Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция количественное определение

    В недавно опубликованном сообщении [96] описан метод количественного определения содержания разветвленных структур углеводородов в техническом парафине, основанный на анализе изотерм адсорбции. Взаимодействие парафинов нормального строения с карбамидом в их кристаллических комплексах рассматривается здесь как чисто адсорбционный процесс. [c.70]


    Упомянутое выше синее окрашивание, появляющееся при прибавлении к крахмалу раствора иода в иодистом калии, ранее объясняли образованием химического соединения нли же следствием адсорбции иода. В настоящее время считают, что синий иодистый крахмал представляет собой соединение включения, образующееся в результате внедрения иода во внутренние канальцы молекулы крахмала (возможно, что при этом иод в атомарном состоянии присоединяется к молекулярной цепочке ). Иодкрахмальная реакция настолько чувствительна, что она применяется для количественного определения как крахмала, так и следов иода (иодометрия). При нагревании раствора синяя окраска исчезает, а при охлаждении появляется снова. [c.454]

    Количественное определение ионов после хроматографического разделения на бумаге можно проводить несколькими методами 1) извлечением из пятен отдельных компонентов после разделения смеси и количественное их определение обычными микроаналитическими методами 2) измерением площади пятен на хроматограммах. Площадь 5 пятна на хроматограмме является функцией концентрации С компонента в анализируемой пробе 8 = a g + В, где а и й — постоянные, определяемые экспериментально. Однако первый метод трудоемкий, а при использовании второго приведенная зависимость площади пятна от логарифма концентрации соблюдается не строго и для получения более или менее надежных результатов необходимо проводить много параллельных определений. Одной из причин разброса результатов анализа является то, что при хроматографировании разделение происходит по нескольким механизмам протекающим одновременно — распределение ионов между двумя растворителями, ионный обмен, образование малорастворимых осадков, физическая адсорбция на бумаге. [c.341]

    Таким образом, измеряя электрокапиллярные кривые, можно определить потенциал нулевого заряда и сделать вывод об области потенциалов, при которых поверхность электрода заряжается положительно или отрицательно. Для количественного определения заряда поверхности и адсорбции различных компонентов раствора используются электрокапиллярные измерения в сочетании с основным уравнением электрокапиллярности, [c.36]

    МО количественное определение продуктов электровосстановления в адсорбционном слое. Тем не менее метод электровосстановления в адсорбционном слое, особенно в сочетании с аналитическими измерениями, дает весьма ценную качественную информацию о механизме адсорбции органических веществ и составе адсорбционного слоя. [c.10]


    Кроме аналитической химии, полярография находит применение и в исследованиях, проводимых в области химической и электрохимической кинетики, а также для изучения равновесия и адсорбции. Полярографию привлекают также для исследования структуры, например, органических или комплексных соединений. Для аналитических целей оценку поляро-грамм проводят следующим образом качественно — определение потенциала полуволны и количественно — определение высоты волны. [c.130]

    Количественное определение адсорбции [c.161]

    Продукты реакции анализировали качественно методом хроматографии на бумаге и количественно определением содержания азота по Кьельдалю и титрованием продуктов в неводной среде. Углеводородную часть продуктов реакции анализировали методом адсорбции с флуоресцентными индикаторами. Применявшиеся методы анализа продуктов реакции подробно описаны в приложении. [c.125]

    Среди других способов отделения и количественного определения ароматических углеводородов в нефтяных фракциях и нефтях широкое распространение получили избирательная адсорбция ароматических углеводородов силикагелем и обработка концентрированной серной кислотой. [c.86]

    Следует оговорить, что вольт-амперная зависимость емкостного тока часто оказывается весьма информативной в исследовательских задачах, например, при изучении строения двойного электрического слоя и процессов адсорбции. Получение такой зависимости может оказаться полезным и в аналитическом аспекте, например, для качественного и количественного определения веществ, адсорбирующихся на электроде, но не вступающих на нем в электрохимическую реакцию. При адсорбции, как известно, может значительно изменяться емкость двойного электрического слоя и, следовательно, емкостный ток. [c.266]

    Волна восстановления до фенилгидроксиламина пригодна для количественных определений. Однако в присутствии ПАВ (желатин, камфара и т.п.) она может разделиться на две ступени вследствие эффекта адсорбции деполяризатора. При этом 1/2 первой волны почти не изменяется, а второй - смещается к более отрицательным значениям. Суммарный ток обеих волн равен по высоте четырехэлектронной волне восстановления. Эту особенность поведения нитросоединений на РКЭ необходимо учитывать при выборе условий регистрации вольтамперограмм. [c.468]

    Для качественного и количественного определения выбранного компонента в элюате измеряют его радиоактивность. Тип детектора зависит от вида регистрируемого излучения. Для измерения бета- и гамма-излучения пригодны ионизационная камера и сцинтилляционный детектор. Наиболее простая установка представляет собой трубку Гейгера — Мюллера, которая находится внутри тонкостенного стеклянного змеевика (рис. 4.16). Подобный метод (трубка изготовлена из пластмассы вместо стекла) может быть использован для измерения достаточно жесткого бета-изл чения. Материал трубки препятствует адсорбции радиоактивных изотопов на стенках трубки. [c.142]

    Характерная особенность анализа многокомпонентных лекарственных форм заключается в том, что способы определения индивидуальных веществ ие дают положительных результатов при использовании их для анализа смесей. Поэтому вначале необходимо выбрать условия, позволяющие анализировать одно лекарственное вещество в присутствии другого или предварительно отделить их друг от друга и от вспомогательных веществ. При этом следует иметь в виду, что каждый из компонентов смеси характеризуется определенными физическими и химическими свойствами. Они могут вызывать различные процессы взаимодействия (например, явления адсорбции, гидролиза и т.д.). Все это усложняет процесс количественного определения компонентов  [c.146]

    Для количественного определения плутония в окружающей среде и организме человека используют следующие методы кулонометрический (чувствительность 5 10 г/мл), люминесцентный (5 10 г/мл), радиометрический с адсорбцией на сцинтилляторе или после предварительного концентрирования " Ри (1,9 Бк/ л), спектрометрический с арсеназо (2 10 г/мл), а также колориметрический, титрометрический и др. [9, 72, 83, 84]. Метод кулонометрии является абсолютным методом анализа, обладает высокой точностью и правильностью определения малых количеств вещества. Он широко используется при определении содержания в пробах урана, нептуния, плутония и других элементов [72]. [c.294]

    Как показали результаты исследования адсорбции н-Сге, а также анализа дизельного топлива, для количественного определения и-парафиновых углеводородов в высококипящих фракциях необходимо брать цеолита СаА в три раза больше (30 г вместо 10 г), чем для анализа бензинов и керосинов. Линейная скорость продвижения циклогексанового раствора по длине слоя адсорбента в колонке, а также скорость фильтрации должна быть в пять раз меньше, что соответствует объемной скорости около 0,8 объема раствора на один объем адсорбента в час. [c.67]


    С), где С — количество вещества в единице объема стандартного раствора или газа. После разделения вещество определяют любыми хим., физико-хим. или физ. методами. Различают X. а. газов и жидкостей. Кроме того, в зависимости от механизма разделения X. а. бывает молекулярный (адсорбционный и распределительный), ионообменный, осадочный, адсорбционно-комплексообразовательный, окислительно-восстановительный по форме проведения анализа — колоночный, капиллярный, на бумаге, тонкослойный и в гелях. Г азо-адсорбцион-н ы й X. а. основан на различной адсорбции компонентов газовой смеси твердым сорбентом (активированным углем, силикагелем, цеолитами и др.). Для продвижения пробы через колонку служит инертный газ-носитель (напр., азот, гелий, аргон). Анализ применяется для количественного определения кислорода, азота, водорода, окиси и двуокиси углерода, сернистого газа и др. В газожидкостном X. а. применяют установки (рис.), где используют различие в распределении анализируемых газообразных соединений между неподвижной жидкой фазой (нанр., силиконовым или вазелиновым маслом, дибутилфталатом), нанесенной на твердый сорбент, и газом-носителем, не взаимодействующим химически с жидкой фазой и с компонентами анализируемой смеси. При капиллярном газожидкостном [c.696]

    Результаты количественного определения продуктов карамелизации показывают, что с увеличением температуры процесса (при заданном давлении) на поверхности катализатора откладывается все большее количество продуктов термического разложения глюкозы, о чем можно судить по количеству выделившегося СОз (рис. 2.5). Природа этих адсорбированных продуктов различна при 250 °С на катализаторе адсорбируются продукты, сгорающие при 100—200°С, а при температуре гидрогеиолиза 170°С — продукты карамелизации, сгорающие при 300—310 °С. Важно то, что ведение процесса гидрогеиолиза выше 210°С приводит к необратимому отравлению катализатора продуктами разложения глюкозы. Так, например, катализатор, проработавший 72 ч при температуре гидрогеиолиза 230°С, после регенерации восстанавливает активность на 76% от первоначальной, а при температуре процесса 250Х —на 44%. По-видимому, при высоких температурах гидро-генолиза (220—250°С) происходит значительное нарушение поверхности катализатора, вызываемое адсорбцией продуктов карамелизации. Поэтому выщелачивание катализатора с целью, его [c.49]

    Агрегативная устойчивость эмульсий количественно характеризуется скоростью их расслоения, или временем жизни отдельных капель в контакте с другими. Чаще пользуются первой характеристикой. Ее определяют, измеряя высоту (объем) отслоившейся фазы через определенные промежутки времени. Без эмульгатора устойчивость эмульсий минимальна. Известны методы стабилизации эмульсий с помощью ПАВ, ВМС, порошков. Так же как и ири стабилизации лиозолей, стабилизация эмульсий с помощью ПАВ обеспечивается благодаря адсорбции и определенной ориентации молекул ПАВ, что вызывает снижение иоверхностного натяжения. Ориентирование ПАВ в эмульсиях следует правилу уравнивания полярностей Ребиндера полярные группы ПАВ обращены к полярной фазе, а неполярные радикалы — к неполярной фазе. В зависимости от типа ПАВ (ионогенные, неионогенные) капельки эмульсии приобретают соответствующий заряд или на их поверхности возникают адсорбционно-сольватные слои. Очевидно, что электрические и адсорбционно-сольватные слои должны быть образованы со стороны дисперсионной среды. [c.347]

    Преимуществом переменнотоковой полярографии является возможность гее применения для исследования адсорбционных процессов, происходящих на ртутном капельном электроде, а также для, количественного определения поверхностно-активных веществ, таких, как высшие спирты, жирные кислоты, моющие средства и др. Адсорбция вещества в пограничном слое ртутного капельного электрода достигает максимума при значении потенциала, соответствующем нулевой точке электрокапиллярной кривой (е ), при котором двойной электрический слой находится в незаряженном состоянии. В зависимости от знака потенциала происходит притяжение анионов или ооответст- веино катионов фонового электролита, а также в обоих случаях — притяжение диполей растворителя к пограничному слою, причем адсорбция поверх- [c.303]

    Коллоидные ПАВ обладают, как правило, высокдй поверхностной активностью и способны значительно понижать поверхностное натяжение уже в очень разбавленных растворах благодаря адсорбции и определенной ориентации молекул на поверхности раздела фаз. Важной количественной характеристикой этого явления служит работа адсорбции (адсорбционный потенциал). [c.11]

    Хотя рассматриваемый метод в принципе применим для количественного определения величин адсорбции гидрирующихся частиц, в варианте электровосстановления в адсорбционном слое на металлах группы платины он не получил широкого распространения. Это обусловлено в основном следующими причинами. Электровосстановление хемосорбированного вещества нередко происходит с заметными скоростями лишь при потенциалах выделения водорода, что не позволяет с достаточной точностью определять заряд, идущий на восстановление органических частиц. Даже при [c.8]

    В разделе 5.4 указывалось на важность сочетания разных методов исследования поверхностных соединений. Количественное определение углерода и других элементов в модифицирующих поверхность соединениях производится элементным анализом, а ИК спектры помогают установить, какие именно группы и в каком количестве содержатся в поверхностном соединении. Содержание элементов в поверхностных соединениях можно определить с помощью зондирующего воздействия различных пучков на поверхность твердого тела, служащего рассеивающей мишенью для такого воздействия. Для зондирования используются направленные пучки фотонов, электронов, ионов илц атомов, вызывающие эмиссию вторичных частиц (также фотонов, электронов, ионов или атомов), лзучение которой и позволяет судить о свойствах мишени. Помимо элементного анализа, с помощью зондирующего воздействия на поверхность в благоприятных случаях можно получить сведения о структуре поверхности и адсорбции на ней. В табл. 5.4 представлены некоторые из этих методов. Перечисленные в таблице методы. анализа поверхности, за исключением рентгеновской эмиссионной спектроскопии, позволяют исследовать поверхностные слои на глубину менее 10 нм. В этих методах зондирование поверхности и ана--лиз рассеиваемых или эмиттируемых частиц проводится в очень высоком вакууме. Для дополнительной очистки поверхность часто подвергается предварительной бомбардировке частицами высокой энергии, обычно аргонной бомбардировке. С этим связаны ограничения в применении некоторых из этих методов для исследования поверхности недостаточно стойких адсорбентов. Преимуществом этих методов является возможность локального исследования не- [c.109]

    Количественное определение адсорбции органической кислоты ца угле. Установление зависимости адсорбции от концентрации вещества определение констант в уравнении Бедеккера — Фрейндлиха. [c.83]

    Количественное определение адсорбции. На границе раз-делй" газ — жидкость адсорбцию можно определять по изменению поверхностного натяжения. Для этого определяют поверхностное натяжение при постоянной тe шepaтype для растворов разных концентраций и вычерчивают изотерму поверхностного натяжения. [c.138]

    Широкую область применения в газохроматографическом анализе нашла адсорбция определенных классов веш,еств на колонках с молекулярными ситами. Эти колонки помещают перед колонкой, служащей для соб-йтвенно газохроматографического разделения. Селективная адсорбция н-нарафннов была впервые применена для газохроматографического анализа высших углеводородов в работе Бреннера и Коутса (1958). Эти авторы установили, что и-парафины Сз — С при 60 — 180" количественно задерживаются на колонках длиной 30—100 см, заполненных молекулярными ситами 5А, а ароматические углеводороды, нафтены и разветвленные углеводороды выходят из этих колонок без изменения. Сравнение результатов анализа на обычной колонке и на предварительно включенных колонках с молекулярными ситами позволяет выполнить не только качественную идентификацию н-углеводородов, но и их количественное определение в смесях (например, в конечных продуктах реформинга). Общее содержанпе н-углеводородов и долю отдельных парафинов можно определить по разности величин площади пиков на обеих хроматограммах. [c.242]

    Более простым и значительно менее трудоемким является метод количественного определения с помощ,ью ионообменных смол (катионитов и анионитов) 0,3—0,5 г натрия сульфата растворяют в 50 мл воды (в мерной колбе) и 5 ил полученного раствора фильтруют через колонку с 5—10 г катнонита, предварительно набухшего в воде и промытого 3% ным раствором соляной кислоты и затем водой до нейтральной реакции на лакмус. Исследуемый раствор пропускают со скоростью 0,1 мл в секунду и выделившуюся серную кислоту, в результате катноно-обменнои адсорбции, титруют 0,1 н. раствором щелочи. [c.44]

    Лиофильность способствует хорошему смачиванию и образованию однородной пасты. Мерой для количественного определения лиофильности по отношению к поверхности основы при взаимодействии со связующими служат величины краевого угла смачивания, адсорбционной способности и теплоты смачивания. Так, более высокая лиофильность связующих достигается ка поверхкостк антрацитов к тощих углей, меньшая — на поверхности шероховатых и мало метаморфизированньсх углей. После смачивания твердых мелкодисперс-ньге частиц связующих происходит адсорбция его составных частей на поверхности частиц. [c.130]

    Целлюлозные волокна характеризуются индексом (степенью) кристалличности Этот показатель отражает плотность упаковки целлюлозы и соотношение аморфных и кристаллических участков в ее структуре Индекс кристалличности (ИК) определяют рентгенографически (метод основан на измерении дифракции рентгеновских лучей), по дифракции электронов, с помощью ИК-спектроскопии, ЯМР, по различию плотности целлюлозы в аморфных и кристаллических участках, путем адсорбции воды и йода, по скорости обмена D2O, а также по скорости протекания различных реакций таких, как кислотный гидролиз, перйодатное окисление, формилирование и т д [см, например, 5, 7] Данные, установленные разными методами, могут отличаться друг от друга Поэтому на практике нельзя определить абсолютное значение кристалличности или аморфности, однако, имеющиеся методы позволяют достоверно судить об относительных изменениях в структуре гомологических рядов целлюлозных материалов Наиболее воспроизводимым, точным и простым в интерпретации является метод дифракции рентгеновских лучей В настоящее время большинство исследователей применяют именно этот метод [6, 7] Для количественного определения ИК используют формулу, предложенную Сегалом [c.12]

    При выборе связующего, помимо доступности и экономических соображений, необходимо учитывать реологические показатели, а также лиофильность, адгезию по отношению к углеродной основе. Лиофильность способствует хорошему смачиванию и образованию однородной пасты. Мерой для количественного определения лиофильности по отношению к поверхности основы при взаимодействии со связующими служат величины краевого угла смачивания, адсорбционной способности и теплоты смачивания Так, более высокая лиофильность связующих достигается на поверхности антрацитов и углей марки Т, меньшая — на поверхности шероховатых и малометаморфизированных углей. После смачивания твердых мелкодисперсных частиц связующих происходит адсорбция его составных частей на поверхности частиц. [c.610]

    Результаты опытов по изучению кинетики дегидратации этилового спирта на черенковой окиси алюминия, а также на А Оз, обработанной фтористым бором, приводятся на рис. 1, из которого видно, что адсорбция фтористого бора увеличивает активность АЬОз во всем измеренном интервале объемных скоростей. При изучении кинетики было замечено, что активность катализатора, содержащего фтористый бор, не остается постоянной, а постепенно снижается на 1—2% от опыта к опыту и при пропускании спирта с одной и той же объемной скоростью степень превращения его в этилен совпадает с у т для чистой окиси алюминия. Проведение в дальнейшем на этом образце опытов различными объемными скоростями приводит к той же кинетической зависимости, как и на чистой АЬОз (рис. 1). Изменение активности в данном случае, по-видимому, связано с последовательным удалением адсорбированного фтористого бора с поверхности окиаи алюминия спиртом или продуктами его разложения. На это также указывало количественное определение бора в конденсате. Именно если после первого опыта было обнаружено 0,44 г, то после седьмого опыта бор в конденсате практически отсутствовал. [c.236]

    Когда в конце периода адсорбции поверхность образца нагревается ), изменение давления в ячейке задается уравнением (5). При возрастании температуры давление изменяется под действием выделения газа с поверхности Рр и удаления его откачкой насосом и манометром И8е- К этому следует добавить обычно небольшой вклад натекания газа из резервуара Ра, уравновешиваемый реадсорбцией на образце ИЗр. Следовательно, ход изменения плотности газа при нагревании образца зависит от пути выделения газа, кривой нагревания образца, скорости откачки ячейки и кинетического закона адсорбции. Чтобы установить основные закономерности для количественного определения кинетических параметров из экспериментальных данных, ниже будет проанализирована форма кривой давление — время в предположении, что обратной адсорбцией можно пренебречь. [c.121]

    Было сделано предположение, что при соответствующем пространственном распределении двух компонентов адсорбента один из них будет действовать специально на один атом адсорбируемой молекулы, в то время как другой адсорбент будет действовать на другой атом адсорбируемой молекулы. Теплоты активирования, полученные для поверхности сплава платины с вольфрамом, равны 3400 —3600 кол, а для чистой платины 13 ООО кал и чистого вольфрама 4700 — 4800 кал, Пэджи Тейлор [106][придерживаются того мнения, что энергия активирования адсорбционного процесса связана с благоприятствующей адсорбции группировкой атомов катализатора. Мейер и Хюттиг [102] ввели качественное и количественное определения каталитически активных мест п, они выразили уравнением отношение между степенью каталитической активности а и теплотой активирования q  [c.168]

    Усовершенствование методики разделения и идентификации аминокислот в белковых гидролизатах заключается в превращении кислот в З-фенил-2-тиогидантоины действием фенилизотиоциа-ната [155] с последующим разделением их при помощи бумажной хроматографии или хроматографии на колонках [156]. Для количественных определений достаточно 10 мкг кислоты максимум адсорбции определяли при 269 ммк (кроме серина и треонина). [c.396]


Смотреть страницы где упоминается термин Адсорбция количественное определение: [c.254]    [c.227]    [c.132]    [c.97]    [c.97]    [c.132]    [c.213]    [c.466]   
Физическая и коллоидная химия (1964) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция определение



© 2025 chem21.info Реклама на сайте