Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо в гидролизе фосфатов

    М по азотной кислоте. Ионную силу растворов создавали добавлением нитрата натрия. Концентрация железа в исследуемы.х растворах составляла 5-10- —6,5М. Гидролиз и полимеризация ионов железа и фосфата в выбранных условиях эксперимента практически отсутствовали [4—6]. Степень заполнения обменной емкости с.молы ионами железа в данных опытах не превышала 5%. [c.165]


    Прямое титрование технической фосфорной кислоты может приводить к искаженным результатам, так как одновременно титруются находящиеся в качестве примеси серная н кремнефтористоводородная кислоты и, кроме того, дополнительное количество щелочи затрачивается на гидролиз фосфатов кальция, железа, алюминия и т. д. Поэтому для определения содержания фосфорной кислоты используют весовой нитратный или колориметрический методы. [c.131]

    Фосфорную кислоту и фосфаты можно получить прямым окислением и гидролизом других фосфор-содержащих соединений, например, галогенидов, фосфидов, низших окислов и сульфидов. Очень немногие из этих типов реакций достаточно подробно исследованы или используются для получения фосфатов. Использование таких фосфор-содержащих веществ в качестве исходных материалов для получения ортофосфатов затруднено тем, что при этих синтезах могут образоваться побочные продукты. Так, при гидролизе оксигалогенида фосфора образуется ортофосфорная кислота, но при этом выделяются также промежуточные продукты частичного гидролиза [6]. Вероятно, в некоторых особых случаях 8ТИ реакции интересны. Одним из классических примеров является реакция феррофосфора с раствором едкой щелочи под давлением кислорода с образованием гидроокиси железа и фосфата щелочного металла [7]. [c.198]

    Метод Рашига. Пары бензола, хлористого водорода и воздуха пропускают под давлением при температуре 200—230 °С над хлоридами железа и меди, затем из продуктов реакции выделяют хлорбензол, который подвергаю гидролизу в присутствии двуокиси кремния и фосфата кальция. Этот метод имеет преимущества перед другими методами, так как для получения фенола требуются лишь бензол и небольшое количество хлористого водорода. [c.97]

    Метод Рашига [6, 8]. Пары бензола, хлористого водорода и воздух пропускают под давлением при температуре 200—230° над хлоридами железа и меди, затем из продуктов реакции выделяют хлорбензол, который подвергают гидролизу в присутствии двуокиси кремния или фосфата кальция  [c.510]

    Разделение кобальта и железа фосфатом натрия. Большое количество железа можно отделить от кобальта [1149], осаждая железо в виде фосфата из уксуснокислого раствора при pH 3,5 осадок фосфата железа практически свободен от кобальта. Описано аналогичное разделение, при котором фосфат железа осаждают при pH 2,5, применяя гидролиз мочевины [1138]. По-видимому, полнота разделения в сильной степени зависит от соотношения железа и кобальта в растворе. Приведены [998] следующие величины pH начала образования (pH ) и pH полного осаждения (рНк) фосфатов двух- и трехвалентных металлов (табл. 15). [c.69]


    РОГ — обесцвечивает раствор роданидного комплекса железа вследствие образования малорастворимого фосфата железа РгО в нейтральной среде практически не гидролизуется и не дает этой реакции  [c.23]

    Мочу, анализируемую гравиметрическим методом, также предварительно подвергают обработке. Обработка мочи ацетатом железа(III) по Фиске позволяет удалить все мешающие примеси, за исключением сульфатов. Рекомендуется проводить обработку по способу Гофмана [10], который считает, что основной осадок железа увлекает не только фосфаты, но и протеины, липоиды и другие частицы, в юм числе большую часть пигмента мочи. После обработки ацетатом железа фильтрат необходимо дополнительно обработать для удаления сульфата. Для этого аликвотную часть фильтрата разбавляют до 50 мл, прибавляют 4 мл концентрированной хлористоводородной кислоты, гидролизуют и осаждают суль- [c.224]

    К 500 мл жидкого аммиака при —35 °С добавляют при перемешивании 0,5 г гидратированного окисного нитрата железа и затем 1 г натрия для восстановления этой соли в количестве, достаточном для изменения голубой окраски смеси и получения черной суспензии тонко измельченного металлического катализатора. При дальнейшем добавлении отдельными порциями натрия (37 г) быстро образуется светло-серая суспензия амида натрия и выделяется водород. К этой суспензии за 15 мин добавляют диэтилацеталь хлорацетальдегида (76,5 г), отгоняют аммиак в токе азота и обрабатывают остаток при —70° С холодным насыщенным раствором хлористого натрия для гидролиза пирофорного натриевого производного VI. Колбу соединяют с насадкой и охлажденной до —70 °С ловушкой, конденсату дают нагреться до 0°С и освобождают его от аммиака добавлением водной кашицы кислого фосфата натрия. Нейтральный водный слой замораживают, а верхний жидкий слой отделяют, сушат и перегоняют. Выход этоксиацетилена 21 г (60%) т. кип. 51 °С. [c.265]

    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    Транспорт кислорода гемоглобином. Участвует во многих реак11иях окисления — восстановления Присутствует в витамине В12, который участвует в синтезе ДНК и гемоглобина, метаболизме аминокислот переносе Н и СНз. Участвует в реакциях окисления — восстановления Роль неизвестна, но при дефиците никеля ухудшается поглощение железа Участвует в окислительновосстановительных реакциях около 12 ферментов в процессах усвоения железа и в пигментации кожи Буфер pH, участвует в гидролизе фосфатов и синтезе РНК [c.278]

    Прямое титрование эсктракционной кислоты приводит к ис-каж енным результатам, так как при титровании первого иона Н+ фосфорной кислоты одновременно титруются серная кислота и кремнефтористоводородная (последняя до Ыа251Ре). При титровании второго иона титруется Ма251Рб до МаГ и, кроме того, подвергаются гидролизу фосфаты кальция, железа и алюминия, в результате чего затрачивается добавочное количество щелочи. [c.281]

    В горячей воде дигидрофосфаты марганца и железа гидролизуются с образованием нерастворимых двух- и трехзамещенных фосфатов МеНР04 и Л1ез(Р04)2  [c.168]

    Слабокислая среда (рН 3,5—6) может указывать на присутствие в растворе гидролизующихся солей алюминия, хрома, железа, меди, висмута и некоторых других катионов. При более низких значениях рН исключается возможность нахождения в растворе карбонатов, нитритов, сульфидов, сульфитов и тиосульфатов, разлагающихся сильными кислотами. В сильнокислой среде не могут находиться ацетаты, бораты, силикаты, фосфаты щелочных и щелочно-земельных металлов и некоторые другие соли слабых кислот, которые также являются основаниями и взаимодействуют с сильными кислотами с образованием свободных кислот или гидро-и дигидросолей. Следует вспомнить также, что в кислой среде исключается вероятность одновременного нахождения некоторых анионов-окислителей и восстановителей, например SO3 и N0 , N07 и I . rjOy и Вг и т. д. [c.327]


    Составьте сокращенные ионные уравнения гидролиза солей сульфида калия K2S, сульфида железа (П1) Fe Sj, сульфата меди (И) USO4 и фосфата калия К3РО4. [c.86]

    А I. Составьте в поиной форме, уравнения гидролиза а) сульфата медн (II), б) сульфида калия, в) фосфата лития Ь1зР04, г) хлорида железа (И), д) сульфата алюминия, е) сульфида кальция. [c.22]

    В последние годы в нейтральных водных сферах в качестве ингибиторов коррозии применяют фосфонаты и бороглюконаты. Фосфонаты — фосфорорганические соединения, включающие органический радикал и функциональную группу — фосфатанион. Они, как и фосфаты, образуют комплексы с ионами поливалентных металлов, оказывают пептизирующее действие па осадки, стабилизируют соли железа, магния и кальция, образуют защитную пленку на металлах. Основное преимущество фосфонатов перед фосфатами — меньшая склонность к гидролизу и более стабильное пас- [c.89]

    Один из основных недостатков неорганических фосфатов — значительное ускорение их гидролиза при температуре 60 °С и выше. В результате гидролизаЧполи-, одно- и двухзамещенных фосфатов образуется тринатрийфосфат, выпадающий в осадок с солями жесткости и железом в виде шлама. Образующийся осадок, помимо того, что он загрязняет систему, приводит к снижению ингибирующего эффекта из-за уменьшения концентрации ингибитора в воде и ухудшению ее органолептических показателей (повышается мутность воды). Особенно снижается защитный эффект для протяженных систем, а также в застойны зонах. [c.150]

    Разрушение защитных пленок может также наступить при химическом воздействии на них концентрированных едкого натра или кислых солей при упаривании воды. При этом едкий натр наиболее опасен для металла, так как он не упаривается досуха вследствие того, что при 320 °С переходит в расплав, обладающий весьма высокой коррозионной агрессивностью. При оценке влияния солей на устойчивость пленок необходимо иметь в виду, что в результате испарения на поверхности нагрева возникает тонкий пленочный слой воды с большой концентрацией веществ, находящихся в растворенном и нерастворенном состоянии в воде всего объема котла. Естественно, что температура в граничном слое выше температуры всего объема воды. Протекание всех водно-химических реакций и коррозионного процесса завершается в данном слое. В граничном слое могут образовываться отложения веществ, хотя концентрация их в объеме воды далека от предела растворимости. Поэтому на поверхности металла при испарении воды могут осаждаться легкорастворимые в воде соли, концентрация которых быстро достигает предела растворимости при испарении воды в граничном слое. Эти соли затем снова переходят в раствор, т. е. в ядерный слой воды всего объема котла при его остановке. Явлению хайд аута наиболее сильно подвержены МззР04 и другие фосфаты натрия, растворимость которых при 340 С снижается до 0,2 %, (25—30 % при комнатной температуре). Под слоем соединений фосфатов, выпадающих на поверхности стали, может развиваться пароводяная коррозия с образованием бороздок, что обусловлено разрушающим действием отложений на защитные пленки. В реакции с железом принимает участие как кислый фосфат, так и концентрат щелочи — продукты гидролиза тринатрийфосфата. Продуктом хайд аута является НагНР04, который разъедает металл. [c.180]

    Биосинтез Г, осуществляется с помощью ферментов гли-козилтрансфераз. Исходным в-вом для синтеза может служить молекула олигосахарида, состоящая из остатков глюкозы, нлн белок, глюкозилированный в результате переноса на него остатка глюкозы с уридиндифосфатглюкозы. Г. расщепляется с помощью фермента фосфорилазы, переносящей остаток глюкозы на фосфорную к-ту с образованием а-0-глюкозо-1-фосфата, и разл. гидролаз (напр., ot-глюкози-дазы), катализирующих гидролиз связей 1 - 4 и 1 - 6. Распад и синтез Г. регулируется гормонами надпочечников и поджелудочной железы, напр, инсулином и адреналином. [c.575]

    Влияние растворенных солей на процесс коагуляции определяется, главным образом, анионным составом воды. Наибольшая скорость коагуляции продуктов гидролиза РеСЦ и А1С1з наблюдается при относительно больших концентрациях ионов НСО з и С1 , а максимальная скорость коагуляции продуктов гидролиза Ре2(504)з и А12 (804)3 достигается при приблизительно одинаковых концентрациях S0 4, НСО з и С1". Использование смесей солей алюминия и железа расширяет зоны оптимальных концентраций анионов. Наиболее сильным коагулирующим действием обладают сульфаты и фосфаты, увеличивающие оптимальные зоны pH. При обработке воды в зоне рН<рН изоэлектрического состояния, когда образующиеся продукты гидролиза имеют положительный заряд, ускорению коагуляции способствует присутствие солей с одновалентными катионами и многовалентными анионами, а в зоне рН>рН [c.21]

    Из панкреатической железы была выделена рибонуклеаза, полученная в 1940 г. в кристаллическом состоянии. Она действует на РНК, расщепляя фосфоэфирную связь присоединенного к положению 3 пиримидинового нуклеозида (см. гл. 22.3). Особенности ее действия были исследованы Маркхамом и Смитом, которые показали, что первичными продуктами действия этой РНазы на РНК являются 2, 3 -циклофосфаты уридина и цитидина (47). Они в свою очередь на следующей стадии ферментативной реакции мед ленно гидролизуются до З -фосфатов [60]. Для пуриновых остат ков в то время не было аналогичных ферментов, обладающих по добной специфичностью. (Такодиастаза была открыта позднее) Однако в руках исследователей была фосфодиэстераза селезенки которая действует как экзонуклеаза н дает все четыре рибонук леозид-З -фосфата. [c.58]

    Пелагические осадки характеризуются определенным минеральным составом. Основная чайть их представлена тонкодисперсными минералами. В пелагических осадках присутствуют фракции алюмосиликатов и силикатов, оксидов и гидроксидов, карбонатов, сульфатов, сульфидов, фосфатов. Все илы и особенно красная глина содержат в значительных количествах фракцию глинистых минералов мельчайших размеров (порядка 1 мкм и десятых долей микрометра). Терригенные полевые шпаты и, другие силикатные минералы подвергаются интенсивному гидролизу, что приводит к образованию иллита, гидромусковита, монтмориллонита, нонтронита, хлорита, палагонита. Широко распространены в пелагических осадках гидроксиды железа и марганца, образующие местами стяжения — конкреции. Их состав был перечислен в табл. 138, 139, 140. Весьма важной составной частью является СаСОз в виде скелетов или фрагментов организмов планктона в известковых илах— глобигериновом и птероподовом. Встречаются и другие карбонаты эолового происхождения. Химический состав морских осадков разных районов образования представлен в табл. 155—158. [c.211]

    Поскольку многие изотопы гидролизуются в щелочной среде (pH 8—11), нодщелачивание воды улучшает очистку. Так, с помощью сульфатов железа и алюминия при pH < 4,4 удаляется от 3 до 30% радиоактивного рутения, а при pH 7,5—8,4 от 74 до 98% [143]. По этой же причине высокой дезактивирующей способностью обладают карбонатная и фосфатная коагуляции. Известь используется преимущественно вместе с солями алюминия или железа для поддержания повышенных значений pH, фосфаты могут применяться и самостоятельно. [c.228]

    В верхних слоях земной коры происходит разрушение, окисление и растворение урановых и У.-содержащих минералов. В процессе выветривания и механического перемещения последние измельчаются и поступают в континентальные отложения — песок, глины. При выветривании урановых минералов наряду с образованием труднорастворймых гидроксидов часть У. образует легкорастворимые ураниловые комплексы. Раствори мые урановые соединения могут образовывать вторичные минералы У. (фосфаты, ванадаты и др.), а также, адсорбируясь на гелях гидроксидов железа, алюминия и др., обогащать почвы. В природных условиях шестивалентный У. легко гидролизуется с образованием солей комплексного двухвалентного уранила. В этой форме У. легко мигрирует в почвы и накапливается в них. Некоторые почвы в США содержат до ЫО % а некоторые углп — до 8-10 2 %. Средние концентрации У. в почвах составляют (0,4-ьЗ,6) 10 % в форме карбонатного ко мп-лекса У. из грунтовых вод сорбирается на глинистых и гумусовых частицах почвы. Концентрация У. в нефтях с различных горизонтов колеблется в широких пределах — от 0,1 до 114,1 г/л, в нефтях Азербайджана содержание У. достигает [c.270]

    I тов долиядерными про- -дуктами гидролиза Fe +. Эти процессы очень эф-0/5 фективны для удаления фосфора из растворов, однако из-за сильной адсорбционной способности фосфата к осажденному фосфату железа и к гидроксиду Fe + могут образовываться сильно диспергированные фосфорсодержащие коллоиды. Эти коллоиды не оседают и не могут быть удалены даже с помощью мембранного фильтра. [c.16]

    Осаждение проводят из растворов, имеющих pH в пределах от 3,6 до 5,6 в зависимости от условий. В присутствии даже таких малых количеств алюминия, как 0,5 мг, получаются пониженные результаты, так же как и при наличии значительных количеств бора (> 0,05 г), аммонийных (>0,5 г), натриевых и калиевых (> 10 з) солей. Железо также мешает определению, но на практике оно всегда отделяется при предварительной обработке. Когда осадок предполагается взвешивать, осаждение следует проводить в растворе, свободном от таких соединений, как карбонаты или фосфаты, которые также осаждаются хлоридом свинца или гидролизуются при той концентрации ионов водорода, которая требуется для осаждения РЬС1Р. При окончании определения объемным методом малые количества кремнекислоты не оказывают влияния, а значительные количества ее, более 0,05 г, забивают поры фильтра. Малые количества фосфатов или сульфатов (10 мг или менее) не мешают определению. В присутствии фосфатов фильтрат от РЬС1Г может быть мутным, но на это не следует обращать внимания. [c.827]

    Для очень разбавленных растворов или для растворов средних концентраций, для которых велика опасность гидролиза, описанные трудности можно в большинстве случаев устранить, добавляя к анализируемому раствору нужное количество кислоты. Нанример, раствор, содержащий ионы железа (III) наряду с фосфат- и сульфат-нонами, необходимо перед анализом подкислить [30, 35,37 1. Следует также иметь в виду, что поглощение ионов Hienesa (III) из разбавленных растворов в значительной степени зависит от скорости протекания. Если нри обычных скоростях происходит проскок, то нри значительном уменьшении скорости можно добиться количественного поглощения [38]. [c.164]

    При проведении некоторых анализов колонку реколгендуется промывать не водой, а снециальными растворами. Самуэльсон [35 ] установил, что при анализе фосфатов промывание колонки чистой водой приводит к выпадению осадка фосфатов железа и алюминия вследствие гидролиза. Этот источник ошибок можно устранить, если вместо воды использовать для промывки разбавленную соляную кислоту (0,015М). [c.167]

    Кроме основных элементов состава клетки (С, N. О, Н) для ее построения необходимы также и другие элементы в очень незначительной массе. К ним относятся калий, кальций, магний, сера, железо, марганец и др. Содержание этих элементов в природных водах обычно бывает достаточным, чтобы полностью удовлетворить требованиям бактериального метаболизма. Азота и фосфора часто не хватает и их приходится добавлять искусственно, обычно в виде одно- и двузамещенных фосфатов калия и хлорида аммония. Это в большей степени относится к производственным сточным водам и в меньшей — к городским, потому что в физиологических выделениях людей содержится много белкового азота и, кроме того, мочевина полностью гидролизуется до аммиака и оксида углерода. Считается, что в процессе очистки сточных вод бактериями преимущественно используется аммонийный азот, но если его недостаточно, то его с успехом может заменить белковый азот. [c.331]

    Раствор питательной смеси должен иметь определенный интервал реакции как в начале опыта, так и в течение вегетации растений. Исходная реакция питательной смеси зависит от количества и свойств солей, взятых для приготовления смеси например, КН2РО4— кислый фосфат, его раствор имеет pH около 4,5, а К2НРО4— щелочной фосфат, и его раствор имеет реакцию около pH 9,5. Реакция питательной смеси в начале опыта зависит главным образом от состава фосфорнокислых солей и солей железа например, такая соль, как ГеС1з (соль слабого основания и сильной кислоты), при растворении в воде подвергается гидролизу и сообщает раствору кислую реакцию. [c.552]

    МОЖНО скорее сформировать защитную пленку для прекращения насыщения воды железом. Для этого могут быть применены большие концентрации гексаметафосфата натрия (50 и даже 100 мг/кг), но при непременном условии, чтобы они не выходили за пределы, обусловленные формулой (6.19). Такие большие дозы гексаметафосфата натрия могут привести к образованию в воде заметной взвеси (вода мутнеет) и поэтому применение их допустимо только при промывке водоводов (работа на сброс). Если вначале эксплуатации оборудования нельзя сбрасывать воду, то рекомендуется ограничиваться 7—10 мг/кг в расчете на Р2О5, или 15—20 мг/кг технического гексаметафосфата натрия. В дальнейшем, когда обогащение воды железом практически прекратится, концентрацию гексаметафосфата натрия следует постепенно уменьшать (равномерно в течение 5—7 суток). Если химический контроль покажет, что при этом содержание железа в воде не увеличивается, то можно дойти до 2—3 мг/кг технического продукта. Растворение гексаметафосфата натрия можно ускорить, применив для этого подогретую воду. Однако, чтобы избежать гидролиза гексаметафосфата натрия и перехода его в фосфат, температура воды не должна быть выше 60° С. [c.147]

    Определение висмута этим методом очень точное, и он может быть использован для установки титра комплексона (по раствору чистого В120з). Определению не мешают двухвалентные катионы, даже если они присутствуют в высокой концентрации. Так, например, можно надежно определить висмут в присутствии свинца при соотношении их концентраций 1 5000. Определению мешает присутствие трехвалентного железа, ртути, сурьмы, циркония и тория. Из анионов мешают хлориды (опасен гидролиз с образованием ВЮС1), затем мешают фосфаты и все анионы, имеющие комплексообразующие свойства, — тартраты, цитраты, оксалаты, фториды и т. п. [c.330]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    На рис. 15-2а представлен ряд кривых титрования железа (II) перманганатом калия. После конечной точки эти экспериментально полученные кривые значительно отличаются по форме от теоретически рассчитанных — значительно более пологих (пятиэлектронное восстановление). В связи со строгой симметрией кривых напрашивается вывод, что потенциал после конечной точки определяется парой Мп — Мп . И действительно, этот вывод подтверждается в тех случаях, когда в растворе содержатся сульфат-, фосфат- и другие ионы, стабилизирующие Мп (см. разд. 17-1). Почти одинаковое действие серной и фосфорной кислот до конечной точки и после нее согласуется с тем фактом, что системы Мп —Мп и Ре —Ре" ведут себя аналогично в отношении изменений коэффициентов активности, а также гидролиза и комплексообразования. [c.315]


Смотреть страницы где упоминается термин Железо в гидролизе фосфатов: [c.552]    [c.54]    [c.64]    [c.30]    [c.108]    [c.77]    [c.660]    [c.119]    [c.326]    [c.377]    [c.426]    [c.338]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.647 ]




ПОИСК





Смотрите так же термины и статьи:

Железа ион гидролиз

Железо фосфат



© 2025 chem21.info Реклама на сайте