Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость полимеров аномалии

    Аномалия вязкости растворов полимеров обусловливается особенностями макромолекул, а также образованием структур в растворе при увеличении концентрации полимера. Находящиеся в растворе свернутые в клубки макромолекулы всегда удерживают внутри себя некоторое количество растворителя. Наличие связанного растворителя приводит к увеличению размеров полимерных клубков-частиц и существенно влияет на вязкость системы. [c.194]


    Это уравнение отражает идеальное (ньютоновское) течение жидкости, которое характеризуется следующими тремя чертами появлением сдвиговых деформаций при сколь угодно малых напряжениях, отсутствием эффектов упругости при течении и независимостью вязкости от скорости и напряжения сдвига. Полимеры, однако, обнаруживают отклонение от ньютоновского течения по всем указанным признакам. Во-первых, они могут проявлять признаки пластических тел, т. е. тел, характеризующихся наличием предела текучести — критического напряжения, только после достижения которого способно развиваться течение. Во-вторых, течение полимеров сопровождается накоплением высокоэластической энергии, что вызывает появление напряжений, перпендикулярных направлению течения, и, как следствие этого, разбухание экстру-дата, усадку образца и т. д. Полимеры, таким образом, наиболее ярко проявляют признаки вязкоупругих тел. Наконец, вязкость полимеров, как правило, сильно зависит от у и т, уменьшаясь с возрастанием последних (явление аномалии вязкости). Вязкость, соответствующая данному режиму течения и называемая обычно эффективной, будет рассмотрена ниже, здесь же мы остановимся на молекулярной трактовке ньютоновской вязкости  [c.50]

    Вопросы реологии полимеров рассмотрены в I главе монографии с позиции релаксационной теории аномалии вязкости полимеров. Там же подробно разобрана природа высокоэластических деформаций, всегда сопутствующих течению расплавов полимеров. Особое внимание уделено введению основных понятий (таких, как упругая и высокоэластическая и пластическая деформации, скорость сдвига, релаксационный и динамический модули и т. п.). [c.9]

    Как влияет молекулярная масса полимера на эффективную вязкость и аномалию вязкостных свойств расплавов полимеров  [c.206]

    Как влияет молекулярно-массовое распределение (ММР) полимера на эффективную вязкость и аномалию вязкостных свойств концентрированных растворов и расплавов полимеров  [c.207]

    Таким образом, причиной аномалии вязкости является не разрушение надмолекулярной структуры полимера при течении, поскольку полимер с узким молекулярно-массовым распределением обладает такой же надмолекулярной структурой, как и полимер с широким молекулярно-массовым распределением, но не обладает аномалией вязкости. Причина аномалии вязкости полимера с широким ММР состоит в постепенном выведении из процесса сегментального течения макромолекул с все меньшей молекулярной массой, что ведет к снижению затрат энергии иа поддержание потока, т. е. к снижению вязкости с ростом напряжения сдвига. [c.165]


    Реология полимеров описана в гл. II монографии с позиции релаксационной теории аномалии вязкости полимеров. Там же подробно рассмотрена природа высокоэластических деформаций, всегда сопутствующих течению расплавов полимеров. [c.10]

    Изучение влияния молекулярной массы на вязкостные свойства полимеров подразумевает ответ на ряд вопросов. Как она влияет на начальную вязкость и аномалию вязкости полимеров Как сопоставлять вязкостные свойства полимеров с различной структурой макромолекулярной цепи, учитывая, что при одном и том же значении молекулярной массы длина цепи и ее гибкость могут сильно различаться для полимеров разной природы Как сказывается молекулярно-массовое распределение на зависимости начальной вязкости от молекулярной массы и как изменяется при этом аномалия вязкости При оценке влияния ММР на вязкостные свойства полимеров, в свою очередь, возникает важнейший вопрос о том, какой характеристикой ММР и какими значениями молекулярных масс полидис-персных полимеров следует пользоваться для сравнения вязкостных свойств различных полимеров. Ответ на эти вопросы, хотя бы частичный, в настоящее время может быть дан применительно только к линейным полимерам. [c.180]

    В проявление аномалии вязкости кроме релаксационных процессов вносит еще вклад разрушение существующих в расплавах полимеров надмолекулярных структур, которое происходит, начиная с некоторых значений скоростей сдвига (участок II кривой течения 2 на рис. II. 14). Надмолекулярные структуры сохраняются в расплаве при малых скоростях сдвига, т. е. на начальном участке I кривой течения полимера, и полностью отсутствуют при очень больших скоростях деформирования полимера, т. е. на участке III. Аномалию вязкости поэтому связывают с понятием структурной вязкости. Системы, аномалия вязкости которых выражается в уменьшении вязкости с ростом скорости сдвига, называют псевдопластичными. Многие полимеры в вязкотекучем состоянии являются псевдопластичными высоковязкими жидкостями, эффективная вязкость которых в реальных условиях переработки снижается в сотни и тысячи раз. [c.36]

    В результате краткого рассмотрения особенностей течения полимеров в вязкотекучем состоянии мы приходим к основному выводу, что состояние это весьма похоже на высокоэластическое и отличается от него лишь малой стабильностью флуктуационной сетки. Все так называемые аномалии вязкости растворов или расплавов полимеров связаны с наличием этой сетки. Любой фактор, влияющий на устойчивость сетки, влияет и на закономерности вязкого течения. Выражением этого обстоятельства является правило логарифмической аддитивности. [c.181]

    При течении с большими скоростями, когда структуры практически уже разрушены, повышение температуры изменяет вязкость незначительно. В данном случае влияние температуры сводится к изменению межмолекулярного взаимодействия и подвижности макромолекул. Влияние температуры на эффективную вязкость можно проследить на рис. 2.7. При высоких температурах у расплавов полимеров аномалия вязкости уменьшается, это можно установить по углу наклона линий, так как показатель степени п становится больше, чем при низких температурах. [c.40]

    Временное снижение вязкости, или аномалия вязкости. При запуске и работе быстроходных двигателей внутреннего сгорания в цилиндро-поршневой группе и подшипниках скольжения развиваются скорости сдвига 10 —10 с , а в масляных магистралях 10 —10 С . При этих условиях может проявляться временное снижение вязкости, или аномалия вязкости, загущенного масла. Причина этого явления — изменение структуры раствора полимера в сдвиговом режиме деформирования [54, с. 391]. С уменьшением скорости сдвига структура способна восстанавливаться, вязкость при этом повышается (наблюдается релаксация). [c.36]

    Способность материала к вязкому течению характеризуется коэффициентом вязкости или, просто, вязкостью. Вязкость полимера зависит от его молекулярной структуры длины цепи, степени разветвленности и химической природы полимера. Для полимерных материалов характерна так называемая аномалия вязкости, выражающаяся в том, что вязкость для этих материалов не постоянна, а изменяется от приложенного напряжения сдвига т. Обычно для описания вязкостных свойств полимерного материала строят кривую течения, характеризующую зависимость изменения скорости деформации от напряжения сдвига X [18, с. 231 19, с. 73—76 20, с. 28]. [c.64]

    Наряду с обратимыми эффектами, соответствующими явлению аномалии вязкости, для загущенных масел и для парафинистых масел при низких температурах в результате их деформирования характерны необратимые явления. Под действием больших гидродинамических усилий происходит деструкция— разрыв молекул полимера, а в парафинистых маслах — разрушение или дезагрегирование кристаллитов твердых углеводородов. В этом случае при переходе от высоких скоростей течения к меньшим увеличение (восстановление) вязкости масел будет неполным. Такое явление называют гистерезисом вязкости. Оно определяется тем, что после деформирования с достаточно высокой скоростью сдвига получается новая система, отличная от исходной, не подвергавшейся деформации. В отдельных случаях систему можно вернуть в исходное состояние, например нагреть масло и вновь его охладить. [c.270]


    Неньютоновские жидкости проявляют аномалии вязкости, т. е. отклонения от законов Ньютона и Пуазейля. Эти жидкости можно еще подразделить на псевдопластические и дилатантные. Для псевдо-пластических жидкостей характерно, что их скорость течения возрастает быстрее, чем приложенное давление. Это говорит об уменьшении коэффициента вязкости при возрастании давления. Кривая течения такой жидкости также проходит через начало координат, но имеет криволинейный ход с выпуклостью к оси абсцисс на значительном участке (рис. 23.9,2). Растворы многих полимеров ведут себя таким образом. Скорость течения дилатантных жидкостей растет медленнее, чем приложенное давление следовательно, их вязкость увеличивается при повышении давления и кривая имеет выпуклость к оси ординат (рис. 23.9, 3). Дилатантные системы называют также растекающимися. В растекающемся потоке скорость уменьшается при возрастании давления, что приводит к увеличению вязкости. Многие порошки и уплотненные дисперсные материалы проявляют склонность к растеканию. При малых давлениях (при сдвиге), прежде чем отдельные частицы смогут двигаться относительно друг-друга, их взаимная упаковка становится более рыхлой и система увеличивается в объеме. При этом вязкость уменьшается. [c.382]

    Органические, главным образом нефтяные, масла представляют собой смесь углеводородов и нх производных. Масла животные и растительные применяются в основном как присадки к нефтяным маслам. Синтетические масла служат заменителями нефтяных масел при весьма низких и высоких температурах, повышенной пожарной опасности и т. д. Качества масел улучшаются легированием присадками противоизносными, фрикционными, вязкостными, депрессорными (для снижения температуры застывания), моющими (детергенты), антикоррозионными и т. д. При положительных температурах масла являются ньютоновскими жидкостями. Их загущение полимерами создает аномалию вязкости. [c.182]

    Температурный коэффициент вязкости (кажущаяся энергия активации вязкого течения) расплавов волокнообразующих полимеров существенно зависит от степени аномалии вязкостных свойств с уменьшением доли эластической деформации в процессе сдвигового течения снижаются значения Д . Так, для ПКА в области температур 543-553 К величина [c.191]

    Для полидисперсных полимеров обычно проявляется аномалия вязкости если при простом сдвиге вязкость т] резко уменьшается с увеличением скорости деформации у> то вязкость при растяжении X резко увеличивается (рис. 6.6). При небольших скоростях (область В) это отношение быстро возрастает (на один-два порядка). Для переходных (неустановившихся) режимов течения при одноосном растяжении зависимости вязкости Я от деформации е имеют свою специфику. [c.158]

    В определенной мере рассматриваемые факторы затрагивают и ширину диапазона стеклования или размягчения. В силу только что изложенных причин диапазон, в пределах которого происходит выделение или поглощение теплоты стеклования, именуют аномальным интервалом. Такой термин обусловлен тем, что с этим интервалом связаны не только эндо- или экзотермические эффекты, легко регистрируемые на термограммах, но и аномалии кинетических макроскопических параметров, например той же вязкости. При размягчении стекла вязкость в аномальном интервале, вместо того чтобы падать с повышением температуры, поначалу увеличивается до равновесного (для данной температуры) значения, а потом уже экспоненциально убывает, что весьма напоминает множественные пики плавления при отжиге застеклованных частично кристаллизующихся полимеров (сначала степень кристалличности растет, затем начинается собственно плавление). [c.90]

    При деформировании полимера в условиях одноосного растяжения между продольной вязкостью X и молекулярной массой соблюдаются те же соотношения, что и лри сдвиговом течении. Наблюдается также и равенство энергий активации вязкого течения. Это свидетельствует об общности молекулярных механизмов течения. Однако аномалия вязкости при сдвиговом течении приводит к снижению вязкости при повышении напряжения сдвига, а при [c.178]

    Особенности вязкого НЫХ веществ, а также особенности тече-течения полимеров ния деформируемых материалов (вязкое при сдвиге и растяжении течение жидкостей, аномалия вязкости и [c.146]

    Только очень разбавленные растворы ВМС ведут себя как идеально вязкие жидкости — их вязкость подчиняется законам Ньютона и Пуазейля, т. е. не зависит от скорости течения. В более концентрированных растворах полимеров наблюдается ряд аномалий — непостоянство вязкости при изменении скорости течения, непропорциональное возрастание ее с повышением концентрации. Аномалии вязкости дисперсных систем [c.441]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Аномалня вязкости зависит от молекулярно-весового распределения полимеров. Она проявляется более резко при увеличении их полимолекулярпости. Поэтому если сравниваются два полимера, из которых один моноыолекулярныи, а другой пол и молекулярный с тем же значением М,,,, то кривая течения проходит круче в случае полимолекулярного полимера. Это обусловлено наличием ь нем фракций с более высоким средневесовым молекулярным весом, чем у мономолекулярного, и объясняется тем, что для более высокомолекулярных полимеров аномалия вязкости выражена сильнее. [c.257]

    KHXY является предположением, которое неплохо согласуется с экспериментальными данными. Поэтому формула (2.42), как и сама теория Грессли, может иметь важное значение в дальнейшем развитии теорий аномалии вязкости полимеров различного строения и установлении связей между разнородными проявлениями реологических свойств вязкоупругих систем, такими, как аномалия вязкости, представляемая функцией т) (y), и релаксационными характеристиками, выражаемыми спектральной функцией F(0). [c.163]

    Переход из текучего в высокоэластическое состояние и обратно определяется соотношением скорости деформации н времени релаксации, которым может быть охарактеризованы вязкоупругие свойства полимера. Это соотношение выражается безразмерным нроиз-ведением ( 0), где 0 — некоторое характерное время релаксации. Рассматриваемый переход полимеров из одного физического состояния в другое должен совершаться при определенном значенииузО = == onst. Для линейных полимеров, однородных по молекулярным массам, все времена релаксации находятся в однозначной связи между собой. Кроме того, величина 9 прямо связана с начальной вязкостью полимера (подробнее см. гл. 3). Поэтому критическая скорость деформации Ys обратно пропорциональна начальной вязкости полимера и соответственно зависит от температуры. Но Ys = = (0/г]о)т5, где (0/т]о) (при Л/> ЛГ ) не должно зависеть от молекулярной массы и температуры, т. е. критическое напряжение сдвига Tj является постоянной величиной. Необходимо подчеркнуть, ЧТО условие т . = onst относится не только к случаю резкого перехода монодисперсных полимеров в высокоэластическое состояние и для полидисперсных полимеров, проявляющих аномалию вязкости, существует связь между 0 и t)q. Но если переход в высокоэластическое состояние совершается в области неньютоновского течения, то приближение к критическим условиям деформирования происходит постепенно. [c.192]

    При понижении температуры реакции ниже 160° полная характеристика реакции заметно усложняется влиянием очень высокой вязкости полимера. Это можно показать на примере термической деполимеризации при ПО—180° полимеров, полученных полимеризацией в водных растворах в присутствии инициирующих систем, образующих гидроксильные радикалы [14]. Главные особенности этой реакции согласуются с рассмотренным выше. механизмом. Наблюдаются, однако, две важные аномалии. Во-первых, уменьшение скорости при увеличении молекулярного веса гораздо значительнее, чем можно было бы ожидать исходя из этого механизма. Например, скорость деполимеризации полимера с молекулярным весом 60 ОСО в несколько сот раз больше скорости деполимеризации полимера с молекулярным весом 900 ООО. Во-вторых, полная энергия активации сильно зависит от молекулярного веса. Так, ири увеличении молекулярного веса от 10 до 10 энергия активации уменьшается от 48 до 30 ккалЬчоль. [c.43]

    Кривые течения и аномалия вязкости. Вязкость полимеров в В. с. зависит от мол. массы и темп-ры, а для данного образца — от режима деформирования (скорости деформации и напряжения), влияние к-рого определяется характером напряженного состояния, а для случая сдвиговых деформаций — видом зависимости напряжений сдвига т от скорости сдвига V-Для описания вязкостных св011ств часто пользуются [c.287]

    Однако до сих пор не было обращено впимание па два важных обстоятельства на существование резко выраженного критического напряжения, до которого вязкость полимера является приблизительно постоянной во-вторых, па то, что даже у монодиснерсных полимеров нри понижении температуры может наблюдаться значительная аномалия вязкости. [c.157]

    По всей вероятности, объяснение влияния ламинарного сдвигового течения на кристаллизацию полимерных расплавов нельзя отрывать от существования зацеплений макромолекул, что приводит к распрямлению по крайней мере некоторых макромолекул при течении. В своей крайней форме эта концепция связана с моделью кластерного течения, объясняющей растяжение части макромолекул, сцепленных в кластере, что способствует кристаллизации [24]. Такая трактовка экспериментальных данных по возрастанию скорости кристаллизации с увеличением скорости сдвига плохо согласуется с известным фактом осуществования аномалии вязкости полимеров, т. е. падением эффективной вязкости с ростом скорости сдвига, обычно связываемой с разрушением зацеплений при высоких скоростях сдвига. С целью устранения этого противоречия было высказано предположение о том, что основное влияние на кинетику кристаллизации оказывают быстропротекаюшие ориентационные эффекты в начальной стадии сдвигового течения [c.120]

    Аномалия вязкости при обычных температурах характерна для масел, в состав которых входят вязкостные присадки (по-лиолефины, полиметакрилат и др.). Такие вещества с молекулярной массой от 3000—5000 до 100 ООО вводят в маловязкие масляные основы для повышения их вязкости и, что особенно выгодно, для уменьшения зависимости вязкости от температуры по сравнению с равновязкими нефтяными маслами. У масел с полимерными присадками обнаружена аномалия вязкости. При высоких скоростях в потоке под воздействием гидродинамических сил клубки полимерных молекул раскручиваются (разворачиваются), их ориентация вдоль оси потока возрастает. В результате вязкость масла снижается. Такое изменение вязкости вполне обратимо. При уменьшении скорости течения вязкость масла будет вновь возрастать в связи с самопроизвольным свертыванием в клубки линейных полимеров, а также из-за их дезориентации в потоке при уменьшении гидродинамического воздействия. Аномалия вязкости загущенных масел с повышением температуры уменьшается. [c.270]

    Аномалия вязкости, как указывалось выше, лишь одно из проявлений неньютоновского течения полимеров. Для полного описания процесса течения необходим анализ других отклонений от уравнения Ньютона, в первую очередь проявления высокоэластических эффектов, а также учет некоторых других явлений, зачастую сопровождающих течение (механо-химических процессов, нарушений ламинарности потока и др.). [c.52]

    Концентрационная аномалия вязкости для растворов высокомолекулярных соединений может быть обусловлена и проявлением межмо-лскулярных взаимодействий в системах полимера с растворителем и макромолекул друг с другом. Эти взаимодействия можно учесть, если в выражение для удельной вязкости раствора ввести члены, пропорциональные квадрату, кубу и т. д. концентрации растворенного вещества. После замены концентрации раствора с степенным рядом уравнение для т1уд принимает вид [c.195]

    Системы полимер - растворитель, концентрация полимера в которых такова, что взаимодействием между растворенными макромолекулами можно пренебречь, называются разбавленными растворами. Концентрационной границей является величина [ril i. Макромолекулы в разбавленном растворе представляют собой более или менее анизотропные по форме статистические клубки, способные удерживать в результате сольватации или иммобилизации некоторое количество молекул растворителя. Свободное движение таких молекулярных клубков может быть уподоблено движению сферической частицы, радиус которой соответствует большой полуоси гипотетического эллипсоида вращения, а объем ее равен объему статистического клубка. Вязкость таких растворов описывается уравнением Эйнштейна [см. уравнение (2.43)]. Однако асимметрия молекулярных клубков является причиной проявления аномалии вязкостных свойств даже в разбавленных растворах синтетических и природных полимеров вследствие ориентации таких частиц в потоке при достаточно больших т, а также из-за гидродинамического взаимодействия. При небольших и средних т разбавленные растворы полимеров являются ньтоновскими жидкостями. [c.194]

    Если полимер ведет себя как бингамовский пластик, то определенно можно ожидать неравномерного смешения, как и предполагает автор [9], Но даже если это ньютоновская жидкость, то, как показали приведенные выше расчеты, следует ожидать неравномерного смешения, обусловленного кривизной зазора смесителя. Аномалия вязкости значительно усиливает неравномерность смешения, что осложняет,интерпретацию экспериментальных данных и без привлечения представлений о бинга-мовском характере течения. [c.378]

    Любая система, в которой отношение напряжения к скорости сдвига численно равно динамической вязкости т] при постоянных давлении и температуре и не зависит от режима деформирования, называется ньютоновской. Полимерные растворы, линейные полимеры, а также материалы на их основе, содержащие дисперсные наполнители (сажи и др.), представляют собой аномально в.чзкие системы. Их аномалия выражается в значительно большем увеличении градиентов скорости деформации с возрастанием напряжения, чем это следует из закона вязкого течения Ньютона [8 72 6.2 —6.4]. [c.148]

    Структурирование полимеров приводит к образованию сетки, связывающей их макромолекулы между собой и определяющей проявление ими высокоэластйчности. Если известны основные значения (Мк и Ме), то все линейные полимеры можно нормировать (разделить на эти величины), ибо только начиная с этих значений появляется аномалия вязкости, обусловленная появлением структуры. По нормированным значениям можно производить классификацию полимеров и определять значение их кинетического сегмента течения (по Эйрингу). При М = 20Ме и Л1=10Мк завершает- [c.156]

    Аномалии вязкости растворов ВМВ можно объяснить тем, что крупные молекулы полимеров взаимодействуют друг с другом, образуя ассоциаты и легкоразрушаемые структуры. Структурированные растворы ВМВ во многих случаях ведут себя как пластичные системы, описываемые уравнением Бингама (23.24). Такие системы характеризуются величинами наименьшей пластической вязкости и предельного напряжения сдвига по Бингаму. [c.472]

    Измерение зависимости скорости течения полимеров у от напряжения сдвига т (кривые течения) показывает, что для полимерных систем характерен эффект аномалии вязкости, заключаюший- ся в уменьшении вязкости по мере увеличения напряжения сдвига т (рис.V. 17). [c.154]


Смотреть страницы где упоминается термин Вязкость полимеров аномалии: [c.257]    [c.307]    [c.290]    [c.283]    [c.439]    [c.464]    [c.442]    [c.158]    [c.164]   
Термомеханический анализ полимеров (1979) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость полимеров



© 2025 chem21.info Реклама на сайте