Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альдегиды ароматические реакция окисления

    Качественные реакции карбонильных соединений многочисленны и разнообразны, что объясняется склонностью карбонильных соединений вступать в различные реакции замещения и присоединения. Альдегиды и кетоны ведут себя в этих реакциях почти одинаково. В некоторых случаях существует, однако, различие в скорости протекания реакций, чем и пользуются для того, чтобы различить карбонильные соединения разных групп (например, альдегиды от кетонов, альдегиды жирного ряда от ароматических и т. д.), В качественном анализе используется также реакция окисления. [c.250]


    Для него характерны практически все реакции ароматических альдегидов. Так, при окислении фурфурол превращается в пиро-слизевую кислоту, а при восстановлении — в фуриловый спирт  [c.359]

    Марганцевокислый калий применяют для окисления боковых цепей в ароматических и гетероциклических соединениях до карбоксильной группы. В большинстве случаев карбоновые кислоты менее растворимы в воде, чем их щелочные соли. Поэтому их можно выделить, подкисляя щелочной раствор, образующийся после окисления. В лаборатории реакции окисления используются главным образом для получения альдегидов, кетонов и кислот из соответствующих спиртов. [c.132]

    Основным отличием цепного механизма от перекисного является объект активации по цепному механизму реакция начинается не с активации молекул О,, а с активации молекул окисляющегося вещества, что гораздо вероятнее. Н. Н. Семенов, развивший представления о цепном механизме реакций, рассматривает окисление органических соединений, как аутокаталитический процесс, и делит его на две группы 1) окисление предельных и некоторых ароматических углеводородов, 2) окисление непредельных углеводородов, альдегидов и спиртов. Механизм реакции окисления и кинетики в обеих группах различен. [c.184]

    К реакциям неполного окисления относятся в первую очередь многочисленные реакции превращения углеводородов в спирты, альдегиды, кетоны и карбоновые кислоты, окисления ароматических и других циклических углеводородов, а также различные реакции окисления органических соединений. [c.194]

    Окисление оксидами металлов (Си, Ag, Hg, Со) в щелочной среде имеет определенное сходство с нитробензольным окислением в отношении роли ионов гидроксила, образования промежуточных хинонметидов и конечных продуктов окисления — ароматических альдегидов и кислот. Выход кислот зависит от окислительной способности металлов. Ближе всего к нитробензолу стоит оксид меди(П). В отличие от нитробензола реакция окисления оксидами металлов представляет одноэлектронный перенос и начинается, по-видимому, с образования резонансно-стабилизированного феноксильного радикала [52]. [c.254]

    Окисление альдегидов до карбоновых кислот — одна из самых распространенных реакций окисления в органической химии [163] ее проводят со многими окислителями, из которых чаще всего используют перманганат в кислой, щелочной или нейтральной среде, хромовую кислоту или бром. Специфическим окислителем для альдегидов, с трудом атакующим другие группы, является оксид серебра. Для обнаружения альдегидов пользуются растворами Бенедикта и Фелинга [164], однако этот метод окисления непригоден в препаративных целях, а в случае ароматических альдегидов дает просто плохие результаты. а,( -Ненасыщенные альдегиды можно окислить, не затрагивая двойную связь, с помощью хлорита натрия [165]. Под дейст- [c.81]


    Существуют два основных подхода к синтезу альдегидов Оба они уже были рассмотрены ранее Это-введение альдегидной группы в ароматическое ядро с помощью реакции электрофильного замещения-так называемое формилирование аренов (см разд 12 1 3 2) и преобразование заместителей, уже имевшихся в ароматическом ядре (окисление метильных групп-см разд 13 1, восстановление хлорангидридов ароматических карбоновых кислот-см разд 18 12) [c.285]

    Платиновые катализаторы ускоряют многие други< практически важные реакции гидрирование жиров, цик лических и ароматических углеводородов, олефинов, альдегидов, ацетилена, кетонов, окисление SO2 в SO3 в сернокислотном производстве. Их используют также прп синтезе витаминов и некоторых фармацевтических препаратов, Известно, что на нужды химической промышленности сейчас ежегодно расходуется около десяти тонн платины [c.226]

    Значительно больший интерес представляют реакции неглубокого (мягкого) окисления при электросинтезе различных органических соединений. Так, на электродах из золота в кислых растворах олефины окисляются с образованием альдегидов, кислот, оксидов и других соединений. Много внимания было уделено реакциям окисления ароматических соединений (бензола, антрацена и др.) в соответствующие хиноны. Для этой цели применяют различные промежуточные редокс-системы, например, систему Се +/Се + (см. разд. 13.6). [c.378]

    Альдегиды и кетоны ведут себя в этих реакциях почти одинаково. В некоторых случаях существует, однако, различие в скорости протекания реакций, чем и пользуются для того, чтобы различить карбонильные соединения разных групп (например, альдегиды от кетонов, альдегиды жирного ряда от ароматических и т. д.). В качественном анализе используется также реакция окисления. [c.223]

    Температура и продолжительность реакции. Реакция окисления Байера — Виллигера проводилась в широком интервале температур. В ранних работах по использованию этой реакции карбонильные соединения нагревали, применяя обратный холодильник, с перекисями в относительно высококипящих растворителях. В качестве общего метода эта процедура не может быть рекомендована. Применение температур, превышающих 45°, обычно приводит к чрезмерному разложению перекисей в таких условиях для возмещения потерь требуется большой избыток реагента, чго может привести к окислению нормальных продуктов реакции. Известны исключения, когда окисление ароматических альдегидов и кетонов с успехом проводилось при более высоких температурах, однако реакции в этих случаях [c.100]

    Платиновые катализаторы ускоряют многие другие практически важные реакции гидрирование жиров, циклических и ароматических углеводородов, олефинов, альдегидов, ацетилена, кетонов окисление ЗОз в ЗОз в сернокислотном производстве. Их используют также при синтезе витаминов и некоторых фармацевтических препаратов. [c.189]

    Ниже процессы окисления систематизированы по характеру изменений, вызываемых в исходном веществе. Вначале рассмотрена наиболее значительная по количеству примеров группа превращений гомологов бензола и их замещенных в альдегиды и карбоновые кислоты окислением метильной группы СНз в альдегидную СНО и карбоксильную СООН. Далее изложены процессы окисления группы СНг (и СН) до карбинольной, процессы замещения водорода ароматического ядра на оксигруппу и реакции окисления, приводящие к образованию хинонов и близких им соединений. После этого рассматриваются процессы окисления, сопровождающиеся изменением углеродного скелета соединений, а также окисление не содержащих углерода групп. [c.626]

    В лаборатории карбонильные соединения обычно синтези руют наиболее простыми одностадийными способами. Так, карбоновые кислоты получают окислением первичных спиртов (гл. 6) или альдегидов (разд. 8.7,А), гидролизом итрилов (гл. 7), реакцией реактивов Гриньяра с диоксидом углерода (гл. 6) или в случае ароматических кислот окислением метил-бензолов (гл. 5). Производные карбоновых кислот обычно синтезируют или прямо из кислот, или через промежуточный ацилхлорид (разд. 8.4). Альдегиды можно получить парциальным (неполным) окислением первичных спиртов (гл. 6) или каталитическим гидрированием ацилхлоридов (разд. 8.7, Б), а кетоны — окислением вторичных спиртов (гл. 6). Ароматические альдегиды и кетоны можно также получать по реакции Фриделя — Крафтса и подобным реакциям (гл. 5). [c.199]

    Эти процессы лежат в основе многочисленных промышленных способов получения широкого ассортимента кислородсодержащих соединений — гидропероксидов, спиртов, фенолов, альдегидов, моно- и поликарбоновых кислот и других продуктов. Особенно бурное развитие за последние 20—30 лет получили разработки крупнотоннажных производств ароматических моно- и поликарбоновых кислот, обусловленные прогрессом в области исследований кинетики и механизма каталитических реакций окисления углеводородов в жидкой фазе, моделирования процессов и создания эффективной реакционной аппаратуры. [c.7]


    Данные, полученные при изучении реакций окисления ароматических углеводородов, кетонов, альдегидов и спиртов в среде уксусной кислоты в присутствии МПВ, позволяют считать, что ионы М + обратимо реагируют с молекулами субстрата [ 106- 108]. [c.35]

    При изучении механизмов реакций окисления ароматических углеводородов, спиртов, кетонов и альдегидов было показано [c.40]

    Избыток свободной щелочи резко ускоряет окисление альдегидов. Ароматические альдегиды не дают этой реакции (см. пояснение к опыту 181). [c.111]

    Один из основателей атомно-молекулярной теории. Совместно с французским химиком Ф. С. Клоэ-зом получил ( 85 ) цианамид, изучил его термическую полимеризацию, получил мочевину гидратацией цианамида. Изучая действие едкого кали на бензальдегид, открыл ( 853) бензиловый спирт. Одновременно открыл окислительно-восстановительное диспропор-ционированне ароматических альдегидов, или реакцию окисления одной молекулы альдегида за счет восстановления другой в щелочной среде (реакция Канниццаро). Синтезировал хлористый бензоил и получил из него фенилуксусную кислоту. Изучил анисовый спирт, мо-нобензилкарбамид, сантонин и его производные. Однако главное значение работ Канниццаро заключается в предлом енной им системе основных химических понятий, оз- [c.218]

    Полифталоцианины обладают повышенной активностью по отношению к реакциям окислительно-аосстановительвого типа, ташш как окисление алкилароматических углеводородов, некоторых ароматических альдегидов. По своей активности, полимерные комплексы в большинстве случаев превосходят свои низкомолекулярные аналоги. Особенностью полимерных комплексов как катализаторов окислительно-восстановительного типа является их значительно более высокая селективность, чем у соответствующих низкомолекулярных аналогов, достигащая в рвде случаев ЮОу , например в реакциях окисления кумола [I]. [c.108]

    Ароматические амины так же легко нитруются, нак и фенолы, но первичные и вторичные амины очень склонны вступать в нежелательные побочные реакции окисления. Поэтому рекомендуется защищать аминогруппы апилированием ила взаимодействием с альдегидами с образованием оснований Шиффа. [c.387]

    Для получения ароматических альдегидов наряду с окислением метиларенов (по реакции Этара или аммонийцерий(1У)нитратом [8]) и бензиловых спиртов 1в применяют прямое формилирование (активированных) ароматических соединений диметилформамидом или Ы-ме-тилформанилидом и оксихлоридом фосфора по Вильсмейеру (И-5). Старые методы (синтез альдегидов по Гаттерману или по Гаттер-ману-Коху), несмотря на усоверщенствования (например, синтез Гаттермана-Коха без синильной кислоты с применением сг/л/.и-триазина [9]), теряют свое значение. [c.115]

    Ароматические альдегиды образуются прн окислении а л к и л 3 а м е щ е н н ы X а р о. м а т и ч е с к и х углеводородов хлористым хром и лом (реакция Э т а р д а) 28. (По , ученг е хлористого хро.мила см. т. 11, глава Окислеиие .) [c.26]

    Выведенные выше уравнения скоростей образования альдегидов и СОа при окислении непредельных и насыщенных углеводородов могут быть использованы и при окислении ароматических углеводородов, из которых СОг и продукты неполного окисления (фталевый ангидрид) образуются по независимым параллельным реакциям. Если считать эту схему правильной, то скорость образования фталевого ангидрхвда из нафталина будет пропорциональна коицентрации кислорода и не должна зависеть от концентрации нафталина при большом заполнении нафталином поверхности катализатора. Если реакция окисления протекает прп малых заполнениях нафталином, то при определенных соотношениях скоростей отдельных стадий образования фталевого ангидрида и СО2 лфавнеипе скорости образования фталевого ангидрида будет Шф = КСп- Если [c.149]

    Реакция образующегося иона карбония с анионом кислорода решетки оксида ванадия ведет к иону алкоголята, который затем окисляется в о-толуиловый альдегид. Смещение заряда от ароматического соединения к катализатору можно обнаружить, измеряя электропроводность и термоэлектродвижущу ю силу оксида ванадия в ходе окисления ксилола [42]. С этой схемой согласуется и понижение энергии активации реакции окисления при введении в ароматическое кольцо заместителей, дающих положительный индукционный эффект (—СНз, —С1) [43]. [c.133]

    Регулируемое окисление углеводородов в паровой фазе на пред-иазначенных для этого катализаторах представляет важный метод крупномасштабного производства кислородсодержащих производных — хинонов, альдегидов, кислот и их ангидридов. Эти производные умеренно стойки к окислению в условиях, применяемых для их получения, и поэтому приходится тщательно подбирать катализатор, температурные условия и состав смеси. Диксон и Лонгфилд опубликовали [171] превосходный обзор исследований по этим селективным реакциям окисления . Они уделили особое внимание окислению ароматических производных в более простые структуры и окислению олефинов . Окисление бензола в малеиновый ангид- [c.331]

    Ароматические спирты до сих пор практически не удавалось получать по реакции (б) — отмечалось лишь йезначительное образование их,— что не так легко объяснить теми же причинами, которые служат основанием преимущественного образования альдегидов в процессе окисления метана и его гомологов. По-види-мому, и в случае окисления толуола происходят элементарные реакции  [c.358]

    В газовой фазе хемилюминесценция сопровождает реакции окисления различных органических веществ молекулярным кислородом. Наибольшее число хемилюминесцентных реакций описано в работах Перкина [49] и Преттра [50—55]. В их опытах свечение наблюдалось визуально при пропускании через нагретую трубку смеси окисляемого вещества с кислородом или воздухом в реакциях окисления насыщенных углеводородов (пропан, н. пен-тан, н.гексан, н.гептан, н.октан) ненасыщенных углеводородов (этилен, пентен, циклогексен) алициклических и ароматических углеводородов (циклогексан, бензол, толуол) спиртов (метиловый, этиловый, н.пропиловый, н.амиловый и изоамиловый, н.гепти ловый) эфиров (диэтиловый) альдегидов (уксусный, масляный) [c.8]

    Однако число указанных случаев сильно ограничено, так как многие потенциальные активаторы такого типа сами реагируют с субстратом. По этой причине, например, такие карбонильные соединения, как альдегиды, кетоны, хиноны, нельзя использовать в качестве активаторов в реакциях окисления ароматических аминов. Наиболее приемлемыми активаторами для данных реакций оказываются только карбоновые кислоты с системой соп-ряжзнных связей, в частности упомянутая выше фталевая кислота. [c.208]

    Альдегиды как субстраты окисления. Альдегиды очень легко окисляются в карбоновые кислоты болыпинством окислителей, включая кислород воздуха. Окисление воздухом — цепная реакция, протекающая через стадию перкислот как промежуточных продуктов окисления. Вещества — ловушки свободных радикалов, такие, как ароматические амины и фенолы, являются ингибиторами окисления кислородом воздуха. Их добавляют в нeбoJrьu[нx количествах к альдегидам, чтобы сохранить последние при хранении. [c.435]

    Реакции фурфурола тоже очень сходны с реакциями ароматических альдегидов, В результате окисления фурфурол превращается в пиросли-зевую кислоту, а при восстановлении — в фуриловый спирт. Оба соединения образуются также в реакции Канницаро при обработке фурфурола концентрированными едкими щелочами [c.598]

    Реакция Канниццаро, или реакция дисмутации, является реакцией окисления — восстановления (оксидо-редукции), при которой из двух молекул альдегида одна окисляется в кислоту, а другая при этом восстанавливается в спирт. Эта реакция, свойственная преимущественно ароматическим альдегидам, была открыта в 1853 г. итальянским ученым Канниццаро, который установил, что в присутствии концентрированного раствора щелочи (например, 60%-ногд раствора КОН) бензальдегид превращается в соль бензойной кислоты и бензиловый спирт  [c.188]

    Хорошо известные монографии И. М. Эмануэля и соавторов Цепные реакции окисления углеводородов в жидкой фазе (М., 1965) и Роль Среды в радикально-цепных реакциях окисления органических соединений (М., 1973) в достаточно полной мере обобщают теорию радикально-цепных процессов окисления углеводородов за период, предшествующий 1972 году. За последние 10—15 лет жидкофазные процессы окисления углеводородов вообще и ароматических углеводородов в частности получили дальнейшее развитие не только в теоретическом, но и в прикладном плане. Разработаны новые каталитические системы на основе солей тяжелых металлов и галоидных соединений, позволившие создать высокоэффективные одностадийные промышленные процессы получения ароматических моно- и поликарбо-новых кислот (бензойной, изофталевой, терефталевой, тримел-литовой, пиромеллитовой, дифенилдикарбоновой, бензофенон-тетракарбоновой, дифенилоксидтетракарбоновой и др.), спиртов, альдегидов и других кислородсодержащих соединений. [c.5]

    Теоретические и экспериментальные исследования в области биогенеза алкалоидов выполнены главным образом Робинсоном и Шёпфом. Согласно хорошо известным гипотезам Робинсона, в растениях протекают две основные реакции альдольная конденсация и сходная конденсация карбиноламинов, образующихся в результате взаимодействия альдегида или кетона с аммиаком или амином и содержащих группировку >С(ОН)М< с веществами, в которых имеется группа >СНСО—. При помощи этих реакций может быть создан скелет алкалоида для дальнейшего же образования ароматических ядер или этиленовых соединений необходимы реакции окисления, восстановления и отщепления воды. Разъяснение механизма биосинтеза сложных алкалоидов связано с большими трудностями. Образование в природе алкалоидов простого строения может быть объяснено [c.517]


Смотреть страницы где упоминается термин Альдегиды ароматические реакция окисления: [c.171]    [c.181]    [c.115]    [c.453]    [c.51]    [c.60]   
Курс органической и биологической химии (1952) -- [ c.86 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегиды ароматические

Окисление альдегидов

Реакции окисления



© 2025 chem21.info Реклама на сайте