений (рис. 2.1). Из полученных данных можно сделать вывод о том, что действительно между рефракцией, определяющей в данных условиях величину наведенного дипольного момента, и значениями Еу2 имеет место линейная зависимость. Она сохраняется до тех пор, пока общий дипольный момент молекулы в поле электрода определяется только эффектом динамической поляризации и пока на последнюю не оказывают влияния различные атомные группировки, нарушающие сопряжение и изменяющие распределение электронной плотности в молекуле в стационарном состоянии. Поэтому, например, аценафтен и флуорен (см. рис. 2.1) выпадают из линейной зависимости, они восстанавливаются, благодаря электронодонорному действию метиленовых групп, при более отрицательных потенциалах, чем следовало бы ожидать без учета отмеченных эффектов. [c.35]

    Как правило, модифицирующий эффект от введения олигомеров в резиновую смесь начинает наблюдаться при их со-держарши свыше 1,0 масс.ч. В работе [146] предложены в качестве модификаторов протекторных и брекерных смесей поли-хлорметилорганосилоксаны (ПОС), оптимальная дозировка которых лежит в пределах 0,1-0,3 масс, части. Введение этих олигомеров повышает сопротивление резин многократному растяжению в 1,5 раза, а динамическая прочность связи про-тектор-брекер возрастает на 65 %. Авторы объясняют это повышением термодинамической совместимости каучуков, входящих в составы протектора и брекера, в присухствии ПОС. [c.154]

    Наряду с гидродинамическим перетоком возникающее различие в минерализации вод вызывает гидрохимический переток неоднородность поля температур — геотермический переток, процессы перестройки тектонических структур и динамического напряжения — геодинамический перетоки. Все эти процессы в основном объединяются. В консолидированных породах осадочных бассейнов при достижении некоторой критической нагрузки накопивщихся выще пород начинаются процессы разрущения. Появляются микротрещины, в связи с чем порода как бы разбухает (явление дилатансии). На какое-то время порода может перейти в псевдопластическое состояние. Давление в ней возрастает и может превысить не только гидростатическое, но и литостатическое. Этим объясняется возможность образования внедрений одних пород в другие — типа нептунических даек. Эффект разуплотнения пород проявляется с особой силой, если он совпадает со временем повыщенной генерации углеводородов, что также способствует повышению давления в системе. При осуществлении таких кратковременных, но коренных преобразований в породах насыщающие их флюиды получают мощный импульс движения, происходит активная миграция. После разрядки напряжения давление в системе постепенно выравнивается, породы переходят в относительно консолидированное состояние. Перемещение флюидов (в том числе нефти и газа), которое и обеспечивает выравнивание давлений, постепенно ослабевает. [c.216]

    Методы радиодефектоскопии основаны на использовании резонансных эффектов максимального поглощения энергии падающего элекфомагнитного излучения на определенных критических частотах и в ряде случаев -в присутствии внещнего магнитного поля. Основными резонансными эффектами являются ядерный магнитный (ЯМР), ядерный квадрупольный (ЯКР), элекфонный парамагнитный (ЭПР), ферромагнитный, антиферромаг-нитный и эффект динамической поляризации ядер (эффект Оверхаузена). [c.442]


Смотреть страницы где упоминается термин Динамические эффекты поля: [c.227]    [c.285]    [c.285]    [c.65]    [c.65]    [c.314]    [c.68]    [c.11]    [c.166]    [c.75]    [c.110]    [c.331]    [c.40]    [c.70]    [c.240]   
Применение длинноволновой ИК спектроскопии в химии (1970) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Поля эффект

Эффект поля Эффект



© 2025 chem21.info Реклама на сайте