Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гудрон в производстве масел

    Подготовка сырья заключается в разгонке мазутов под вакуумом (см. 24, 25). Фракции, используемые для производства масел, по способу получения делят на две группы дистиллятные — выделяемые в виде погонов при вакуумной разгонке мазута (300— 400 °С, 350—420° С, 420—450 °С), и остаточные — остаток вакуумной перегонки мазута (выше 500 "С) т. е. гудрон. Соответственно масла, полученные при переработке дистиллятных масляных фракций, называют дистиллятными, масла, полученные из гудрона— остаточными. [c.322]


    Вязкое кабельное масло П-28 (брайтсток) вырабатывается, как указывалось выше, из вязкого концентрата сураханской отборной нефти методом кислотно-контактной очистки. Технология производства этого масла имеет свои особенности. В связи с тем, что масло весьма вязкое (около 250 сст при 50° С), оно не может быть подвергнуто щелочной очистке. Поэтому непосредственно после кислотной очистки и отстоя кислого гудрона кислое масло контактируется с гумбрином при высокой температуре. Отфильтрованное от глины [c.132]

    Вакуумная перегонка мазута является головным процессом поточной схемы масляного производства. При масляном варианте перегонки основная цель процесса — получить масля ные фракции заданной вязкости, удовлетворяющие также необходимым требованиям по цвету и температуре вспышки. Существующими нормами на производство масел, как известно, не ограничивается фракционный состав масляных фракций и допустимые пределы температур налегания соседних фракций. В связи с этим в настоящее время на отечественных заводах для производства масел используют дистилляты широкого фракционного состава, выкипающие в пределах 100°С и более, и гудроны с высоким содержанием дистиллятных фракций до 490 С. [c.184]

    Производство белого масла анализы гудрона и данные о выходах [c.536]

    За последние годы в технологию производства масел все больше внедряются процессы гидроочистки взамен селективной очистки и обработки отбеливающими глинами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуются деасфальтизат и асфальт. Деасфальтизат подвергают дальнейшей обработке, подобно масляным дистиллятам, а асфальт перерабатывают в битум или кокс. [c.152]

    Высвободившееся количество гудрона следует использовать для производства дизельного масла. Для облегчения расслоения рафината от экстракта селективная очистка деасфальтизата должна производиться в смеси с вязким дистиллятом (вискозином), из этой же нефти. [c.147]

    Способы очистки масла с применением серной кислоты имеют ряд недостатков—большой расход кислоты и щелочи, существенные потери масла, сложность технологического оформления, образование значительного количества побочных продуктов (кислый гудрон, щелочные отходы), поэтому в настоящее время при производстве масел используют более совершенные способы очистки. При переработке нефтей восточных месторож- [c.134]


    Перегонка нефти при атмосферном давлении удаляет из нее бензин и дистиллятные компоненты топлива, оставляя мазут, который содержит смазочные масла и гудрон. Дальнейшая перегонка под вакуумом дает так называемые "вакуумные дистилляты" в верхней части колонны и гудрон в виде остатка. Простая обработка серной кислотой, известью и отбеливающей глиной превращает дистилляты в приемлемые по качеству продукты с низким индексом вязкости. Для производства продуктов с высоким и средним индексом вязкости необходимо использовать определенные виды экстракции растворителями, отделяющими окрашенные, нестабильные и имеющие низкий индекс вязкости компоненты. На конечном этапе из масла удаляют парафины путем его растворения в метилэтилкетоне (МЭК), охлаждения и фильтрации для получения масел с температурой застывания от минус 10°С до минус 20°С. Изготовитель масла может подвергнуть его финишной гидродоочистке для удаления сфы, азота и окрашивающих составляющих. Этот процесс показан в виде диаграммы на следующей странице. [c.29]

    Мощность комплекса по производству масел (в расчете на товарные масла) определяется заданием на проектирование и составляет обычно 3—5% (масс.) от общей мощности завода по нефти. Наиболее распространенная схема производства масел из парафинистых нефтей приведена на рис.- 2.3. Сырьем комплекса являются узкие дистиллятные фракции, получаемые при вакуумной перегонке мазута, и гудрон. Узкие фракции получают на комбинированных атмосферно-вакуумных трубчатых установках (АВТ) или отдельно стоящих вакуумных установках. Как показала практика, на отдельно стоящих вакуумных установках удается получить масляные фракции более высокого качества. [c.60]

    Изменение качества нефтей, поступающих на Кременчугский НПЗ, вызвало необходимость разработать процесс, который позволил бы в некоторой степени нивелировать качество сырья и организовать производство масел с ИВ не ниже 90. Наши исследования показали, что путем гидрооблагораживания рафинатов можно регулировать изменение качества гудронов. Проведение комплексного изучения процессов селективной очистки и гидроочиетки рафинатов показало, что на основании ранее выявленных закономерностей можно при мягком режиме гидроочиетки (температура 350-370°С, давление 4,0 МПа и объемная скорость подачи сырья ч ) провести гидрирование смол и части полициклических ароматических углеводородов с целью увеличения индекса вязкости масла с 85 до 90-92 без снижения его выработки. [c.114]

    Сырьем для получения масел в основном является маз)гг, а головным процессом — вакуумная перегонка. Подобно тому как нефть разделяется на бензин, лигроин, керосин и мазут, последний в вакуумной колонне разделяется на масляные дистилляты (до трех) и остаток — гудрон. Полученные масляные дистилляты подвергаются очистке, облагораживанию до получения товарного масла заданного качества. Остаток от вакуумной перегонки мазута — гудрон — является сырьем для производства остаточных масел. Для удаления вредных веществ гудрон подвергают процессу деасфальтизации, принципиальная схема приведена на рис. 7.1. Гудрон и сжиженный пропан поступают в экстракционную колонну. В процессе непрерывной экстракции получаются два несмешивающихся друг с другом раствора верхний — раствор деасфальтизата и нижний — раствор асфальта. Кратность пропана к сырью (объемы — 6-8-1). Температура экстракции 70-85 С. Давление до 4.2 МПа. Пропан при указанных условиях процесса растворяет ценные компоненты сырья и не растворяет асфаль-тены, которые выпадают в осадок из объема растворителя. Пропан выделяется из растворов в специальных испарителях и отпарных ректификационных колоннах и возвращается в технологический цикл. [c.221]

    Важное значение имела разработка технологии окисления парафина и петролатума для производства присадок к маслам для новой техники, консервационных смазок для защиты от коррозии оборонной техники и продуктов специального назначения. За работы в области технологии окисления твердых углеводородов и практическое применение продуктов окисления Н. И. Черножуков вместе с соавторами в 1947 г. удостоен Государственной премии. В соавторстве им разработана рецептура и технологии производства антикоррозийных присадок, консервационных смазок, масел для гидросистем и других объектов. Н. И. Черножуков считал необходимым использование гидрогенизационных процессов для подготовки масляного сырья к переработке с целью получения высококачественных масел из нефтей любых месторождений. Последние работы Николая Ивановича по технологии нефти были посвящены изучению растворимости углеводородов высококипящих фракций в различных растворителях и исследованию возможности интенсификации процессов деасфальтизации гудронов, депарафинизации рафинатов и обезмасливания твердых углеводородов сернистых нефтей, а также примене- [c.12]


    МАСЛА МИНЕРАЛЬНЫЕ (нефтяные) — смеси высокомолекулярных углеводородов различных классов, применяемые для смазки двигателей, промышленного оборудования, приборов, инструмента, для электроизоляционных целей, в качестве рабочих жидкостей в гидросистемах, при обработке металлов, в медицине, парфюмерии и т. п. О химическом составе М. м. можно судить, исходя из содержания в них отдельных групп углеводородов парафиновых, нафтеновых, ароматических, а также асфальтосмолистых веществ, отделяемых хроматографическим способом. Товарный ассортимент включает более 130 наименований масел. М. м. характеризуются различными физико-химическими показателями, определяемыми условиями применения, химической природой сырья и способом очистки. Важнейшие из них вязкость, зольность, коксуемость, температура вспышки, стабильность, температура застывания. Физико-технические свойства и технические характеристики строго регламентируются государственными стандартами (ГОСТ). Для получения М. м. используют дистилляты вакуумной перегонки мазутов, масляные гудроны (тяжелые остатки от перегонки нефти) или смеси их. В СССР для производства М. м. используют преимущественно нефти бакинских, эмбинских, уральских и поволжских месторождений. [c.155]

    Для многих смазочных масел показатель процент коксуемости введен в технические требования. В зависимости от сырья и степени очистки процент выхода кокса у большинства масел колеблется от 0,1 до 1%. Только для цилиндровых масел он достигает 2,5—3%. Этот показатель почти не отражает таких важных эксплуатационных свойств масел, как склонность к окислению или нагарообразованию, и имеет значение только для контроля производства масел. Для масел с присадками определение коксуемости вообще не имеет смысла или его надо делать до смешения масла с присадками. Определение процента кокса проводится также для 10%-ного остатка дизельного топлива для быстроходных дизелей и для оценки качества мазутов, гудронов и других остаточных нефтепродуктов. Коксуемость является также нормируемым показателем качества сырья для производства сажи. [c.201]

    Экстракты масляного производства. Базовые масла, из которых в дальнейшем смешением (компаундированием) и добавлением присадок получают моторные, индустриальные, электроизоляционные и другие масла, производят на нефтеперерабатывающих заводах по сложной технологии. Начальным процессом является прямая перегонка под вакуумом мазута — остатка после отгона светлых продуктов. При этом получают фракции 300—400, 350—420, 420—490 °С и остаток (гудрон). [c.225]

    В наиболее типичном сырье для производства печной сажи — зеленом масле содержится до 80—85% ароматических углеводородов, в том числе 75% приходится на долю тяжелых. Принято считать, что хорошим сырьем для производства сажи являются би- и полициклические ароматические углеводороды, концентрация которых в исходной фракции должна быть не менее 75—80%., Ароматические концентраты (газойли коксования и каталитического крекинга, масляные экстракты) не удовлетворяют этим требованиям. Так, ио данным ВНИИ НП [109], каталитические газойли содержат только 45—50% ароматических соединений, в том числе 20—25% тяжелых ароматических углеводородов, а в легких газойлях, полученных коксованием гудрона, соответственно 18 к 5%. Коксование остаточного крекииг-остатка позволяет увеличить общее содержание ароматических углеводородов в легких коксовых газойлях до 50—60% ири одновременном увеличении содержания тяжелых ароматических соединений до 30%, но и эти величины значительно ниже требуемых норм. Кроме того, сырье для получения сажи не обладает требуемым индексом корреляции. [c.227]

    Авторы работы [84] предложили в качестве временного не-снимающегося покрытия для изделий энергомашиностроения ингибированный битумный лак БТ-577. В качестве ингибиторов были выбраны гудроны масложирового производства, представляющие собой смесь насыщенных и ненасыщенных жирных кислот фракции i6— i8. Введение ингибитора позволяет заменить двухслойное покрытие на однослойное с идентичными антикоррозионными свойствами. Гудроны помимо ингибирующего действия являются также заменителями в рецептуре битумного лака дефицитного растительного масла. Организовано серийное производство ингибированного безмасляного битумного лака. [c.194]

    Таким образом, первоочередной перспективой усовершенствования производства авиационных масел является внедрение деасфальтизации концентрата, что позволит значительно улучшить использование ресурсов качественного сырья. В более далекой перспективе рекомендуется внедрение адсорбционного метода очистки взамен применяемой в настоящее время кис-лотно-контактной обработки, связанной с громадными расходами серной кислоты (12—14% на концентрат) и отбеливающей глины (28—32% на окисленное масло), атакже с получением тягостных отходов производства кислого гудрона и отработанной глины. Применение адсорбцинной очистки обеспечивает увеличение выхода товарного продукта и полностью ликвидирует процессы сернокислотной и контактной очисток. [c.156]

    Технологическая схема установки приведена на рис. 1. Дизельное масло М-11 селективной очистки при 40—50 °С сульфируют серным ангидридом (контактным газом, содержащим 7—8 % серного ангидрида и полученным при производстве серной кислоты контактным способом) в сульфураторе 3 периодического действия. В процессе сульфирования температура в аппарате не превышает 50°С, что достигается циркуляцией сульфированного масла через выносной холодильник 5. Процесс сульфирования контролируют по кислотному числу сульфированного масла, которое должно быть в пределах 18—22 мг КОН/г. ПутеК отстаивания в аппарате 6 от сульфированного масла отделяют кислый гудрон. Нейтрализацию сульфированного масла осуществляют в реакторе 9 периодического действия с перемешивающим устройством, [c.223]

    ВНИИ НП разработан и внедрен более совершенный процесс производства сульфонатной присадки ПМС [93, с. 78 60, с. 35]. Применение глубокоочищенного сырья и разбавление его углеводородным растворителем обеспечивает проведение сульфирования в мягких условиях и значительно сокращает образование гудрона совмещение стадий получения сульфоната кальция и его карбонатации позволяет снизить продолжительность реакций в несколько раз непрерывная нейтрализация кислого масла раствором аммиака с последующей обменной реакцией полученного продукта с гидроксидом кальция дает возмох<ность повысить производительность стадии нейтрализации, автоматизировать ее, стабилизировать качество нейтрального сульфоната аммония химически очищенной водой, облегчить отделение механических примесей от присадки. [c.225]

    Производство масел из нефтей Урала, Поволжья и Западной Сибири включает (рис. 1.6) деасфальтизацию гудрона, селектив ную очистку узких масляных дистиллятов и деасфальтизата, де-парафинизацию рафннатов селективной очистки, гидроочистку или контактную очистку депарафинированного масла, смешение очищенных остаточных и дистиллятных компонентов друг с другом и с композициями присадок.  [c.17]

    Деэмульгатор НЧК сначала получали как побочный продукт при производстве так называемого светлого контакта Петрова (суль-фонафтеновые кислоты, растворимые в масле), а также нри очистке нефтяных дистиллятов серной кислотой, олеумом или серным ангидридом. Когда потребность нефтяной промышленности в деэмульгаторах возросла, были сооружены специальные установки для производства НЧК сульфированием керосино-газойлевых фракций нефти и нейтрализацией получаемого кислого гудрона. Первая установка по производству НЧК была создана в 1943 г. на Уфимском НПЗ, а потом на других заводах. [c.139]

    Нефтяные масла представляют собой омесь углеводородов, содержащих 20—60 атомов углерода молекулярной массы 300—750, выкипающих в интервале 300—650 °С. Головным процессом производства нефтяных масел является вакуумная перегонка мазута, в результате которой получают масляные дистилляты и гудрон (концентрат). Все последующие стадии производства масел сводятся к очистке этих продуктов от смолисто-асфальтеновых веществ, полициклических углеводородов с короткими боковыми цепями, высокомолекулярвых парафиновых углеводородов, серо-, кислород- и азотсодержащих соединен ий, ухуди ающ их эксплуатационные овойства масел. В зависимости от состава и свойств исходного сырья в нем содержится до 80% нежелательных продуктов, подлежащих удалению поэтому его необходимо очищать различными способами и с различной глубиной. Выбором оптимального сырья и эксплуатационными затратами на очистку определяются основные технико-экономические показатели производства масел. [c.38]

    Процесс деасфальтизации применяют для того, чтобы из остатка вакуумной перегонки мазута — гудрона или концентрата, в котором содержится значительное количество смолисто-асфальте-новых веществ, получить высоковяз кие остаточные масла. Деас-фальтизация основана на способности сжиженного пропана ири оиределенных условиях растворять желательные углеводороды и осаждать смолисто-асфальтеновые вещества. Поскольку в дистиллятах содерж а ие этих веществ невелико, д-о деасфальтизации подвергают только гудрон, и этот процесс является головным в производстве остаточных масел. Целевым продуктом деасфальтизации является деасфальтизат, побочным — асфальт, или битум деасфальтизации. В СССР, как и большинство других процессов очистки избирательными растворителями, процесс деасфальтизации впервые освоен на Новокуйбышевском НПК в начале 50-х годов. Первоначально деасфальтизации подвергали гудроны смолистых нефтей (типа туймазинской), в дальнейшем этот процесс стали использовать и для производства остаточных масел из ма-лоомолистых нефтей (жирновской, ферганских и др.). [c.43]

    В случае переработки малопарафинистого сырья, получаемого из нафтеновых и смешанных нефтей, ограничиваются извлечением нежелательных компонентов при помощи избирательных растворителей. В результате очистки часто получают масла с повышенной температурой застывания. Такие масла обычно не депарафи-ннруют, а добавляют, к ним (особенно дистиллятным) депресоорные присадки, понижающие температуру застывания до требуемых значений. Масляные дистилляты предпочитают очищать фурфуролом-, или фенолом эти растворители доступны и не требуют больших эксплуатационных затрат. В некоторых случаях для очистки применяют адсорбенты. Из остатков малосмолистых нефтей рафинаты нередко получают в противоточной системе ( дуо-сол ) деасфальтизации пропаном и очистки смесью пропана, фенола и крезола. Однако возможен и другой вариант предварительная деасфальтизация пропаном, а затем селективная очистка деасфальтизата фенолом или фурфуролом. Этот вариант применяют и при производстве остаточных масел из гудронов, выделенных из высокосмолистых нефтей. [c.47]

    Основной объем масел вырабатывают с применением экстракционных процессов разделения сырья (дистиллятов и гудронов) селективной очистки растворителем (фенолом, фурфуролом или Ы-метил-пирролидоном), деасфальтизации гудронов пропаном и сольвентной депарафинизации рафинатов селективной очистки в кетонсодержа-щем растворителе (последний процесс представляет собой одну из разновидностей процесса экстракции — экстрактивную кристаллизацию). Постоянно снижается производство масел с использованием процесса сернокислотной очистки, что обусловлено снижением добьии пригодных для этого процесса нефтей, образованием больших количеств экологически вредных трудноутилизуемых отходов (кислый гудрон) и в большинстве случаев недостаточно высоким для современных требований качеством получаемых масел. В относительно небольших количествах вырабатываются масла с использованием процессов гидрокрекинга и гидрокаталитической депарафинизации, хотя гидрокаталитические процессы весьма перспективны в производстве масел и их, безусловно, ожидает дальнейшее качественное и количественное развитие. [c.429]

    Сырьем для производства контакта Петрова служат керосино-газойлевые фракции, содержащие от 20 до 40% ароматических углеводородов, так как именно ароматические углеводороды наиболее легко сульфируются с образованием сульфокислот. Как обычно, при сульфировании нефтепродуктов образуется два слоя верхний — кислое масло, нижний — кислый гудрон. Высокомолекулярные ароматические сульфокислоты, которые и являются целевым продуктом процесса, хорошо растворяются в кислом масле, а затем, после разделения кислого масла и кислого гудрона, экстрагируются из кислого масла нресной водой. [c.390]

    Получены многокомпонентные полимерные системы. Системы на основе концентратов асфальто-смолистых соединений и диеносодержащих кубовых остатков получены конденсацией прн температуре 100-170 " С в присутствии концентрированной серной кислоты, как каталитического и сульфирующего вещества [36] На основе асфальта деасфальтизации гудрона и смол от производства изопрена (зеленого масла) получены олигомеры Асмол и Асмол2 [37,38]. Другая группа полимерных систем получена неглубокой термической полимеризацией стирола в среде высокомолекулярной ароматической фракции арланской нефти при температурах до 200 - 250 °С [39], Химизм процесса в обоих случаях крайне сложен и мало изучен, тем не менее, отдельные де1 али процесса удается выявить. Реологическими исследованиями и спектральными методами определена энергия активации вязкого течения На рис 5 4 показана зависимость среднечисловой молекулярной массы, определенной по крио-скопическим данным от эффективного ПИ Для обоих систем, чем выше молекулярная масса, тем ниже ПИ. Известно, что с ростом степени конденсации я-электронных систем уменьшается ПИ и растет СЭ. Эти результаты означают увеличение доли полисопряженных ароматических систем в ходе полимеризации [c.102]

    С ростом содержания присадок в маслах расход кислоты и сорбентов при кислотно-контактной очистке повыщается. В результате возрастает количество трудноутилизируемых и экологически опасных отходов. Кроме того, сернокислотная очистка не обеспечивает удаление из отработанного масла ПА и высокотоксичных соединений хлора. Поданной схеме нельзя перерабатывать современные масла, совместимые с окружающей средой (растительные и синтетические), поскольку серная кислота разлагает их, увеличивая, в частности, выход кислого гудрона. В СНГ сернокислотную очистку в настоящее время практически не используют. В Германии наряде НПЗ по усоверщенствованной комбинированной схеме перерабатывают отработанные моторные, индустриальные, турбинные и трансформаторные масла. Схема предполагает использование стадий коагуляции, атмосферной перегонки, кислотной и адсорбционной очистки с последующей вакуумной перегонкой и контактной доочисткой высоковязкого компонента. По мнению специалистов, при проектировании новых подобных производств необходимо учитывать возрастающее загрязнение ОМ поверхностно-активными веществами при одновременном увеличении содержания воды, что вызывает дополнительные расходы энергии. [c.291]

    За годы работы на заводе с 1953 по 1972 гг. прощел все ступени кадровой лестницы инженер цеха, заместитель начальника цеха, начальник цеха, начальник производственно-технического отдела, в 1965 г назначен главным инженером завода. За годы работы на Хабаровском Н ПЗ под руководством и при непосредственном участии П.ГБаннова произведен ряд мероприятий по совершенствованию схемы переработки нефти. Была построена электрообессоливающая установка ЭЛОУ-10/6, организовано производство трансформаторного масла по уникальной схеме с электроосаждением кислого гудрона и щелочи в электрическом поле постоянного тока, организовано производство тугоплавкого битума, начато строительство установки каталитического риформинга Л Г-35-1 1/ЗООБ. В 1972 г П. Г Баннов переводится на Киришский НПЗ на должность главного технолога завода. Работая на Киришском НПЗ, совместно с институтом ВНИИНефтехим принимал непосредственное участие в переводе установок каталитического риформинга на новые биметаллические катализаторы типа КР, внедрении процесса изоселектоформинга за счет переоборудования установки Л-35-11/300. [c.221]

    ГУДРОН (франц. goudron —деготь) — черная смола, остающаяся после отгонки от нефти легких и масляных фракций. Составными частями Г. являются различные масла — остатки высокомолекулярных углеводородов, нефтяные смолы, асфальтены, карбены и кар-боиды — твердые асфальтообразные вещества. Г. применяются в строительстве дорог, в качестве масел, для получения бензинов, при деструктивной гидрогенизации, в производстве кровельных и изоляционных материалов (толя, руберой-да, пергамина и др.). [c.81]

    КОНТАКТ ПЕТРОВА представляет собой густую прозрачную жидкость, от темно-желтого до бурого цвета с синим отливом. К- П. содержит около 40% нафтеновых сульфокислот, 15% вазелинового масла, небольшое количество свободной серной кислоты и воды. Подобно мылам К. П. проявляет поверхностноактивные свойства, но в отличие от них смачив. зет и эмульгирует даже в кислой среде, не требуя нейтрализации. К- П., эмульгируя жиры, увеличивает поверхность соприкосновения с омыляющей жидкостью, ускоряя тем самым реакцию. К. П. впервые получен в России в 1912 г. Г. С. Петровым и применен как эмульгатор в нефтепромышленности. К- П. образуется в результате действия серной кислоты, серного ангидрида или олеума на высококипящие фракции нефти при очистке нефтепродуктов (керосина, газойля, солярового масла и др.), содержится также в кислых гудронах, образующихся при сернокислотной очистке нефтепродуктов. К. П. широко применяется в различных отраслях промышленности для расщепления жиров, в качестве синтетических моющих средств, антикоррозионных веществ, пластификаторов для цемента и бетона, как промывные жидкости при бурении, в текстильной промышленности при крашении и обработке тканей, в производстве фенолформальдегидных смол, клеев и др. [c.134]

    При окислении гудрона продувкой воздуха в процессе производства асфальта эти масла в основном окисляются, ттлотняются и образуют смолы, являющиеся компонентом асфальтов. [c.190]

    В дорожные битумы цилиндровые масла осмоляются и переходят в самые дешевые нефтепродукты — асфальты — или сжигаются как котельное топливо. Извлечение выгоковязких масляных дестиллатов из гудронов и исполь. ование их в производстве цилиндровых масел для паровых машип — одна из актуальнейших проблем нефтеперерабатывающей промышленности. [c.389]

    Порядок операций при очистке масел кислотой и шелочью таков кислотная очистка обычно предшествует щелочной. Однако при этом около четверти содержащихся в дестиллате нафтеновых кислот теряется с кислым гудроном. Чтобы полезно использовать эти кислоты, некоторые масла сначала зашелачи-вают, а потом очищают кислотой. При этом удаляются также фенолы. Извлеченные при защелачивании маловязких масел нафтеновые кислоты могут служить сырьем для производства мылонафта и асидола. [c.324]

    Исходным сырьем для производства авиационных масел служат полугудрон и гудрон, называемые также концентратом, полученные из авиамасляных нефтей. В некоторых случаях масла могут быть смешанными из дестиллатного и остаточного сырья, раздельно очищенного. Очистка остаточных масел сводится к последовательно проводимым следующим операциям обработка серной кислотой, контактная нейтрализация адсорбентами, очистка избирательными растворителями, доочистка адсорбентами. [c.397]

    Охарактеризуем некоторые черты постановки стеариновоолеинового производства на крупнейших заводах. На заводе Крестовниковых хорошее сало отваривали на растворе серной кислоты, промывали и расщепляли в автоклавах. Жирные кислоты отделенные от глицериновой воды, проходили ряд операций, в частности ацидификацию с целью повышения выхода твердых кислот за счет олеиновой, дистилляцию, дававшую ряд фракций, кристаллизацию и прессование на холодных и горячих прессах. Это лишь краткое и приблизительное описание части сложной и разветвленной схемы производства, где получалось много полупродуктов с разными свойствами. Часть их отбирали для изготовления более дешевых свечей, для мыловарения и т. д., часть возвращали на переработку. Технология видоизменялась е все жирные кислоты подвергали дистилляции, полученные из салолина не ацидифицировали, а с 1915 г. ату операцию вообще не вели (не хватало серной кислоты). Отдельно обрабатывали жирные кислоты хлопкового масла н т. д. Дистилляция велась на 5 аппаратах перегретым паром, без вакуума, с огневым нагревом кубов. Появилась также вакуумная установка непрерывного действия, но ее чугунный куб довольно быстро вышел из стрря от коррозии в условиях войны приобрести другой не смогли. На 5 малых аппаратах перегоняли гудрон. Состав олеина, олеиновой кислоты, а особенно свечной массы варьировал в зависимости от сорта продукта и от рыночной конъюнктуры 3 . [c.376]

    В начале 80—х гг. XIX столетия создание НПЗ в центральных районах России, и, прежде всего, в Поволжье, шло ускоренными темпами. С 1882 г. работал завод по очистке керосина в казанской губернии. В том же году открылся завод в Москве, который к 1914 г. вырабатывал различных нефтепродуктов на сулп у в 1 млн руб. В 1884 г. был основан технохимический завод под Нижним Новгородом. В 1885 г. открьшась фабрика колесной мази в Костромской губернии. С 1890 г. в Нижегородской гу бернии небольшой завод выпускал асфальтовую мастику. С 1894 г. наладилось асфальтовое производство в Сызрани, и в том же пщу под Рыбинском началось производство осветительных и смазочных масел, гудрона, мазута и колесной мази. В 1899 г. заработал нефтеперегонный завод под Саратовом, где выпускали керосин, смазочные масла и гудрон. С 1900 г. начинают ПОЯВЛЯТЬСЯ небольшие нефтяные заводы, открываемые раз.чичными предпринимателями, число которых постоянно увеличивалось. Однако журнал Нефтяное дело отмечал по их поводу, что на заводиках тех ставились ггебольшие аппараты для перегонки нефти и ее остатков. Все это делалось в основном [c.233]

    Использование жирных кислот ограничено вследствие дефицитности и высокой стоимости. Поэтому в качестве их источника используются промышленные отходы — синтетические жирные кислоты (средние и высшие фракции СЖК) и их кубовые остатки, соапстоки, госиполовые смолы, гудроны жировой промышленности, отходы глицеринового производства, талловое масло, получающееся при сульфатном способе производства целлюлозы и др. Повышение гидрофильности и поверхностной активности этих продуктов достигается введением дополнительных функциональных групп, эфириза-цией, оксиэтилированием, частичным омылением и т. п. [c.305]


Смотреть страницы где упоминается термин Гудрон в производстве масел: [c.318]    [c.321]    [c.55]    [c.110]    [c.424]    [c.376]   
Химия и технология нефти и газа Издание 3 (1985) -- [ c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Гудрон



© 2025 chem21.info Реклама на сайте