Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические парафинов

    ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность проблемы. Одной из важнейших задач электронной промышленности является создание новых высококачественных керамических материалов. Эффективность этого производства зависит от состава и свойств литейных систем, представляюш,их собой керамический порошок и технологическую парафиновую связку. [c.3]


    В качестве экстрагента ароматических углеводородов из смеси их с парафиновыми углеводородами до недавнего времени применяли 93%-ный водный раствор диэтиленгликоля. Для экстрагирования ароматических углеводородов с различной молекулярной массой требуется соответствующее массовое соотношение экстрагент сырье, равное при использовании диэтиленгликоля (8—15) 1. Чем больше молекулярная масса ароматических углеводородов, содержащихся в катализате, тем выше это соотношение. Замена диэтиленгликоля более эффективным триэтиленгликолем позволяет снизить соотношение экстрагент сырье до (7—10) 1 и, следовательно, обеспечить значительную экономию пара, особенно при экстрагировании ксилолов. При переходе на триэтиленгликоль основное технологическое оборудование блока экстракции и вторичной ректификации то же, 5 с сокращением количества циркулирующего растворителя появляются резервные мощности оборудования, позволяющие увеличить производительность блока. [c.168]

    С нашей точки зрения, на которой будет основываться после-дуюш ее изложение, такое подразделение твердых углеводородов нефти является устаревшим и ошибочным, возникшим в свое время вследствие недостаточности материалов по этому вопросу. В настоящее время речь может идти только о различных технических продуктах, именуемых парафинами и церезинами , вырабатываемых из разных видов сырья в различных технологических условиях и отвечающих по свойствам соответствующим стандартам или техническим условиям. Что же касается индивидуальных твердых углеводородов, то для них деление на парафины и церезины или на парафиновые и церезиновые углеводороды является неправомерным, лишенным основания, и может приводить лишь к ошибочным заключениям. [c.77]

    Одноступенчатый вариант технологической схемы (рис. 23а) заключается в следующем. Компоненты сырья (парафиновый дистиллят и первый оттек камер потения) закачивают в сырьевую емкость 1 при температуре выше их температуры застывания.. Весьма полезна выдержка сырья в емкости перед взятием его в переработку. Сырьевую смесь из емкости 1 подают в холодильник предварительного охлаждения 2, в котором охлаждают водой до [c.169]

    В состав этого промышленного комплекса входит завод синтетического каучука, который является крупным потребителем инертного газа, в том числе для технологических нужд. Только для безопасной остановки блока дегидрирования углеводородов парафинового ряда обычно расходовался весь запас азота, создаваемый на азот-но-кислородном заводе, а остальные технологические цехи, в которых применяются в больших количествах пожаро- и взрывоопасные продукты, приходилось оста- [c.219]


    В СССР и за рубежом разработан ряд оригинальных и экономичных промышленных процессов гидроизомеризации. Как правило, в промышленных процессах используется схема за проход . Технологические схемы промышленных процессов гидроизомеризации имеют много общего. Назначение процесса гидроизомеризации заключается не только в структурной изомеризации линейных парафиновых углеводородов, содержащихся в сырье, но и в гидрировании ароматических соединений, удалении сернистых, азотистых и смолистых соединений, структурной изомеризации парафиновой части высококипящих нафтенов (цикланов). Иными словами, переработка углеводородного сырья в процессе гидроизомеризации носит комплексный характер. [c.122]

    Широкое использование процесса гидроизомеризации для переработки фракций, обогащенных парафиновыми углеводородами с температурой кипения более 150 °С, обусловлено все возрастающими потребностями в качественных дизельных и авиационных топливах с низкой температурой кристаллизации. Разработанные технологические процессы имеют, как правило, комплексное назначение уменьшение содержания в перерабатываемой фракции н-парафиновых углеводородов, удаление сернистых и смолообразующих соединений, уменьшение вязкости, облегчение фракционного состава. [c.128]

    Технологические схемы процессов дегидрирования различных парафинов аналогичны. В реакторе с неподвижным слоем катализатора все операции проводятся в одном аппарате и для обеспечения непрерывности работы производства устанавливают несколько реакторов. Регенерация обычно осуществляется при 600—650 °С и подаче воздуха. Использование псевдоожиженного слоя мелкозернистого катализатора позволяет иметь один реактор работающий непрерывно. В этом случае подготовленный/катализа тор непрерывно поступает в реактор, а отработавший выводится Регенерация катализатора осуществляется также в псевдоожи женном Слое, но в отдельном аппарате — регенераторе. Подго товка катализатора включает восстановление и десорбцию воды и проводится либо в отдельном аппарате, либо в аппарате, встроенном в реактор или регенератор. Технологическая схема процесса дегидрирования парафиновых углеводородов в псевдоожиженном слое мелкозернистого катализатора представлена на рис. 4. В процессе эксплуатации были усовершенствованы конструкции реакторов и регенераторов [35, 36]. [c.657]

    Технологическая схема дегидрирования парафиновых углеводородов во взвешенном слое мелкозернистого, катализатора  [c.657]

    Несмотря на то что график построен для индивидуальных парафиновых углеводородов нормального строения, им пшроко пользуются в технологических расчетах применительно к узким нефтяным фракциям. По этому графику можно находить давление [c.41]

    При записи уравнений балансов процессов переработки нефтяных фракций реагирующие вещества объединяют или по технологическим признакам (газ, бензин, дизельное топливо и т. п.), или по химическим признакам (парафиновые углеводороды, нафтеновые углеводороды и т. п.). Соответственно говорят о технологической или химической группировке. Для тепловых расчетов удобнее химическая группировка, так как она позволяет использовать точные данные о теплотах реакций индивидуальных углеводородов и их производных. [c.134]

    В последние годы уделяется внимание синтезу углеводородов не непосредственно из СО и Нг, а через метанол, что позволяет использовать хорошо отработанную крупнотоннажную технологию синтеза метанола термодинамика получения метанола из СО и Нг рассмотрена выше в этой главе. Получение углеводородов и эфиров из метанола представляется технологически достаточно простым при использовании в качестве катализатора твердого кристаллического алюмосиликата с повышенным-отношением оксида кремния к оксиду алюминия. Определенные преимущества такого двухстадийного получения углеводородов заключаются в возможности регулирования режима переработки метанола и производстве углеводородов заданной структуры и молекулярной массы индивидуальных олефиновых, ароматических, парафиновых углеводородов, компонентов бензина или дизельного топлива. Рассмотрим реакции, приводящие к получению компонентов моторных топлив. [c.342]

    При коксовании крекинг-остатка нефтей парафинового основания (смеси грозненских нефтей) выход летучих для образца кокса из верхней части коксового пирога доходит до 13—14%. С повышением степени цикличности сырья выход летучих снижается. Так, со значительно меньшим выходом летучих получается кокс из крекинг-остатка нефтей нафтенового основания (типа артемовской) при одинаковых технологических условиях (режиме коксования и высоте коксового пирога). Выход летучих для кокса, полученного из сырья с меньшей реакционной способностью — прямогонных остатков, несколько больше, чем из крекинг-остатков тех же нефтей при одинаковой высоте кок- [c.148]


    Технологическая схема приведена на рис. 2.39. Подготовленное путем гидроочистки сырье смешивают с водородом, нагревают в печи 1 и направляют в реактор 2, где происходит насыщение ароматических и непредельных углеводородов и изомеризация н-парафиновых углеводородов. Продукты реакции, охлажденные в теплообменнике, направляют в реактор <3, в котором изомеризация завершается при более низкой температуре, что благоприятно с точки зрения термодинамического равновесия. Продукты реакции снова охлаждают, и в сепараторе высокого давления 4 отделяют жидкий продукт от циркулирующего газа. [c.182]

    При некаталитической гидрогенизации ароматические составляющие сырьевого потока не подвергаются химической конверсии, а в неизменном виде выходят вместе с потоком газа, от которого впоследствии отделяются. Данные составляющие можно рециркулировать в технологическом топливе или выделять как побочные продукты. Это относится как к циклическим соединениям, так и к углеводородным кольцам с боковыми цепями. Парафиновые (соединения, по-видимому, отщепляются и подвергаются гидрогенизации. [c.96]

    Промышленный опыт показал большую гибкость процесса гидрокрекинга возможность переработки различных видов нефтяного сырья оперативного технологического регулирования свойств товарных продуктов варьирования соотношений выработки автомобильных бензинов, дизельных и реактивных топлив, что особенно важно при конъюнктурных изменениях внутри страны и за рубежом. Получаемые при гидрокрекинге основные товарные продукты отличаются высоким качеством. Это объясняется, протеканием реакций изомеризации нормальных парафиновых углеводородов, в связи с чем. понижается температура застывания топлив. В результате реакций гидрирования снижается содержание ароматических углеводородов в реактивных и специальных дизельных топливах, а также в керосинах, что не может быть достигнуто применением обычной гидроочистки. [c.341]

Рис. 37. Принципиальная технологическая схема двухступенчатого обезмасливания парафиновых и дизельных дистиллятов по гачу Рис. 37. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/397694">двухступенчатого обезмасливания</a> парафиновых и дизельных дистиллятов по гачу
    Жидкие парафины с температурой плавления 24—27 °С производят из дистиллятов высокопарафинистых нефтей, выкипающих в пределах 240—360 °С. В качестве растворителя применяют смесь ацетона (54—60 объемн.%), бензола и толуола. Жидкие парафины производят избирательными растворителями в две ступени фильтрации по такой же технологической схеме, как и твердый парафин из парафиновых дистиллятов [176]. Сырье разбавляется растворителем [c.183]

    При исследовании твердых углеводородов нефти, а также в технологической практике парафинового производства важно знать кристаллическую структуру парафинов и влияние условий кристаллиза- [c.98]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    Наиболее естественным в ьсинетических исследованиях процессов нефтепереработки является использование так называемых технологических или химических группировок как по исходному сырью, так и по конечным продуктам. Наиболее часто используемый в этих целях прием — это считать за индивидуальное реагирующее вещество отдельные нефтяные фракции, например, бензин, газ, кокс и т.д., или отдельные химические компоненты, например, парафиновые, нафтеновые, ароматические углеводороды бензинов и продуктов каталити — ческого риформинга. Так, в процессах термолиза тяжелых нефтяных остатков Б качестве индивидуальных веществ сырья и продуктов часто принимают масла, смолы, асфальтены, карбены и карбоиды. [c.19]

    Каталитическому риформингу принадлежит ведущая роль в производстве базовых бензи1юв. В зависимости от состава газоконденсата и параметров технологического процесса можно получить бензин риформинга с октановым числом от 72 до 85 по моторному методу. Бензины риформинга содержат в своем составе ароматические углеводороды, иепревращенные высококипящие парафины, незначительное количество нафтенов и легкие парафиновые углеводороды различной степени разветвленности. [c.218]

    Достоинством вакуумной фильтрации на барабанных фильтрах непрерывного действия является полная механизация всех технологических операций, в том числе и выгрузки гача. Барабанные вакуумные фильтры выпускают в герметичном исполнении, что позволяет перерабатывать на них продукты, содержащие летучие растворители. Недостатки барабанных вакуумных фильтров — малая по сравнению с фильтрпрессами фильтрующая поверхность (50—70 м ) и относительно невысокие рабочие давления фильтрации, не превышающие 0,6—0,75 ати. Вследствие этого фильтрация па барабанных вакуумных фильтрах вязких и труднофиль-труемых продуктов, таких как не разбавленные растворителями парафиновые дистилляты, была бы совершенно неэффективной и непроизводительной и поэтому барабанные вакуумные фильтры для переработки таких продуктов не применяют. [c.126]

    Режвм и технологические показатели деиарафииизации фильтрпрессованием без растворителей парафиновых дистиллятов грозненских нефтей и дистиллята дизельного топлива [c.172]

    В табл. 24 приводятся режим и технологические показатели переработки смеси парафиновых дистиллятов грозненских и за-теречных нефтей по грозненскому варианту двухступенчатой схемы фильтрации. В табл. 24 помещены также результаты депарафинизации дистиллята дизельного топлива на опытной установке ГрозНИИ по одноступенчатому варианту. Свойства исходных продуктов и полученных продуктов депарафинизации приведены в табл. 25. [c.172]

    Среди неуглеводородных компонентов нефти основное место занимают смолы и асфальтены. Эти сложные соединения состоят из полициклических ароматических и (или) нафтено-ароматических колец и связанных с ними парафиновых цепей, гетероатомов кислорода, азота и серы. Серы в нефтях мало, но ее присутствие, особенно в количрстве более 1 %, — важный фактор как для технологических процессов переработки, так и для решения ряда геохимических задач. [c.12]

    Теоретические основы и применение реакций алкилирования парафиновых углеводородов yffie рассматривались в предыдущих главах. Алкилирование ароматических углеводородов подобно алкилированию парафшюв к концу 30-х годов XX в. нашло значительное применение в нефтяной промышленности, что в значительной мере было обусловлено политическими событиями, прешедшими к второй мировой войне. Одпако пути развития этих двух процессов сильно различны. В то время как промышленное применение алкилирования парафинов должно было ожидать открытия основной реакции, подыскания подходящих катализаторов и подбора рабочих условий, алкилирование ароматических углеводородов уже осуществлялось в химической промышленности в течение десятков лет, поэтому задачи, связанные с применением его в больших масштабах, представляли собой главным образом технологические проблемы. [c.488]

    Жидкие н-парафиновые углеводороды используют как сьгрье для производства биологически разлагаемых поверхностно-активных веществ, пластификаторов, синтетических белков. Дeпapaфинизиpoвaннaя дизельная фракция имеет температуру застывания от —35 до -45 °С и используется как компонент летнего или зимнего дизельного топлива. Технологическая схема адсорбционного извлечения н-парафиновых углеводородов представлена на рис. 1.4. [c.10]

    Процесс одностадийного вакуумного дегидрирования бутана в бутадиен был реализован в США в начале 40-х годов и известен как процесс Гудри [2]. В последующие годы одностадийный способ получения бутадиена из бутана получил довольно широкое распространение в различных странах. Одностадийное дегидрирование изопентана в изопрен в промышленности не реализовано, однако этот процесс заслуживает внимания. Исследования, проведенные в СССР в области одностадийного дегидрирования парафиновых углеводородов в диеновые под вакуумом, позволили создать катализаторы, обеспечивающие выходы и избирательность по бутадиену и изопрену, такие, как в процессе Гудри [41—43]. Характеристика катализаторов для одностадийного дегидрирования и параметры процессов приведены в табл. 5. Технологическая схема процесса дегидрирования изопентана аналогична схеме дегидрирования бутана [44]. [c.661]

    С технологической точки зрения рексформинг, изоплюс и комбинированные процессы риформинга с изомеризацией наиболее подходят для переработки углеводородов газовых бензинов в связи с высоким содержанием в них парафиновых углеводородов. Для получения ароматических углеводородов более подходящим сырьем являются узкие фракции бензина с высоким содержанием нафтеновых углеводородов. [c.153]

    Некоторые нефти не содержат твердых парафиновых углеводородов и из них могут быть получены арктические и зимние сорта дизельных топлив, а также низкозастывающие масла без такого сложного процесса, как депарафинизация, которая является обязательной при переработке парафинистых нефтей. Получение дизельных топлив из сернистых и высокосернистых нефтей связано с включением в технологическую схему нефтеперерабатывающего завода процесса обессеривания, например гидроочистки при переработке бессер-нистых и малосернистых нефтей этого не требуется. Потребность в различных сортах масел, получаемых из нефти, значительно меньше, чем потребность в топливах, поэтому на производство масел направляют только отборные, так называемые масляные нефти, из которых можно получать масла высокого качества, с большими выходами и при менее сложной технологии производства, чем из других немасляных нефтей. [c.196]

    Другим возможным методом обобщения свойств реагирующих веществ является объединение их не по технологическим, а по химическим соображениям. Так, можно отдельно рассматривать реакции ароматических углеводородов, олефинов и т. д. Например, бензиновую фракцию — сырье платформинга — можно представить состоящей из трех обобщенных углеводородов с одинаковым числом углеродных атомов — парафинового (П), нафтенового (Н) и ароматического (А), которые могут претерпевать ъзаимные превращения. Такой подход позволяет учесть увеличение содержания ароматических углеводородов в -бензине в результате платформинга он использован в работах [39, 45, 57]. [c.181]

    В период гидрооблагораживания сырья на комбинированном катализаторе был проведен хроматографический анализ сырья и гидрогенизата на >фоматографе Цвет в ЦЗЛ НКНПК. Полученный анализ показал некоторое изменение углеводородного состава. Содержание ароматических углеводородов в гидрогенизате по сравнению с содержанием в сырье увеличилось на 0,4-0,88 %, а нафтеновых углеводородов снизилось на 0,5-1,66 %. Количество парафиновых углеводородов в гидрогенизате увеличилось на 0,78 %. Следовательно, на комбинированном катализаторе ГК-35 и ГКБ -ЗМ при выше описанном технологическом режиме идет процесс дегидрирования и дегидроизомеризации нафтеновых углеводородов (об этом свидетельствует сниж ение содержания нафтеновых углеводородов на 1,66 %). Процессы дегидрирования и дегидроизомеризации идут почти одинаково (образуется ароматических углеводородов 0,88 % и парафиновых 0,78 %). [c.100]

    На рис. 5.1 и 5.2 представлены фафические показатели, характеризующие процесс переработки бензиновой фракции 62-140 С на катализаторе СГ-ЗП. Анализ полученных данных свидетельствует о сложной взаимосвязи между технологическими параметрами процесса и глубиной протекания основных реакций (дегидрирования и дегидроизомеризации нафтеновых углеводородов и гидрокрекинга нормальных парафиновых углеводородов), что, в свою очередь, определяет выход стабильного бензина и его качество. Например, выход и антидетонационные свойства стабильного катализата при осуществлении процесса при температуре 420 и 460°С с объемными скоростями подачи сырья соответственно 2 и 5 час практически одинаково, в то время как выход ароматических углеводородов при темперагуре 460 С выще на 11% мае. Таким образом, регулируя параметры процесса и тем самым изменяя глубину протекания основных реакций процесса, можно в достаточно щироких пределах изменить качество получаемого катализата, в частности, содержатше ароматических углеводородов и октановое число. [c.127]

    Полученные результаты свидетельствуют, что при переработке фракции 62-140 0 при температуре 450 С и выше может быть получен катализат по содержанию ароматических углеводородов и детонационной стойкости удовлетворяющий требованиям ГОСТ на авиабензин Б-91/115. Однако жесткость технологических условий, требуемая для глубокой конверсии нормальных парафиновых углеводородов с целью обеспечения необходимых антидетонационных свойств, обуславливает сравнительно низкий выход стабильного катализата. Уровень выхода катализата при переработке бензиновых фракций на платиноэрионитном катализаторе определяется, в [c.129]

    Гидрирующий катализатор должен быть селективным, т. е. он должен ускорять гидрирование би- и полициклических ароматических углеводородов, но быть умеренно активным по отношению к ценным моноциклическим ароматическим углеводородам. В продуктах гидрокрекинга содержание парафиновых углеводородов изостроения выше, чем должно быть по термодинамическому равновесию Это является следствием того, что расщеплению сырья предшествует его глубокая изомеризация на катализаторах гидрокрекинга. Новые катализаторы гидрокрекинга позволили уменьшить удельные капиталовложения при сооружении установок в среднем на 20%. Внесено много технологических и инженерных усовершенствований применяются большие реакторы диаметром до 4,5 м, улучшены их конструкции, удешевлена аппаратура за счет применения биметаллов, упрощены отделения дистилляции и выделения Единичные мощности установок выросли до 12,7 тыс. м в сутки, т. е. —4,5 млн. т в год Было разработано несколько модификаций гидрокрекинга, из которых наиболее распространенными стали процессы изомакс , разработанный фирмами UOP и hevron, и юникрекинг , разработанный фирмами Union Oil п Esso. Суммарная мощность установок гидрокрекинга в настоящее время быстро растет. Если в 1960 г. она составляла только 159 в сутки, то к началу 1970 г. — более 180 тыс. в сутки Очень быстро развиваются и другие процессы гидрогенизации. [c.12]

    Технологическая схема получения алкилсульфонатов способом фотохимического сульфохлорирования изображена иа рис. 98. Хлор, полученный испарением жидкого хлора, и газообразный SO2 в 5%-нэм избытке подают в низ сульфохлоратора I через распределительные трубы они барботируют через слой жидкости, за-полнякщей колонну. Туда же вводят свежую парафиновую фракцию и непревращенный углеводород, отделенный от продукта. Тепло реакции снимается в выносном холодильнике 2, через который реакционную смесь прокачивают насосом 3. Отходящие из колонны газы состоят из НС1 и непревращенного SO2. Они поступают I. блок очистки 4, выполненный так же, как в процессах хлори[ования в нем НС1 поглощают водой с получением концент- [c.339]

    Под термином "масла принято подразумевать высокомолекулярные углеводороды с молекулярной массой 300 - 500 смешанного (гибридного) строения. В их состав входят парафиновые, циклопарафиновые и ароматические структуры в разнообразных комбинациях. Методом хроматографического разделения из масляных фракций выделяют парафино-нафтеновые и ароматические углеводороды, в том числе легкие (моноциклнческие), средние (бициклические) и полициклические (три и > циклические). Наиболее важное значение имеют смолы и асфальтены, которые часто называют коксообразующими компонентами, поскольку они создают сложные технологические проблемы при переработке ТНО. Смолы - плоскоконденсированные системы, содержащие 5-6 колец ароматического, нафтенового и гетероциклического строения, соединенных посредством алифатических структур. Установлено, что асфальтены в отличие от смол образуют пространственные в большей степени конденсированные кристаллоподобные структуры. Наиболее существенные отличия смол и асфальтенов проявляются по таким основным признакам, как растворимость в низкомолекулярных алканах, соотношение С Н, молекулярная масса, концентрация парамагнитных центров и степень ароматичности  [c.56]

    Процесс можно проводить при атмосферном давлении в среде инертных растворителей (циклогексан, декалин или другие парафиновые и нафтеновые углеводороды) либо при повышенном давлении без растворителя. Температура в реакциониоА зоне в этом случае составляет —150 °С. Смещение равновесия обеспечивается непрерывным удалением кетона и водорода по мере того, как они образуются. В этих условиях достигается почти 100%-ный выход ацетона. Технологическая схема процесса представлена на рис. 2.9. [c.64]

    Обезмасливание гачей и петролатумов в смеси кетона, бензола и толуола проводят по технологической схеме, аналогичной описанной выше, в две ступени фильтрации по гачу. Основная особенность процессов обезмасливания гачей и петролатумов — осуществление их при более высоких температурах, чем процессов получения парафина из парафиновых дистиллятов (обезмасливание гачей при температурах от —5 до 15°С, а обезмасливание петролатумов при 20—30°С). [c.120]

    В зависимости от исходного сырья и условий пиролиза можно получать либо полностью ароматизированные дистилляты, либо тяжелые смолы с небольшим содержанием парафиновых и циклоалкановых углеводородов. В последнем случае возможно применение технологических приемов, предложенных в работах [143, 144] для переработки экстрактов из газойлей каталитического крекинга. Экстракты, содержащие 18—20% нафтеновых и парафиновых углеводородов, получены при экстракции из исходных газойлей водным раствором пиридина или фенола. Высокотемпературная гидрогенизация в присутствии водяного пара при 4 МПа и 650 °С на алюмокобальтмолибденовом катализаторе приводила к разрушению циклоалканов и парафинов, а также к деструктив- [c.191]


Смотреть страницы где упоминается термин Технологические парафинов: [c.395]    [c.436]    [c.619]    [c.4]    [c.242]    [c.136]    [c.241]    [c.311]    [c.118]    [c.55]   
Производство сырья для нефтехимических синтезов (1983) -- [ c.240 , c.241 ]




ПОИСК







© 2024 chem21.info Реклама на сайте