Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бренстеда каталитический

    По протолитической теории Бренстеда, каталитическое действие кислоты А объясняется тем, что она способна отдавать свой протон веществу, подвергающемуся химическому превращению, а каталитическое действие основания В— его способностью воспринимать протон от реагирующего соединения. В обоих случаях образуется промежуточный комплекс, превращение которого в конечные продукты реакции происходит легче, чем самих исходных веществ. Можно ожидать поэтому, что между константой кислотного равно- [c.94]


    Наличие заряженных ионов алюминия на новерхности цео — лита (центры Бренстеда) и обусловливает кислотные свойства и, следовательно, его каталитическую активность. [c.113]

    Определения кислоты как вещества, способного отщеплять ионы водорода (гидроксония), и основания как вещества, способного отщеплять ионы гидроксила, достаточно хорошо отражают наблюдаемые явления, пока мы имеем дело с водными растворами. В других растворителях, например в эфире, бензоле, нитросоединениях, указанные определения уже нельзя считать точными. На основании исследований, относящихся преимущественно к каталитическому действию кислот и оснований, Бренстед и Лоури предложили новые определения кислотой называется вещество, способное отда- [c.468]

    Гомогенный кислотно-основной катализ является, вероятно, самым старым из открытых каталитических эффектов. Исключительное значение воды как реакционной среды или реагента оправдывает предложенные Бренстедом — Лоури определение кислоты как донора протонов и определение основания как акцептора протонов [17]. Сопряженные пары кислот и оснований определяются реакцией [c.36]

    Кислотная каталитическая константа скорости реакции к связана с константой диссоциации Ка уравнением Бренстеда [c.416]

    Для установления природы и числа кислотных центров на поверхности твердых кислот использовались различные методы. Авторы стремились выявить различия между кислотными центрами Бренстеда и Льюиса, а также найти их общее число и распределение. К сожалению, большинство описанных методов применимо лишь при невысоких температурах, далеких от тех, которые используются в каталитическом крекинге, вследствие чего они только в общих чертах отражают основные тенденции, но не дают точных результатов. [c.108]

    Однако большинство экспериментальных данных указывает, по-видимому, на то, что ответственны за каталитическую активность алюмосиликатов в основном протонодонорные центры. Так, цеолит типа У в редкоземельной форме (т. е. ионы натрия обменены на ионы редкоземельных элементов), глубоко дегидратированный при 650 °С, практически неактивен в крекинге, при гидратации его активность повышается в несколько тысяч раз. Природа катиона, по-видимому, влияет на подвижность протона и стабильность кислотных центров Бренстеда. [c.214]

    Соотношение линейности Бренстеда — Поляни справедливо, если механизм каталитической реакции и характер связей при промежуточном взаимодействии реагирующих веществ с катализатором для рассматриваемой группы катализаторов или реакций одинаков. [c.412]


    Подобные соотношения характеризуют и основный катализ. Каталитическое действие кислот и оснований, как правило, коррелируется с их силой, т. е. константой диссоциации, что выражается с помощью эмпирического уравнения Бренстеда. [c.242]

    В результате на поверхности полостей появляются связанные с кремнием гидроксильные группы и электроноакцепторные центры координационно ненасыщенного алюминия, т. е. кислотные центры Бренстеда и Льюиса, вызывающие каталитическую активность де-катионированного цеолита. [c.46]

    Для общего основного и общего кислотного катализа между константами скорости каталитических реакций /г ) и константами основности катализирующих оснований или константами ионизации катализирующих кислот выполняется корреляционное соотношение Бренстеда, которое записывается в виде [c.345]

    Имеются многочисленные исследований по корреляции между равновесной кислотностью или основностью и эффективностью различных катализаторов (см. обсуждение каталитического закона Бренстеда в раз- [c.292]

    Для реакции иодирования ацетона в присутствии кислот, у которых /) = 9 = 1 д — число положений в катализирующем основании, способном присоединять протон, а /г — число протонов, способных отцепляться в сопряженной основанию кислоте), уравнение Бренстеда имеет вид к = 7,90- Рассчитайте каталитическую константу скорости к в присутствии монохлоруксусной кислоты и сравните ее с опытной ko, = 34 л/(моль-с). Константа диссоциации монохлоруксусной кислоты /С, = 1,4Ы0" . [c.455]

    Для инициирования полимеризации используется очень большое число возбудителей - кислот Бренстеда и Льюиса, которые удобно классифицировать с точки зрения выявления роли комплексообразования кислот Льюиса и Бренстеда и влияния в этом процессе акцепторов протонов. В основу систематизации могут быть положены наиболее характерные признаки комплексных систем -химическая и физическая природа компонентов, их стехиометрия, каталитическая активность, фазовое состояние катализатора и другие, но, очевидно, наиболее удобно подразделение систем по их кислотно-каталитическим свойствам  [c.44]

    Приведены исчерпывающие данные по всем видам аддиционного присоединения по двойным связям изобутилена - теломеризация, олигомеризация и полимеризация. Рассматриваются закономерности и особенности традиционного способа синтеза полимеров изобутилена - катионной полимеризации под действием кислотных катализаторов и важнейшей группы среди них - комплексных систем. Особое внимание обращено к иммобилизованным катализаторам. Рассмотрены различные способы фиксации кислот Льюиса, Бренстеда, их комплексов, в том числе супер-кислых систем, на различных подложках и характер проявления инициирующих (каталитических) свойств. Первичное взаимодействие катализаторов с изобутиленом и последующие элементарные акты [c.377]

    Апротонные кислоты Льюиса (АЮ , ВР , 2пС1 , 5ЬР ) катализируют часто те же реакции, что и протонные кислоты Бренстеда, причем активность апротонных кислот иногда выше, чем протон — ных. Обусловливается это тем, что в водных средах (например, в каталитическом крекинге в присутствии водяного пара) апротонные кислоты превращаются в протонные  [c.91]

    Рассмотрение общего кислотно-основного катализа как реакции передачи водорода , вызванной кислотами и основаниями, включает, естественно, вопрос о связи каталитической сплы кислот с их константой ионизации. Еще раньше было устаповлено, что между этими двумя константами существует определенная связь. Тейлор [33] предложил первое количественное соотношение, в котором кислотпо-каталитическая константа кислоты /iha была пропорциональна K , т. е. корню квадратному из константы ионизации. Предложенное позднее [34] уравнение Бренстеда для общего кислотно-основного катализа широко используется как эмпирическое соотношение  [c.484]

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]


    Однако в результате изучения обмена дейтерием между алюмо-силикатными катализаторами и двумя изомерными бутанами было сделано заключение о том, что кислота, от которой зависит каталитическая активность, является кислотой Льюиса [283]. (Денфорте предложил катализатор, вследствие особенностей своего строения Обладающий одновременно свойствами кислоты Льюиса и кислоты Бренстеда [284]). Следует предположить, что структурные изменения, которые становятся возможными благодаря присутствию двуокиси кремния, приводят к появлению атомов алюминия с электронными пробелами. Координационное число алюминия изменяется здесь от 4 до 6. Устойчивые комплексы карбоний-ионов можно представить следующим образом. [c.336]

    Каталитическое разложение гидропероксидов. Гидропероксиды легко разрушаются соединениями металлов переменной валентности, однако распад, как правило, протекает с образованием свободных радикалов поэтому в присутствии кислорода эти катализаторы ускоряют окисление. Катализаторами гетеролитического разложения ROOH являются кислоты Бренстеда. Гидропероксид кумила, в частности, распадается под действием кислоты на фенол и ацетон. Караш [257] предполагал, что распад этот протекает через образование неустойчивого иона R0+ [257] [c.125]

    Линейные корреляции формулируются как принцип линейных соотношений свободной энергии (ЛССЭ), который применяется для создания количественной теории органических реакций [29, 30]. Эта теория базируется на трех известных уравнениях уравнении Бренстеда, связывающем скорость каталитической реакции с константой диссоциации катализирующей кислоты (основания) уравнении Гаммета — Тафта, связывающем скорости однотипных реакций с индуктивными, стерическими и другими эффектами заместителей в гомологическом ряду соединений уравнении Поляни—Воеводского—Семенова, связывающем энергию активации взаимодействия радикала и молекулы с тепловым эффектом этой реакции в ряду однотипных превращений. [c.158]

    Для реакции иодирования ацетона в присутствии кислот, у которых р = q = (q — число положений в катализирующем основании, способном присоединять протон, а р — число протонов, способных отшепляться в сопряженной оснобанию кислоте), уравнение Бренстеда имеет вид k = 7,90 10 /Са . Рассчитайте каталитическую конст.анту скорости k в присутствии монохлоруксусной кислоты и сравните ее с опытной = 34 л/(моль с). Константа диссоциации монохлоруксусной кислоты Ка = 1,41 10".  [c.423]

    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]

    Замена протонов на ионы щелочных металлов снижает активность алюмосиликатов (рис. 7.3)-. Выход бензина при каталитическом крекинге стандартного сырья в заданных условиях растет с повышением кислотности алюмосиликатных катализаторов, измеренной по количеству хе осорбированного хинолина, адсорбирующегося на кислотных центрах и Бренстеда и Льюиса (рис. 7.4). [c.211]

    Учитывая большое значение гетерогенного катализа в современной химической технологии, изложение этого вопроса в книге расширено по сравнению с прежними учебниками физической химии. При этом использованы материалы 8-го международ1юго конгресса по катализу. В частности, отмечено ваисное значение соотношения Бренстеда-Поляни, которое открывает путь предвидения каталитического действия в группах однотипных катализаторов. [c.4]

    Новый подход к предвидению каталитической активности твердых катализаторов основан на использовании соотношения линей-иости Бренстеда — Поляни между энергией активации каталитической реакции и энергией какой-либо связи, участвующей в образовании активного комплекса на поверхности катализатора (Боресков). В отличие от принципа энергетического соответствия в мультиплетной теории, при новом подходе не нужно знать состав мульти- [c.463]

    Интересно отметить, что окись алюминия в миллион раз более чувствительна к воде, чем алюмосиликатные катализаторы. В связи с этим высказано предпвложение [40], что и алюмосиликаты обладают активными центрами различного типа, причем эти активные центры представляют собой кислоты типа не Льюиса (в отсутствие воды), а Бренстеда (с молекулой воды). На каталитическую активность природных катализаторов влияют также состав исходной породы и технология их активации кислотами. На активность синтетических алюмосиликатных катализаторов влияет много факторов, в том числе и уже описанные. [c.59]

    Карбоний-ионный механизм каталитического крекинга исходит из кислотного характера алюмосиликатного катализатора, имеющего условную формулу яА120з /я5102-д Н20. На поверхности катализатора имеются каталитические центры двух видов протонные, где каталитическая функция принадлежит протонам (кислоты Бренстеда), и апро-тонные (кислоты Льюиса), где координационно ненасыщенный атом алюминия служит акцептором электронов. [c.89]

    Из соотношения (3.14) видно, что значения к и Ка в этом случае можно найти построением экспериментальных данных в координатах (кафф, кафф/ [Н+]). Если реакция катализируется молекулами веществ, способными при диссоциации давать протоны (кислотами Бренстеда (3—12)), такой катализ называют общим кислотным катализом. Если каталитическое действие на реакцию оказывают молекулы веществ, способные присоединять протон (основания Бренстеда (3—5), такой катализ называют общим основным катализом. [c.36]

    Начиная с 60-х годов этот подход получил особенно широкое развитие в работах Г. К. Борескова с сотр. Идея этих работ основана на возможности установления вытекающей из соотнощения Бренстеда—Поляни связи между изменением энергии активации реакции и изменением определенных термодинамических параметров каталитической системы. Первоначально этот подход, был успешно применен к исследованию активации молекулярного кислорода и разнообразных процессов глубокого окисления. Удалось выявить отчетливую зависимость каталитической активности от энергии связи поверхностного кислорода, которая позволяет направленно вести подбор катализаторов [31—32]. Именно Борес-кову и принадлежит идея обобщения всех теоретических и экспериментальных работ в данной области в единое целое, названное им теорией предвидения каталитического действия . [c.249]

    Примерно половину всех каталитических реакций объяснила созданная в 20-х годах Дж. Бренстедом теория кислотно-основного катализа. В развитии этой теории немалые заслуги принадлежат И. А. Измайлову. Согласно данной теории каталитическая активация реагентов происходит в результате кислотно-основного взаимодействия с катализатором. Катализатор и реагент должны представлять пару кислота — основание или основание — кислота. Прн этом переход протона Н+ от кислоты не происходит полностью и образуется водородная связь (гл. I, 19), удерживающая реагент на катализаторе в хемосорбированном состоянии. Связи в молекулах реагентов приобретают резко полярный характер и ослабляются. Теория кислотно-основного катализа согласуется с мультиплетной теорией, которая указывает, до какого энергетического предела должно происходить ослабление связей. [c.149]

    Кватернизированные аммониевые основания, к которым относится и ингибитор ДЗОП, не протонизируются и не участвуют в реакции выделения водорода. Ингибиторы, способные выступать в роли оснований Бренстеда, протонизируются с образованием частиц ВН и облегчают выделение водорода ВН + ей = В + УаНа, а следовательно, ускоряют процесс коррозии. Такой каталитический эффект играет большую роль при коррозии цинка, чем прн коррозии железа 1193]. У первого из них величина перенапряжения водорода выше и целиком определяется замедленностью электрохимической стадии переноса заряда. [c.33]

    Природа кислотности, обусловливающей каталитическую активность алюмосиликата, четко не установлена [70]. Катализатор может быть протоновой кислотой или кислотой Бренстеда или Льюиса, но механизм изомеризации после образования карбоний-иона такой же, как в присутствии серной кислоты. Инициатор карбоний-ионов может образоваться в результате или отнятия гидридного иона от углеводорода кислотным катализатором, или образования алкена как продукта крекинга с последующим присоединением к этому алкену протона кислоты. ,,  [c.99]

    Как и можно было интуитивно ожидать, существует связь между эффектизностью общего кислотного катализатора и его способностью действовать в качестве донора протона, мерой которой служит его константа кислотной диссоциации. Эта сиязь может быть выражена следующим уравнением, и.звестным как каталитический закон Бренстеда-. [c.144]

    Как уже отмечалось выше, исторически раньше уравнения Гаммета появилось уравнение Бренстеда, которое тоже является одной из форм выражения принципа ЛСЭ (разд. 3.3.7). В уравнении Бренстеда (3.23) и (3.24) %к иропортщоиалеи свободной энергии активации каталитической реакции, а - свободной энергии ионизации катализатора. Легко показать, что между уравиегшями Бренстеда и Гаммета имеется тесная связь. Если круг катализаторов ограничить мета- и га/га-замещенными бензойными кислотами, то, поскольку константы Гаммета определяются из значений бензойных кислот, должна наблюдаться следующая корреляция  [c.304]

    Каталитическое влияние соединений титана, висмута, олова и других металлсодержащих катализаторов, которые в реакционной среде вряд ли существуют в виде свободных ионов, обусловлено, по-видимому, образованием комплексов с гликолем Н" (МеХОСНгСНзОН)", действующих по типу кислот Бренстеда, одновременно ускоряя основную реакцию этерификации и реакцию образования простого эфира [16]. Подтверждением протоноката-литичвского эффекта является снижение скорости основной и побочной реакций при добавлении оснований, связывающих протон указанного комплекса. [c.30]


Смотреть страницы где упоминается термин Бренстеда каталитический: [c.587]    [c.58]    [c.165]    [c.423]    [c.52]    [c.282]    [c.134]    [c.166]    [c.283]    [c.280]    [c.455]    [c.56]    [c.59]   
Основы кинетики и механизмы химических реакций (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бренстед

Бренстеда каталитический закон

Каталитическое уравнение Бренстеда



© 2025 chem21.info Реклама на сайте