Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты в подложках

    Для перекрытия возможных микродефектов подложки УФ- мембрану получали нанесением нескольких слоев (состав свежеприготовленной композиции при этом для каждого слоя не менялся), причем после нанесения каждого слоя, мембраны подвергались термообработке, согласно подобранному режиму. Создание 1 и 2 слоев не покрывает всех дефектов подложки, многократное же нанесение композиции позволяет получить требуемый селективный слой, хотя при этом неизбежно повышение толщины слоя и частичное проникновение композиции в поры подложки. Оптимальными в данном случае оказались трехслойные мембраны. [c.143]


    Изучение пористости пленок ЗЮ на кремнии. Пленки ЗЮ , используемые в технологии полупроводниковых приборов, не должны содержать сквозных пор. Неудовлетворительная сплошность пленок часто является причиной технологического брака. Макродефекты структуры пленки обычно представляют собой поры, образую-ш,иеся при несовершенном росте окисла, границы кристаллов (если стеклообразная пленка склонна к рекристаллизации) микротрещины, формирующиеся из-за несоответствия коэффициентов термического расширения подложки и пленки. Последние два вида макродефектов встречаются на относительно толстых пленках и могут быть устранены изменением технологического режима. Причиной порообразования могут быть определенные виды загрязнений и структурных дефектов на исходной поверхности кремния. Часто поры могут образовываться за счет окклюзии (захвата) газов, а также при слиянии точечных дефектов (вакансий) в кластеры. Наличие пор в значительной мере осложняет использование оксидной пленки в качестве маскирующего покрытия (поскольку поры являются каналами диффузии) и для изоляции (вследствие возможных замыканий алюминиевой разводки на тело прибора). Как пассивирующее покрытие пленка также непригодна, потому что при этом не обеспечивается герметичность структуры. [c.122]

    Если тщательно контролировать условия роста, то можно получить монокристаллические слои весьма высокого качества. В этом отношении методы выращивания кристаллов из пара имеют ряд преимуществ перед методами выращивания из расплава. Здесь нет необходимости соблюдать столь строгий температурный режим. Механическое движение частей аппаратуры, вследствие чего часто получаются монокристаллы с искаженной решеткой, при выращивании из пара вообще ненужно. Уменьшить же количество дефектов, наследуемых из подложки, можно тщательной обработкой ее поверхности. В связи с этим особое значение приобретают методы очистки, шлифовки и полирования поверхности подложки. [c.140]

    Теория зародышеобразования на дефектах разрабатывается Марковым и др. (1973 г.). Ими получено уравнение, Показывающее зависимость плотности N t) зародышей на дефектной подложке от времени  [c.483]

    Поры, трещины, проколы и другие нарушения сплошности покрытий, нанесенных на металлическую подложку, определяют с помощью дефектоскопа ЖД-1. Принципиальная схема обнаружения дефектов соответствует изображенной на рис. 55 (5 Рабочую поверхность щетки-датчика смачивают 3%-ным раствором хлорида натрия и водят по окрашенной поверхности Электролит проникает в дефектные места, в результате чего сопротивление этих участ ков уменьшается, что обнаруживается по появлению звукового сигнала или по отклонению стрелки прибора, [c.117]


    В некоторых случаях отмечалось, что продолжительная поляризация электрода в растворе вызывает появление микроотверстий в алмазной пленке, так что электролит проникал к подложке [81-84]. Возможно, здесь проявились скрытые дефекты в пленках, образовавшиеся при их изготовлении. Иногда из-за локального отслаивания алмазных пленок от под- [c.25]

    Нанесение резиста на подложку является важнейшей операцией. Ее цель — получить однородный слой с хорошей адгезией к поверхности и не имеющий дефектов. Допустимая погрешность толщины слоя резиста в производстве больших и сверхбольших интегральных схем составляет 0,015 мкм, в производстве офсетных форм в полиграфии 1 мкм. В этих пределах можно получить как воспроизводимые размеры линий, так и воспроизводимое время проявления. При создании слоя резиста учитывают противоположные требования толщина слоя резиста должна была бы быть как можно большей для сохранения целостности покрытия и уменьшения пористости. С другой стороны, для обеспечения высокой разрешающей способности толщина резиста должна быть как можно меньше. [c.17]

    Наиболее эффективно применение инфракрасных излучателей, использование которых сокращает время сушки покрытий в 20. .. 30 раз, снижает расход тепловой энергии и улучшает качество покрытия. При сушке теплым воздухом засыхающая верхняя корочка затрудняет испарение из нижних слоев. Инфракрасные лучи воздействуют на проявляющее покрытие иначе. Они проходят сквозь него так, что большая часть тепла поглощается подложкой (деталью). В результате сильнее нагретыми оказываются пары растворителя. Нагрев может осуществляться и в переменном электромагнитном поле. При этом сушка проявителя начинается также с нижних его слоев. При нагреве производительность и качество контроля повышаются не только за счет ускорения сушки проявителя, но также и вследствие того, что оставшийся в тупиковых полостях дефектов газ при нагревании будет расширяться и вытеснять пенетрант на поверхность изделия. [c.681]

    Трехслойная модель (2.46) является базовой, поскольку с ее помощью можно моделировать различные задачи ТК (покрытие на подложке, многослойные изделия и т.п.). Нри этом возможно изучать влияние на температурный сигнал АГ(т ) большинства практических параметров за исключением поперечных размеров дефектов. Принципиально одномерная модель вида (2.46) непригодна для моделирования нагрева тел локализованным (сканирующим или неподвижным) источником тепла. [c.49]

    Для определения пористости оксидного покрытия на кремнии обычно пользуются методом хлорного травления, в основу которого положено взаимодействие кремния с сухим хлором при высоких температурах. Оксидная пленка в этих условиях стабильна. Поэтому воздействие хлора на кремний возможно только в местах присутствия сквозных пор в оксиде. Микроскопическое исследование после хлорного травления позволяет установить не только общее количество пор, их концентрацию, но и распределение дефектов по поверхности, а также проследить взаимосвязь процесса порообразования со структурой подложки. Чувствительность метода хлорного травления зависит от температуры, времени травления и размеров пор. Последние должны обеспечивать возможность диффузии газообразного галогена к незащиш,енной поверхности кремния. Данным методом нельзя установить наличие несквозных или субмикроскопических пор. Режим травления (температура и время) может быть выбран ио данным табл. 4. [c.122]

    Большинство дефектов упаковки в пленке зарождается на границе с подложкой. Это доказывают одинаковые размеры замкнутых фигур роста (имейщих в случае ориентации (111) вид равносторонних треугольников), которые увеличиваются с увеличением толщины пленки. Дислокации, присутствующие в подложке, распространяются и в эпитаксиальный слой. Помимо этого, дополнительным источником возникновения дислокаций в пленке являются механические нарушения поверхности. Зародыши кристаллизации часто образуются на механических нарушениях. Однако наиболее важной причиной появления дефектов упаковки в осажденном слое является неполное удаление остаточного окисла с поверхности подложки до начала эпитаксиального роста. Наличие островков окисного слоя вызывает появление ступенек на поверхности подложки, которые и служат исходными участками для образования дефектов. [c.140]

    Распространена ошибочная точка зрения на роль неметаллического покрытия. Считают, что покрытие защищает металл от коррозии, пока оно не повреждено и держится на мета1ше. Это не так, коррозия металла начинается задолго до того, как покрытие разр -шилось. С другой стороны, даже с появлением единичных дефектов 3 покрытии его защитные функции еще сохраняются. На прак-тике лимитирующим фактором непригодности покрытия в большинстве случаев считают отслоение его, от подложки и распространение дефекта. При оценке защитных свойств покрытий часто определяют физико-химическую стойкость материала покрытия, а состав металла и его реакции с компонентами [c.46]


    Другим направлением проводимых исследований является изучение процессов дефектообразования при ионной имплантации пластин арсенида галлия. Прямые экспериментальные исследования с привлечением современных методов дополнялись расчетами по модельным компьютерным программам. Было изучено влияние режимов имплантации, типа и режимов постимплантационного отжига на структуру имплантированных слоев. Установлено влияние поверхности подложки на концентрацию и тип точечных дефектов, образующихся при имплантации. Показано, что в процессе активирующего отжига происходит пространственное разделение межузельных атомов и вакансий и обогащение поверхностного слоя последними. Изучены механизмы влияния дислокационной структуры подложек на характер распределения имплантированной примеси и радиационных дефектов по площади подложек. Результаты исследований представляют практический интерес при разработке процессов импланта-ционного легирования полупроводников. [c.158]

    Рост новой фазы при разложении органических веществ в газовой фазе может происходить не только в объеме, но и на поверхности (подложке). При отложении углерода на подложке формируются плотные анизотропные пленки пироуглерода, обладающие турбостратной структурой. В этом случае роль зародышей играют дефекты структуры подложки. Разложение в газовой фаде характеризуется высокими значениями энергии активации (460—750 кДж/моль), ( ответствующими разрь)-ву связей в органической молекуле и образованию радикалов - зародышей [5]. [c.6]

    В работах Ю. М. Полукарова с сотр. [82] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавки к электролиту меднения поверхностно активных веществ резко повышают вероятность образования дефектов упаковки, увеличивают искажения кристаллической решетки и плотность дислокаций. Заряд двойного электрического слоя ускоряет процессы возврата в тонких осадках меди (эффект Ребиндера), приводящие к появлению внутренних напряжений растяжения. Влияние электрохимических условий осаждения на состояние кристаллической решетки осадков становится определяющим при достаточно большой толщине осажденного слоя на пластически деформированной монокристал-лической подложке дефектность слоев осадка постепенно уменьшалась при утолщении слоя, а при росте осадка на подложке из граней совершенного монокристалла, наоборот, увеличивалась до значений, соответствующих условиям электролиза. [c.93]

    Очищенные пластины с выращенным на них эпитаксиальным слоем 81 или без него подвергают термич. обработке, включающей окисление, диффузию примесей или ионное легирование, отжиг пластины (в том случае, если примеси вводились ионным легированием), пиролитич. осаждение тонких пленок или их химическое осаждение из газовой фазы, гегтерирование. При реализации этих процессов осуществляется формирование активных областей и др. компонентов планарных структур. Вместе с тем термич. обработка приводит к возникновению мех. напряжений в пластине, вызывает образование дефектов, перераспределение примесей в объеме пластины и в приповерхностном слое. Чтобы уменьшить отрицат. последствия, термич. обработку проводят при сравнительно невысоких т-рах (ниже 900 °С), а для ускорения процесса применяют разл. способы, напр, окисление 81 проводят не в сухой, а во влажной среде при повыш. давлении. Для введения примесей все чаще вместо диффузии применяют ионное легирование (ионную имплантацию), к-рое по сравнению с диффузией обладает рядом преимуществ - универсальностью (возможность вводить практически любые в-ва в любую подложку), высокой воспроизводимостью, возможностью управлять профилем распределения примеси и изменять концентрацию вводимых примесей в широких пределах. [c.557]

    Исследования показали, что РГЭ представляет собой многокапельный электрод, поскольку ртуть не смачивает графит и не образует равномерной пленки на поверхности электродов из углеродных материалов, а находится в виде микрокапель, сгруппированных вблизи поверхностных дефектов (сколы, треш ины, царапины). Размер капель зависит от потенциала электрода и уменьшается при удалении от потенциала нулевого заряда. В качестве подложки для РГЭ применяют импрегнированные или прессованные графитовые электроды, стеклоуглерод, углеситалл, углеродное волокно. Следует отметить, что поверхность РГЭ, полученных in situ, отличается более равномерным распределением ртутных капель, чем в случае, когда покрытие получают предварительно, РГЭ сочетает в себе преимуш ества твердых и ртутных электродов, имеет широкий диапазон рабочих потенциалов и достаточно воспроизводимую поверхность, Кроме того, на РГЭ интерметаллические взаимодействия проявляются в меньшей степени и он менее чувствителен к влиянию ПАВ, чем твердые электроды, [c.88]

    Дефекты, возникающие при центрифугировании, можно обычно определить по тому, что они распределены радиально. Случайные дефекты бывают вызваны изменениями температурного и скоростного режима нанесения раствора, а также работой дозирующего и отсасывающего устройств. При. ганесении слоя резиста частицы из воздуха легко налипают на его поверхность. Центрифугирование следует проводить в абсолютно чистом помещении с совершенной системой фильтрования воздуха. Точность поддержания температуры нанесения должна быть прн этом 1°С. С этой целью подложку и раствор резиста перед нанесением следует [c.20]

    Ионы металлов, входящие в состав проявителя, могут адсорбироваться на поверхности подложки и при последующей термодиффузин примесей в подложку вызывать дефекты полупроводниковых структур. Для сверхбольших интегральных схем отрицательное влияние удерживания подвижных нонов металлов особенно велико и повышается с ростом плотности элементов схемы. Поэтому необходнмо, чтобы максимальное содержание ионов Na+ и К в резисте составляло 0,2—5 млн . Поскольку проявление позитивных резистов проводится растворами щелочей, требуется хорошая промывка подложки после проявления. Заметна тенденция использовать растворители, не содержащие ионов металлов, и для проявления позитивных резистов, так как прн этом меньше вносится всевозможных загрязнений. Примером таких проявителей могут служить MF-314 Shipley, а также системы на основе водных растворов аминов [2] и смесей этаноламинов с глицерином [79]. [c.51]

    После термообработки возникают и другие трудности, в частности при удалении слоя резиста с подложки кроме того, из-за пластичности полимера при температуре выше Гс падает разрешение и контрастность высокоразрешенного рельефа, вплоть до слняния отдельных линий, что осложняет использование термолиза в производстве интегральных схем и вообще в микроэлектронике. Очевидно, варьируя температуру и продолжительность термолиза, можно достичь компромисса между улучшением механических, физических свойств и ухудшением разрешения. Так, согласно пат. США 4259430, в слой резиста вносят примерно 6 % в расчете на сухой остаток термически активируемого радикального инициатора (например, грет-бутилгидропероксида, бензоилпероксида) и отверждают слой после проявления при 150—190 °С в течение 30 мин. При этом рельеф не деформируется, выдерживает травление подложки кипящей фосфорной кислотой, давая мало дефектов резист удаляется горячей Н2804, [c.86]

    Частицы поверхностного слоя позитивного резиста прилипают к шаблону контактной печати при экспонировании, что приводит к дефектам слоя. Для предотвращения этого шаблон покрывают фторированным метакрилатным полимером. Кроме того, между шаблоном и слоем можно оставлять зазор 10—15 мкм. Однако и в этом случае остаются проколы, они сохраняются и при экспонировании без маски. Очевидно, они образуются в результате механических напряжений в слое резиста, вызванных выделяющимся при экспонировании азотом и электростатическими взаимодействиями резиста и поверхности подложки. Последние снимаются добавками в слой небольших количеств солей — олеатов, стеаратов, ацетатов, га-толуолсульфонатов 1-гидроксиэтил-2-алкил(Ст— С 7)-Д -имидазолиниев (Моназолиниев) это приводит к резкому уменьшению числа проколов [пат. США 4142892 франц. пат. 2354578 пат. ФРГ 2626419]. [c.89]

    К недостаткам полиолефинсульфонов [пат. США 4153741] относится возникновение механических дефектов в слое толщиной более 0,3 мкм в процессе проявления резиста, нанесенного на хромовую подложку. Это зависит от качества подложки, способа нанесения слоя, температуры термообработки и характеристик резиста. Введением в полимер подходящих пластификаторов можно подавить возникновение механических дефектов и получить слои толщиной до 0,6 мкм, однако присутствие пластификаторов оказывает отрицательное влияние на разрешающую способность и чувствительность резиста. Другим путем является введение в полимер, например полученный из а-олефина и ЗОг, циклопентена, звеньев бициклопентена или метилметакрилата. Такие тройные сополимеры [пат. США 3898350], имеющие пониженную 7с, устойчивы к возникновению механических дефектов даже в слоях толщиной 0,9 мкм и проявляют чувствительность около 10 Кл/см . [c.262]

    При проведении химических и электрохимических процессов особое внимание необходимо уделять ослаблению процессов побочных, мешающих. Естественное окисление металлической поверхности с участием атмосферной влаги в интервале между операциями может быть причиной появления дефектов при нанесении последующих слоев. Например, на свежеосажденной пленке меди толщина окисного слоя ( U2O + + СиО) составляет всего 2 нм и это не препятствует получению хорошей адгезии с электрохимически наращиваемой металлической пленкой. Но воздействие атмосферной влаги перед последующим нанесением оказывает решающее влияние на рост окисного слоя при 100° С в течение 1 ч толщина слоя окислов не увеличивается (рис. 30, а), а при 40° С возрастает вдвое, при 20° С — в четыре раза. Для уменьшения окисления свежеосажденных пленок необходимо сушить подложки только в сушильном шкафу при 100° С. [c.86]

    При плазменном анодировании основные электроды газоразрядного промежутка (катод и анод) служат только для поддержания разряда. Диэлектрическую подложку с окисляемой пленкой погружают в кислородную плазму и подают смещение, независимое от основного разряда. Для протекания постоянного тока в цепи анодиру--емой пленки применяют контрэлектрод, погруженный в плазму. Возможно использование любого разряда низкого давления тлеющего, дугового, высокочастотного и сверхвысокочастотного. Важно, чтобы разряд мог образовывать плазму с необходимыми параметрами в больщих объемах и не вызывал распыления электродов, так как продукты распыления будут загрязнять растущий окисел и станут источниками дефектов. Дуговой разряд отвечает этим требованиям, однако он малопригоден для промышленного использования из-за быстрого разрушения термокатода в активной кислородной среде. Применение безэлектродных ВЧ и СВЧ разрядов позволяет полностью исключить распыление основных электродов, но остается возможным распыление контрэлектрода и диэлектрических стенок вакуумной камеры. [c.155]

    Вариант ДСУ — нарушение регулярности призматической (1210) упаковки слоев в СаМ — рассмотрен в [31] первопринцип-ным методом ФЛЭП. Данный тип ДСУ характерен для эпипленок нитрида на подложках 81С, сапфира. Отмечена существенная локальная релаксация атомов в области планарного дефекта, при этом, однако, сохраняется четырехкратная координация центров. Дополнительных (или оборванных ) связей, как и новых электронных уровней, не обнаружено. [c.36]

    Возникновение анизотропных деформаций наблюдали при росте нитридных пленок на несоразмерных подложках их причиной могут явиться также процессы постростового охлаждения либо присутствие в пленке точечных дефектов (легирующих примесей) [c.37]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Решение в случае нагрева импульсом Дирака оказалось эффективным для прямых и обратных задач импульсного ТК, в частности, с использованием так называемого метода "кажущейся", т.е. наблюдаемой в эксперименте, тепловой инерции объекта контроля (apparent effusivity method) [6]. Этот метод для определения параметров скрытых дефектов (тепловой дефектометрии) см. п. 4.1. Метод можно проиллюстрировать на примере ТК изделия, состоящего из Ni- r покрытия толщиной 100 мкм и стальной подложки толщиной 3 мм. Коэффициенты теплопроводности покрытия X =14 Вт/(мК), подложки X =70 Вт/(м К). Плотность и теплоемкость одинаковы для обоих материалов р = 7800 кг/м С = 500 Дж/(кгК). [c.76]


Смотреть страницы где упоминается термин Дефекты в подложках: [c.711]    [c.711]    [c.187]    [c.102]    [c.32]    [c.442]    [c.96]    [c.324]    [c.569]    [c.369]    [c.63]    [c.242]    [c.36]    [c.81]    [c.87]    [c.220]    [c.52]    [c.188]    [c.350]    [c.350]    [c.77]    [c.129]   
Химия и технология ферритов (1983) -- [ c.175 , c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте