Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтальпия движением

    Энергетический эффект химического процесса возникает за счет изменения в системе внутренней энергии U или энтальпии Я. Внутренняя энергия — это общий запас энергии системы, который складывается из энергии движения и взаимодействия молекул, энергии движения и взаимодействия ядер и электронов в атомах, молекула л и кристаллах, внутриядерной энергии и т. п. (т. е. все виды энергии, кроме кинетической энергии системы как целого и ее потенци-альной энергии положения). [c.159]


    Поскольку движение флюида в пористой среде характеризуется постоянством (11 и является процессом дроссельным, то значение энтальпии любого вещества в пласте можно определить как функцию его температуры и давления [10, 47, 81]  [c.72]

    ПОТОКИ МАССЫ, КОМПОНЕНТОВ, ТЕПЛОТЫ (ЭНТАЛЬПИИ) И КОЛИЧЕСТВА ДВИЖЕНИЯ (ИМПУЛЬСА) [c.56]

    Теперь необходимо рассмотреть, какие виды подобия, кроме геометрического, встречаются в системах, используемых в химической технологии. В гл. 6 подробно рассматривались уравнения, описываюш ие элемент процесса, причем было получено три уравнения для потока компонента, теплоты (энтальпии) и импульса (количества движения). Каждое такое уравнение имело пять составляющих I — для конвективного потока II — для основного потока III — для переходящего потока IV — для источников V — для локальных изменений. В случае стационарных установившихся систем составляющая V равна нулю. В дальнейшем ограничимся рассмотрением только тех систем, в которых принимаются во внимание лишь четыре составляющие (с I по IV). Полученные в предыдущей главе уравнения (6-49) и (6-50) размерно однородны. Это значит, что размерности всех членов этих уравнений одинаковы и принадлежат к одной системе единиц измерения. Если мы рассмотрим не отдельные составляющие указанных уравнений, а их значения, отнесенные к какой-либо одной выбранной составляющей, то получим аналогичные (7-5) безразмерные величины, которые будут представлять собой отношения нескольких параметров. [c.78]

    Затем вместо ] в уравнение (5-22) следует поочередно подставлять плотности потоков компонентов, теплоты (энтальпии) и импульса (количества движения), используя переменные пятого столбца табл. 6-1. [c.105]

    Теплота (энтальпия) Импульсы (количество движения) [c.115]

    В качестве переменных гидродинамического, теплового и химического подобия можно выбрать безразмерные величины из табл. 8-10, причем выражения, приведенные в первых трех ее столбцах, указывают также на число степеней свободы. Свойства вещества для потоков компонента, теплоты (энтальпии) и импульса (количества движения) р, Ср, к, т], а, р, V, АЯ в модели и промышленном аппарате должны быть одинаковыми. В этом случае равенство независимых безразмерных величин для них в соответствии с определением (7-6) указать легче. В целях дальнейшего упрощения можно пренебречь перепадом давления Ар, так как он часто бывает сравнительно небольшим. При этом число основных переменных в последней строке табл. 8-10 уменьшится на единицу вследствие того, что А и We 0. Упрощается и равенство критериев Ке  [c.230]

    Представим себе два последовательно включенных элемента процесса, причем потоки компонентов, теплоты (энтальпии) и импульса (количества движения) переходят из одного элемента в другой (рис. 13-1). Можно считать, что число степеней свободы элемента II обусловливается потоком, поступившим из элемента I. Из этого [c.269]


    Эта реакция экзотермическая, т.е. протекает с выделением тепла. В гл. 2 было указано, что она сопровождается большим отрицательным изменением энтальпии, ДЯ = —4812 кДж моль в расчете на 1 моль гептана при 298 К. Выделяемое тепло заставляет образующиеся газы расширяться, и давление этих расширяющихся газов приводит автомобиль в движение.) В отличие от этого обратная реакция при тех же условиях не является самопроизвольной [c.168]

    Обобщенный технологический оператор Т является совокупностью простейших операторов, соответствующих различным типам процессов химического производства. К ним следует отнести операторы смешения, деления, изменения энтальпии, изменения давления, химического превращения. Оператор деления может быть двух типов простой делитель потоков и выделение отдельных чистых веществ (или фракций). На основании физико-химических и технологических свойств процессов при разработке технологической схемы необходимо выбрать для каждого из них соответствующий оператор Т. Поскольку основные процессы химической технологии базируются на явлениях переноса массы, энергии, кинетики реакций в условиях относительного движения фаз, определяющих гидродинамическую обстановку в аппарате, то математическое описание технологического оператора будет основываться на законах сохранения массы, энергии и импульса, законах термодинамики многофазных систем, законах тепломассопереноса и т. д. На этапе расчета технологической схемы каждому технологическому оператору необходимо сопоставить адекватный в смысле воспроизведения реальных условий оператор математического описания процесса, такой, что [c.76]

    Энтальпия и внутренняя энергия, обусловленная колебательным движением, равны между собой, так как производная [c.165]

    Задача VII. 27. Определить поверхность теплообмена поверхностного конденсатора для конденсации 2 кг сек пара следующего состава н-бутан 60 вес. % и н-гексан 40 вес. %. Конденсация происходит при 4 ат. Для охлаждения используется вода, температура которой изменяется от 20 до 50° С. Движение теплоносителей происходит смешанным током (один ход —для пара в межтрубном пространстве и два хода — для воды в трубах). Энтальпия компонентов газовой фазы при температуре насыщения бутан [c.255]

    При отсутствии теплообмена приращение внутренней энергии газа в цилиндре находится как разность энтальпии поступающего газа и работы, производимой газом при движении поршня, [c.207]

    Из уравнения (1-64) следует, что в процессе движения потока, термодинамически необратимом вследствие внутреннего трения, при указанных условиях введенное тепло равно изменению энтальпии. [c.32]

    Значит, в идеальной сжимаемой жидкости вихревой эффект невозможен. В основе механизма этого явления должен лежать процесс переноса существенного уменьшения полной энтальпии газовых частиц в стационарном потоке вязкого газа, чего не происходит. Следовательно, центробежный поток энергии является результатом процесса переноса тепла, что возможно только при наличии в газе радиальных фадиентов температур. Изменение средних значений полных энтальпий потоков обусловлено не теплопроводностью, а только внутренним нротивоточным теплообменом встречных потоков. Это происходит в результате турбулентного перемещения газа в вихре, периферийные слои которого имеют наибольшую скорость и самую низкую статическую температуру. Выравнивание угловой скорости — результат фения, что ведет к росту давления в приосевой области. Из зоны повышенного давления берет начало центральный поток при движении в сторону диафрагмы. [c.22]

    Интегралы I и II, входящие в (1.64), были проверены для различных атомных групп и связей углеводородов их значения даны в приложении 10-6 и 10-в. Величина 4/ (7—298) представляет собой изменение энтальпии с изменением температуры за счет составляющих поступательного движения, внешнего вращения и учитывает разницу Ср — Су = Я. [c.49]

    Для определения этих величин проведены многочисленные эксперименты и разработана полуэмпирическая теория, использующая соответственно законы сохранения количества движения в струе, постоянства теплосодержания или избыточной энтальпии и избыточной концентрации примеси. [c.26]

    Для найденного состава паровой и жидкой фаз рассчитывают энтальпию, вязкость, плотность, линейную скорость потока и протяженность каждого участка, необходимую для передачи соответствующего количества тепла, и фактический перепад давления. Если полученные значения продолжительности движения потока по участкам н перепады давления не совпадут с принятыми в начале расчета данными, необходимо внести поправки в начальные условия и расчет повторить. [c.170]


    Б целях упрощения анализа расчет величин тепла и холода проводился приближенно. по уравнениям (4.20). При строгом же расчете следует учитывать изменение энтальпии потоков при изменении температуры, а также постепенное охлаждение парового и нагрев жидкостного потоков при их движении по ступеням (СМ.(3.38)). [c.93]

    В гл. II представлено несколько вариантов уравнения энергии для газового потока. Часто уравнение энергии используют в такой форме, в которой энтальпия п кинетическая энергия объединены в полную энтальпию таким является уравнение (49) из 6 гл. II. Для того чтобы прийти к соответствующей форме уравнения энергии магнитной гидродинамики, следует дополнительный член уравнения движения — электромагнитную силу [c.202]

    Внутренняя энергия и энтальпия. Внутренняя энергия системы (вещества или совокупности веществ) представляет собой ее полную энергию, которая складывается из энергий движения молекул, энер- [c.194]

    Что касается природы сорбционного взаимодействия фермент — субстрат, то следует подчеркнуть, что с точки зрения термодинамики образование водородной связи (как это предполагает модель Хендерсона, см. рис. 32) представляется вполне разумным, поскольку энтальпия ее в аполярной среде достаточно велика —(4—6) ккал/моль, т. е. —(16,8—25,2) кДж/моль) [59, 72], чтобы компенсировать необходимые для реакции потери энтропии при внутримолекулярном замораживании в ацилферменте вращательного движения субстратного остатка. [c.138]

    Молекула — наименьшая частица вещества, сохраняющая свойства всего вещества в целом. Какие из приведенных ниже свойств веществ можно использовать для подтверждения этой формулировки плотность, энергия связи, электрический момент диполя, масса, твердость, угол между связями, энтальпия образования из атомов, энтропия, растворимость, вкус, цвет, межъядерные расстояния, скорость движения, размер, кинетическая энергия, температура, давление, магнитный момент. Если Вы считаете, что предложенное выше определение молекулы неточно или неправильно, дайте свое собственное определение- [c.33]

    Сумма по состояниям — безразмерная величина. Ее численное значение зависит от молекулярной массы, температуры, объема системы, межмолекулярных расстояний, характера движения молекул и межмолекулярных сил. Для систем, содержащих большое число молекул, сумма по состояниям представляет собой удобную величину, связывающую микроскопические свойства молекул (расположение дискретных уровней энергии, моменты инерции и др.) с макроскопическими свойствами (энтальпия, энтропия и др.). [c.120]

    Внутренняя энергия и энтальпия. Внутренняя энергия системы, обозначаемая латинской буквой U, характеризует общий ее запас, включая энергию поступательного и вращательного движения молекул (атомов), энергию движения ядер и электронов в молекулах и атомах, энергию, заключающуюся в ядрах атомов, энергию межмолекулярного взаимодействия и другие виды, но без потенциальной и кинетической энергии системы как целого. [c.199]

    Можно уподобить реакцию переходу альпинистов из одной долины в другую, отделенную от нее горным хребтом. Исходные вещества должны сначала подняться на перевал , а затем спуститься в другую долину в виде продуктов реакции. Это схематически показано на рис. Х1.2, где по оси ординат отложена энтальпия (энергия) веществ, а по оси абсцисс — путь реакции А-]-В=С+0. В этом случае (приближенно можно сказать, что этот путь отражает изменение расстояний между частицами А, В, С и В по ходу реакции) энтальпия продуктов реакции меньще, чем исходных веществ, т. е. процесс сопровождается выделением тепла. Величина Е — энергия активации прямой реакции, а о — обратной. Из рис. Х1.2 видно, что п< о, т. е. барьер при движении в прямом направлении ниже, чем в обратном. Поэтому прямая реакция идет быстрее, чем обратная, и в целом процесс идет в сторону образования продуктов. Разница между энергиями активации прямой и обратной реакции равна энтальпии реакции АН. В данном случае реакция сопровождается выделением тепла (ЛЯ<0). [c.136]

    В приближении жесткой молекулы (барьеры внутреннего вращения и инверсии существенно превышают кТ) можно выделить, пренебрегая ангармоничностью колебаний, вклады отдельных степеней свободы — поступательного, вращательного, колебательного движений молекулы и электронного в энтропию 5 и энтальпию Н  [c.171]

    Ионы, имеющие большие заряды [железо (III), алюминий], характеризуются и значительными величинами энтальпии и энтропии. Теоретическое вычисление теплот гидратации связано с учетом целого ряда слагаемых. После первых, грубо приближенных расчетов по Борну было сделано много попыток так или иначе улучшить теоретический метод. К. П. Мищенко и А. М. Сухотин, исходя из предположения, что эффективный радиус молекулы воды в гидратной оболочке равен 0,193 нм, предложили метод расчета, в котором были приняты во внимание экзоэффекты взаимодействия иона с жесткими диполями воды, а также ориентационной и деформационной поляризации диполей воды, дисперсионные силы между ионом и молекулами воды, взаимное отталкивание диполей в гидратной сфере, отталкивание иона и диполей при перекрытии их электронных оболочек, поляризация растворителя гидратным комплексом и взаимодействие между водой и гидратным комплексом, отвечающее экзоэффекту. Большое число факторов, принятых во внимание в этих расчетах, делает их результаты наиболее надежными. Между прочим указанные авторы пришли к выводу, что тепловое движение не может существенно влиять на координационные числа гидратации вероятность того, что данная молекула в гидратном слое покинет его и оставит свободное место в гидратной оболочке иона, колеблется по порядку величины от 10 (ион лития) до 10 (ион цезия), т. е. ничтожно мала. [c.255]

    Но, с другой стороны, положительный знак перед А8 1Н указывает на обратное влияние энтропии активации. Чем больше АЗ. тем больше и скорость реакции. Физический смысл большого значения в том, что переходный комплекс по сравнению с исходными веществами менее компактен — движение в нем более беспорядочно (Эйринг), он представляет собой менее упорядоченную структуру. Интересно, что в ряде случаев переходное состояние мало чем отличается от конечного. Тогда, разумеется, и изменение энтропии при активации Д5 очень близко к изменению Д5 энтропии при самой реакции. Обратим внимание на возможность некоторой конкуренции между двумя множителями, определяющими скорость реакции. Нетрудно допустить, что в какой-либо реакции условия протекания могут оказаться такими, что, например, энтропия активации будет большой и в то же время и энтальпия активации тоже окажется значительной. Практически энтальпия активации очень близка к экспериментально определяемой энергии активации. Это значит, что реакция с большой энергией активации может протекать быстро, если для этой реакции энтропия активации достаточно велика . С другой стороны, возможны и случаи, в которых скорость процесса, идущего с малой энергией активации, снижается за счет уменьшения Д5.  [c.315]

    Синтез проводят с использованием диаграмм энтальпий потоков. На рис. У1-9 в качестве примера показана диаграмма энтальпий потоков для системы теплообмена одного горячего потока, двух холодных потоков 5 и 8с и по- ока водяного пара как теплоносителя. По осям ординат на диаграмме отложены температуры потоков и по оси абсцисс в масштабе, указанном на рисунке, откладываются теплоемкости потоков. Каждому потоку соответствует прямоугольник пли трапеция (блок) при различных теплоемкостях потока на входе и выходе. Слг оватслыю, п. ошадь блока обозначает энтальпию потока (блоки вверху рисунка относятся X горячим потокам, внизу — к холодным). Стрелки около соответствующих потоков показыв.чют направление движения потоков, т. е, изменение те псратур потоков. Относительно оси абсцисс блоки располагаются произвольно, но таким образом, чтобы температуры горячих потоков на входе в блоки и температуры холодных потоков на выходе из блоков располагались в порядке умень-итения их значений слева направо. Теплоносители или хладоагенты обозначаются точками на уровне соответствующих температур (первые выше и вторые ниже оси абсцисс). При этом нагреваемые теплоносителями или охлаждаемые хладоагентами потоки соответствуют заштрихованным площадям блоков. [c.322]

    Иногда поток через трубу сопровождается значительным падением давления из-за потерь на трение или из-за поглощения реакционной смеси (напрпмер, в печах крекинга) в этом случае нужно учитывать также и уравнение движеюгя (илн баланса количеств движения), и влияние давления на энтальпию реагирующей смеси. [c.124]

    Имеется много других безразмерных параметров, которые часто не имеют специальных названий, В их число входят геометрические отношения, например отношение длины к диаметру, шага к диаметру, пористость (отношение свободного объема к полному) отношения скоростэй, например отношение скорости вихревого движения к осевой скорости угол наклона линии тока отношения температур, например отношение температуры в потоке к температуре на поверхности отношения энтальпий, например [c.21]

    После выбора типа супгильной установки должны быть определены размеры, схема процесса сунп(И и характеристики. Схема движения и характеристики находятся нз уравнений баланса массы и энергии. Очень полезной при этом является диаграмма Моллье, которая представляет собой соотношение между энтальпией, влажностью и температурой сушильного агента. [c.135]

    Помимо этого в неизотермических условиях может происходить движение пристеночной жидкости. Это явление, аналогичное явлению теплового скольжения газа, было названо термоосмоти ческим эффектом. Продвижение пристеночной жидкости обусловлено различием в термодинамических свойствах жидкости в тонком слое по сравнению с жидкостью в объеме и, в частности, различием ее энтальпий. [c.153]

    Самопроизвольному процессу при р и Т == onst отвечает условие AG < 0. Энтропия также уменьшается при адсорбции газов и паров, Д5 < О, так как ограничивается свобода движения молекул в объемной фазе они движутся в трех направлениях, а на поверхности — в двух. Из приведенного выше уравнения следует, что энтальпия адсорбции должна иметь тот же знак, т. е. АЯ < 0. Таким образом, адсорбция газов и паров, как правило,— экзотермический процесс, что подтверждается экспериментально. [c.122]

    Состояние воздуха (относительная влажность, влагосодержание, энтальпия и парциальное давление водяного пара) можно определить, пользуясь /—л -диаграммой, если известны IB и Для этого находят точку М (см. рис. XV-2) как пересечение изотермы --- onst с линией ф = 100%. Из точки М проводят прямую i = onst (линия постоянной температуры мокрого термометра) до пересечения с изотермой = onst. Искомая точка Q будет характеризовать состояние воздуха по заданным показаниям сухого (<в) и мокрого ( м) термометров психрометра. Для более точного определения характеристики воздуха необходимо ввести поправку на скорость движения воздуха в месте установки психрометра. [c.590]

    Впервые на существование этой связи в случае неорганических материалов обратил внимание Кауцман. Для органических полимеров позже соответствующую зависимость получил Бимен. Почти одновременно с ним аналогичное соотношение получил Бойер,, который отмечал, что Тс для определенной группы полимеров пропорциональна кинетической энергии движения их сегментов. Так как Тал равна отношению изменения энтальпии АН и энтропии Л5 (зависящей от симметрии и гибкости цепей), можно заключить, что 7 пл и То линейно связаны со свойствами полимеров. Они г.ависят также от времени измерения температуры и от скорости [c.272]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]

    Энтальпийный и энтропийный факторы и направление процесса. Из уравнения ДС == АИ — TAS следует, что знак изменения энергии Гиббса и направление процесса определяются стремлением частиц объединиться в более сложные (агрегация), что уменьшает энтальпию, и стремлением частиц, наоборот, разъединиться (дезагрегация), что увеличивает энтропию. Повышение температуры в системе, с одной стороны, препятствует силам межатомного и межмолекулярного притяжения, которые способствуют упорядочению системы, с другой стороны, усиливает хаотичность движения. При очень высоких температурах, как правило, значение TAS становится значительно больше АН и тогда значение и знак AG определяются членом TAS. Следовательно, при очень высоких температурах энтропийный фактор (т. е. стремление частиц к разъединению) доминирует над энтальпий-ным (стремлением частиц к образованию связей). Поэтому для осуществления процессов ассоциации молекул и синтеза различных веществ обычно нужен низкотемпературный режим, а реакции разложения, как правило, протекают при достаточно высоких температурах. Следовательно, знак AG и направление процесса определяются конкуренцией энтальпийного АН и энтропийного TAS факторов. Суммарный эффект этих противоположных тенденций в процессах, идущих при Т = onst и р = onst, отражает изменение энергии Гиббса. [c.245]

    Компенсирующее изменение энтальпии отрицательно и зависит от возможности дисперсионных взаимодействий хозяина и гостя . Энтальпии образования клатратов гидрохинона с аргоном, криптоном, кислородом, азотом, метаном составляют 25,1 26,4 23,0 24,3 30,2 кДж/моль гостя соответственно . Молекулы гости не остаются неподвижными в своих клетках ( lathros — по-гречески клетка) исследования клатратов двухатомных молекул в гидрохиноне привели к заключению, что молекулы НС1, О2, НВг вращаются, а также совершают броуновские колебания в клетках. Несомненно, что в клатратах, содержащих молекулы гостей различных типов (например, молекулы азота и кислорода в гидрохиноне), существует слабое взаимодействие между гостями . Многочисленные клатраты образует вода (клатратные гидраты), причем и в этом случае решетка, типичная для клатратов, отличается от решетки льда. В клатратах гостями заполняются большие и малые полости. Крупные молекулы (этан, этилен, хлороформ) помещаются только в больших полостях, молекулы меньших размеров (метан, аргон) входят в малые и большие полости. Доказано вращательное движение молекул метильной группы ацетона, молекул окиси этилена, гексафторида серы и других в кла-тратных гидратах, где движутся не только молекулы — гости , но и (медленнее) молекулы хозяина , т. е. воды. [c.271]

    Типично лиофильные системы термодинамически устойчивы и хар.актеризуются самопроизвольным диспергированием. Оно возможно при условии, что возрастание свободной энергии, связанное с увеличением поверхности при диспергировании, компенсируется уменьшением энтальпии в процессе сольватации и ростом энтропии системы за счет поступательного движения образующихся частиц (см. главу XIII). Так, мыла, многие глины (например, бентонитовая) самопроизвольно распускаются в воде, а высокомолекулярные соединения растворяются в хорошем (т. е. хорошо взаимодействующим с ними) растворителе до отдельных макромолекул. Системы, в которых самопроизвольного диспергирования не происходит, могут быть названы лиофобными системами, но лио-филизированными в той или иной степени. [c.14]


Смотреть страницы где упоминается термин Энтальпия движением: [c.5]    [c.195]    [c.284]    [c.122]   
Химическая термодинамика Издание 2 (1953) -- [ c.527 , c.534 , c.539 ]




ПОИСК





Смотрите так же термины и статьи:

Потоки массы, компонентов, теплоты (энтальпии) и количества движения (импульса)

Энтальпия влияние поступательного движения молекул

Энтальпия вращательного движения

Энтальпия колебательного движения



© 2025 chem21.info Реклама на сайте