Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота фазах

    Так как скорость реакции взаимодействия серной кислоты с цинком, протекающей в гетерогенной среде, зависит от поверхности фазового контакта между твердой (цинк) и жидкой (серная кислота) фазами, то для увеличения скорости цинксодержащие материалы подвергают тонкому измельчению в барабанных мельницах. Схема такого измельчения показана на рис. 9. [c.15]


    При анодировании гетерогенных алюминиевых сплавов увеличиваются скорость побочных процессов (главным образом выделения кислорода на нерастворимых в серной кислоте включениях) и анодное растворение неустойчивых в серной кислоте фаз, что вызывает добавочный расход электрического тока. Ход кривых напряжение—время обычно изменяется. Так, более быстрое возрастание напряжения по сравнению с чистым алюминием является характерным для случая накапливания в пленке нерастворимых в серной кислоте кристаллов интерметаллических соединений. Наоборот, уменьшение скорости роста напряжения во времени наблюдается, если фазовая составляющая гетерогенного сплава частично или полностью растворяется. [c.100]

    Водный раствор, из которого легким бензином извлечено масло, упаривают до расслоения на две фазы. Одна из них представляет приблизительно 70%-ную алкилсульфоновую кислоту, содержащую еще 5—7% серной кислоты второй фазой является 30—40%-ная серная кислота, пригодная к использованию для других целей. В случае, если нужно получать натриевые соли, концентрирование до расслоения на две фазы можно проводить и без предварительного удаления масла, после чего ту фазу, в которой находятся алкилсульфоновые кислоты, нейтрализуют раствором едкого натра. Полученный таким способом раствор сульфоната натрия, содержащий много масла, затем полностью обезвоживается и одновременно освобождается от нейтрального масла в испарителе змеевикового типа (см. главу Сульфохлорирование стр. 416). [c.499]

    Гидратация пропилена серной кислотой в жидкой фазе [c.54]

    Радикально-каталитический метод. Основан на электрохимическом окислении. Процесс протекает с достаточной скоростью иа платиновом электроде при разности потенциалов, соответствующей началу разряда ионов ОН . Образующиеся промежуточные продукты — радикалы ОН обладают высокой реакционной способностью и окисляют диоксид серы в жидкой фазе. В качестве окислителя диоксида серы в жидкой фазе можно использовать надсерную кислоту, образующуюся ири электролизе серной кислоты. [c.62]

    Превращения в системе жидкость (газ) — жидкость. В такой системе превращения проводятся с целью получения необходимых продуктов или извлечения определенного компонента из какой-либо фазы. К первой группе этих процессов относится, например, нитрование органических соединений смесью азотной и серной кислот (процесс в системе двух несмешивающихся жидкостей) или хлорирование жидких ароматических углеводородов (процесс в системе газ — жидкость). Примером второй группы процессов может служить очистка синтез-газа с помощью абсорбции нежелательного компонента жидкостью, в которой проходит химическая реакция с этим компонентом. [c.250]


    До первой мировой войны фталевый ангидрид получали из нафталина путем окисления его серной кислотой в присутствии ртутного катализатора. Во время первой мировой войны почти одновременно в Германии и в США [3, 14, 15] был открыт каталитический процесс окисления воздухом в паровой фазе,- что привело к снижению стоимости производства фталевого ангидрида и к значительному увеличению потребления его. В 1945 г. [2,6] этот процесс был использован в промышленных масштабах Для окисления о-ксилола. [c.8]

    Удобный метод изомеризации углеводородов в присутствии серной кислоты заключается в простом эффективном перемешивании двух жидких фаз в течение требуемого времени при обычном давлении.- Применяется довольно узкая температурная область — большинство работ проводилось при температурах от О до 60°. [c.33]

    Однако вследствие полимерной природы углеводородов появляются некоторые необычные трудности в реакции сульфирования их. Сульфирование сополимера чисто гетерогенная реакция. Шарикам углеводорода дают предварительно набухнуть в органическом растворителе, чтобы обеспечить мягкое и равномерное проникновение сульфирующего агента в твердую фазу [114 в противном случае наблюдаются потемнение и крекинг с образованием мягкой и нестойкой смолы. Сульфирование можно довести до конца при применении избытка концентрированной серной кислоты при. 100 [114] в полученном продукте содержится по одной сульфогруппе на каждое бензольное кольцо. Удаление избытка сульфирующего агента после окончания реакции вызывает изменение объема и рассеивание теплоты разбавления. Так как эти факторы также приводят к разрушению шариков, то на этой стадии следует применять специальные методы для того, чтобы реакция протекала умеренно, нанример обработка концентрированным раствором поваренной соли. Другой исследователь [87] описывает сульфирование 95%-ной кислотой полистирола в виде тонкой пленки, что обеспечивает хорошую проницаемость и эффективный отвод тепла. Наиболее целесообразно применять ступенчатое разбавление отработанной кислоты. При жестком сульфировании хлор- [c.538]

    Алкилирование включает реакции изопарафинов, главным образом изобутана с пропиленом, бутеном и пентенами для получения высокооктанового бензина. Реакция протекает в жидкой фазе, катализатором служит либо фтористый водород, либо серная кислота. Алкилирование при участии фтористого водорода проводят при 29—37 °С отношение количеств кислоты и углеводорода 1 5 отношение изобутана к олефину, равное 1 7, поддерживается путем рециркуляции концентрация кислоты 85—95% расход кислоты 1,4—2,3 кг/м алкилатов. [c.334]

    Реакция с серной кислотой проводится при температуре 10— 20° С, причем окислительно-восстановительные процессы, проходящие с увеличением количества двуокиси серы и обугливанием, доводятся до минимума. С безводной фтористоводородной кислотой температура не достигает уровня критической она держится около 35° С. Для сохранения олефинов в жидком состоянии в системе поддерживают достаточное давление. Как с серной, так и с фтористоводородной кислотами используется примерно равный объем загрузки углеводородной жидкости. Эффективное перемешивание обеспечивает хороший контакт фаз, который необходим для высоких выходов и качества конечных продуктов. Реакция протекает быстро, но обычно выдерживают 10—40 мин. Доводя до минимума полимеризацию, исходное отношение изопарафин — олефин поддерживают около 4 1 и более. Регулирование этого отношения, так же как и поддержка высокого кислотно-углеводородного отношения, дает возможность контролировать выход, испаряемость и октановое число алкилата. [c.128]

    Органическую фазу вначале отливают подщелоченной водой от следов серной кислоты и формальдегида в колонне 9. Промывные воды присоединяют к основному потоку водной жидкости. Отмытый масляный слой подается в колонну 10, на которой под давлением до 0,5—0,6 МПа отгоняется отработанная С4-фракция, возвращаемая на установку дегидрирования. Кубовый продукт колонны 10 поступает на колонну 11, где под вакуумом ДМД в смеси с ТМК отделяется от смеси ВПП. [c.705]

    На зарубежных заводах широко распространены установки алкилирования с фтористоводородным катализатором. Фтористоводородная кислота по сравнению с серной более активна и благодаря высокой летучести (т. кип. 20 °С ) легче регенерируется. Достоинством катализатора является также низкая плотность (около 1,0 г/см против 1,84 г/смз для серной кислоты). Это облегчает образование эмульсии с углеводородной фазой в реакторе и позволяет даже отказаться от механического перемешивания. Несмотря на довольно сложную систему регенерации катализатора, схема алкилирования с фтористоводородным катализатором выгодно отличается от сернокислотной низким расходом кислоты, не превышающим 1 кг на 1 т алкилата. Недостатком процесса является токсичность катализатора, что требует соблюдения самых строгих мер предосторожности при эксплуатации установок. [c.86]


    Пространственное размещение поточного производства в большой степени зависит от структуры материального потока, которая может быть простой и сложной (рис, П1.2), Простая структура характерна для прямолинейного потока, т. е. потока со строго последовательным размещением всех фаз (операций), напрнмер производство серной кислоты. [c.34]

    Влияние рабочих условий на реакцию гидратации пропилена. В способе контактирования фаз суш ествует основное отличие между реакциями этерификации и гидролиза. Этерификация протекает между газовой (пропилен) и жидкой (серная кислота) фазами, не смешиваюш,имися между собой. Абсорбция пропилена серной кислотой зависит от давления, при котором протекает реакция. [c.432]

    Моляльность серной кислоты фазы ионита зависит от концентра-бростборе ции кислоты в растворе. Парис. 3. 4 [c.72]

    Крекинг-олефипы, называемые также вторичными олефинами, получаются при парофазном крекинге парафина в присутствии водяного пара. Превращение парафина происходит лишь на 25—30% и неразложившийся парафин возвращается на повторный крекинг. В табл. 35 показаны результаты крекинга парафина в паровой фазе [44] в условиях, когда парафин путем повторного крекинга непревращенной части, был переработан полностью. Высокомолекулярная часть крекинг-олефинов применяется в первую очередь для производства моющих средств, получаемых присоединением серной кислоты по двойной связи (типоль). [c.68]

    Выделение изобутена из Б-Б-фракции [49]. Прежде чем подробно рассматривать разделение парафинов и олефинов, которые могут содержаться во фракции С4, следует коротко остановиться на выделении изобутена экстракцией 65%-ной серной кислотой. Экстракция фракции С4 65%-ной серной кислотой проводится под давлением, гарантирующим протекание процесса в жидкой фазе. При этом образуются два слоя нижний, состоящий из трет-бутилсерной кислоты и верхний — свободный от изобутена. При поддержании определенной температуры, концентрации кислоты и времени контакта можно практически количественно извлечь изобутен из верхнего слоя. Из трет-бутилсерпой кислоты большую часть изобутена удается регенерировать разбавлением трете-бутилсерной кислоты, примерно до 45%-ной крепости, водой и последующей отдувкой водяным паром. Освобождающийся при этом газ после промывки водой компримируется, конденсируется и подвергается ректификации нод давлением. [c.78]

    Изонроииловый спирт, легко получаемый непосредственным гидратированием иронена серной кислотой, обрабатывают кислородом в присутствии перекиси водорода при температуре 90— 140° под давлением 2,5 ат. При этом в жидкой фазе идет реакция с образованием ацетона и перекиси водорода [c.178]

    Кумол от высокоалкилированных продуктов отделяется в колонне, работающей при нормальном давлении. Само алкилирование проходит при давлении 11,5 ат и температуре 30—40°, т. е. при условиях, обеспечивающих протекание реакции в жидкой фазе. Молярное соотношение бензола к пропену составляет 5 1, объемное соотношение серной кислоты к углеводородной смеси 1 1, время пребывания в реакционном сосуде 20—30 мин. [c.231]

    Смешанные богатые газы (при переработке упоминавщихся 250 м час угольной пасты образуется около 15 000 м 1час богатого газа на жидкой фазе процесса и 5000 ж /час а паровой) подвергают алкацид-пой очистке при давлеиии около 2 ат и дополнительно щелочной промывке для полного удаления остаточного сероводорода. Небольшие количества сероводорода в объединенных богатых газах получаются частично в результате расщепления сернистого карбонила и меркаптанов, еще содержащихся в богатых газах жидкой фазы после предварительной алкацидной очистки (см. стр. 33 оригинала), и частично за счет сероводорода, добавляемого для осернения катализатора бензинирования. Извлекаемый сероводород снова используется для осернения катализатора, а избыток перерабатывается на серную кислоту или элементарную серу. [c.43]

    В промышленности алкилирование бензола пропиленом в жидкой фазе обычно осуществляется в присутствии серной кислоты [24— 30]. Ниже описан процесс работы на установке фирмы Petroleum Ind. Maats happij. Используется пропилен, не содержащий этилен, что необходимо во избежание образования этилсерной кислоты. Бензол же с содержанием незначительного количества тиофена Еполтге пригоден. [c.264]

    Задача 11.2. Определить выход пульпы (в килограммах), массу веществ в жидкой фазе пульпы и массу раствора разбавления при сернокислотной экстракции ( )осфорпоГ1 кислоты пз апатитового концентрата массой 100 кг, если массовое отношение ж/т пульпы равно 2,5/1, гппсо1зое чпсло—1,6, масса веществ, выделяю-п ихся в газовую ([зазу, составляет 5 кг, а расход серной кислоты — 117,9 кг. [c.174]

    Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, рс збавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С — а/килирования предъявляются также повышенные требования по сс держанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, тогда бутан — бутиленовую фракцию крекинга — сырье С — алкили — рования обычно очищают щелочью или в процессах типа Мерокс от сернистых соединений. [c.142]

    Соотношение серная кислота сырье характеризует концентрации катализатора и сырья в реакционной смеси. Скорость процесса С — алкилирования в соответствии с законом действующих поверхностей должна описываться как функция от произведения концентраций кислоты и углеводородов на границе раздела фаз (то есть поверхностных концентраций). Соотношение катализатор сырье должно быть в оптимальных пределах, при которых достигается м<1ксимальный выход алкилата высокого качества. Оптимальное згачение этого отношения (объемного) составляет около 1,5. [c.144]

    Суспензию избыточного активного ила с концентрацией 0,8— 1,2% абсолютно сухого вещества подают на термообработку при 85 °С. Затем добавляют серную кислоту для изменения pH до 3,5—4,0 и флокулянт. Суспензию активного ила со сфлоку-лированной дисперспой фазой направляют в отстойник для предварительного сгущения до 2,5—4% абсолютного сухого вещества, а затем — на сепарирование и сушку. После однократного сепарирования с предварительной термореагентной обработкой степень сгущения составляет 6—10%, а потери с фугатом—до 0,2—0,4% абсолютно сухого вещества. [c.110]

    Сендерс и Додж [46] рассмотрели термодинамические данные по гидратации этилена и пришли к следующему заключению Ясно, что в настоящее время (1934 г.) невозможно получить константу равновесия, отклоняющуюся от теоретической менее чем в сто раз . Они изучали гидратацию этилена в паровой фазе при 360—380° и давлениях от 35 до 135 ат над окисью алюминия и окисью вольфрама в качестве катализаторов. На основании своих результатов и результатов других исследователей они пришли к выводу, что еще не найден активный катализатор для реакции гидратации. Выдано большое количество патентов по гидратации этилена в присутствии кислых солей и фосфорной кислоты на носителях [39] в паровой фазе при высоких температурах и давлениях. Один из таких процессов, в котором в качестве катализатора используется фосфорная кислота, применяется в промышленности. Этилен может реагировать с разбавленной 10 %-ной серной кислотой при температурах 240—260° и давлениях около 141 кг/см , при этих условиях образуется равновесная смесь этилена, этанола и этилового эфира. Спирт или эфир мон<ет быть возвращен в процесс для получения другого продукта, но технические трудности процесса помешали его промышленному использованию [29]. [c.355]

    Как известно, в промышленных установках только реакция алкилирования изобутана этиленом (термическое алкилирование) с целью получения неогексапа осуществляется при температурах около 500° С под давлением до 300 ат. Алкилирование изобутана пропиленом и изобутеном ведется при температуре, близкой к комнатной, под небольшим давлением в жидкой фазе, в присутствии серной кислоты в качестве катализатора. [c.328]

    Пример 1У-4. Нитрование бензола смесью водных растворов азотной и серной кислот проводилось в пятиступенчатом реакторе мeшeния . Рабочие условия указаны на рис. 1У-8. В реакторе при помощи водяной рубашки поддерживается температура 30 °С. Объем системы в процессе реакции остается по существу постоянным. В соответствии с приведенными расходами реагентов количество кислотной фазы составляло 31,414 кмольЫ смеси, а количество органической фазы—2,5151 кмоль1м смеси. Объем каждой ступени равен 0,103-10 м . Для данной концентрации серной кислоты скорость реакции определяется концентрацией азотной кислоты в кислотной (водной) фазе и концентрацией бензола в органической фазе. На рис. 1У-9 представлены результаты периодических опытов при концентрации серной кислоты [c.127]

    Хорошо известным примером реакций между двумя несмеши-вающимися жидкостями является нитрование бензола концентрированной азотной кислотой в присутствии в качестве катализатора серной кислоты. Реакция протекает в обеих фазах, но скорость реакции в кислотной фазе в несколько раз выше, чем в органической. Если поверхность раздела фаз недостаточна, чтобы обеспечить взаимное насыщение их, скорость реакции резко снижается. Льюис и Шун измеряли скорость реакции при постоянной поверхности раздела фаз и обнаружили, что скорость реакции является линейной функцией скорости перемешивания это примерно соответствует общему соотношению, согласно которому диффузия возрастает с увеличением линейной скорости потока в степени 0,8. Обе фазы приводились во вращение в противоположных направлениях отдельными мешалками. [c.177]

    Нитрование ароматических соединений азотной кислотой каталитически ускоряется ионом Н504, доставляемым серной кислотой. Силикагель катализирует процесс нитрования бензола N0 в паровой фазе. Низшие окислы азота являются катализаторами процесса нитрования производных бензола четырехокисью азота. Для проведения процесса нитрования парафинов катализатора не требуется. [c.330]

    Средние эфиры, образующиеся при взаимодействии серной кислоты с олефинами, содержащимися в крекинг-дистиллятах, растворимы пе только в кислотной, но и частично в углеводородной фазе. Растворимость средних эфиров в углеводородной фазе возрастает с ростом молекулярного веса соответствующего оле-фипа. Средние эфиры с трудом поддаются гидролизу и, следовательно, не отмываются щелочью при защелачиванип. Однако средние эфиры нестабильны и при длительном хранении разлагаются. Наблюдалось выделение сернистого газа и смолообразование в крекинг-бензинах, обработанных серной кислотой. Средние эфиры также легко разлагаются при нагревании [24], так что крекинг-дистиллят, прошедший сернокислотную очистку, после вторичной перегонки обычно вновь требует защелачивания. В нефтезаводской практике вторичную перегонку очищенных крекинг-дистиллятов зачастую ведут под вакуумом, что предотвращает разложение средних эфиров и связанные с этим явления (напрп-мер, порчу цвета) [25]. [c.225]

    На рис. 4 изображена принципиальная технологическая схема синтеза ДМД. Исходный формалин, содержащий 8—12% метанола, поступает на ректификационную колонну 1, где в качестве погона отбирается метанол, а из куба выводится продукт с содержанием метанола менее 1%. К обезметаноленному формалину добавляют рассчитанное количество серной кислоты, затем смесь подают в верхнюю часть реактора 2. В нижнюю часть этого реактора через распределительное устройство подают сжиженную С -фракцию, которая в диспергированном состоянии поднимается снизу вверх. Поскольку катализатор — серная кислота — практически полностью находится в водной фазе, в ней и протекают все [c.703]

    Первой операцией по переработке водного слоя является нейтрализация серной кислоты путем автоматической дозировки раствора ЫаОН, регулируемой с помощью рН-метра. Нейтрализованный водный слой поступает в экстракционную колонну 4, где происходит извлечение части растворенных органических веществ с помощью свежей С4-фракции. В этой колонне водный слой освобождается от основного количества ДМД и ТМК, а также от части ВПП. Содержащую перечисленные продукты С -фракцию направляют в реактор 2. Рафинат из колонны 4 поступает в ректификационную колонну 5, где в качестве погона отбираются неиз-влеченные летучие органические вещества (ТМК, ДМД, метанол). Этот погон присоединяют к органической фазе реакционной жидкости. Кубовый продукт подают в колонну упарки 6. Назначение этой колонны — концентрирование в кубе ВПП и растворенных солей, в основном Ыа2504, и отгонка непрореагировавщего фор- [c.704]

    Выделение изобутилена 45%-ной серной кислотой. Этот процесс по разработкам фирмы БАСФ осуществлен в ФРГ [9]. В отличие от процессов с 65%-ной и 50%-ной кислотой процесс БАСФ осуществляется в газовой фазе. Получение изобутилена ведется через триметилкарбинол, выделяемый из насыщенной кислоты под вакуумом с последующей дегидратацией триметилкарбинола на окиси алюминия. [c.726]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Нами проведены специальные исследования с целью отыскания путей интенсификации контакта между этиленом и НдЗО . Н( рвый из проверенных методов [10] основан иа следующих соображениях. ]1оскольку реакция изучается при нормальном давлении, т. е. имеется в наличии газовая фаза (в связи с неизменностью физического состояния этилена), идеальными представляются условия, при которых удалось бы превратить серную кислоту в парообразное состояние и в таком виде интенсивно смешивать ее с этиленом. В данном случае мы достигли бы гомогенности среды. [c.28]

    Однако на первый взгляд эта идея практически неосуществима. В самом деле, Н2304 при обычных условиях кинит с разложением при 335, а этилсер-пая кислота разлагается (вне условий катализа) при 160—170 °С [11]. Следовательно, при атмосферном давлении реакция между этиленом и серной кислотой в паровой фазе невозможна. Для понижения температуры кипения,, а следовательно, и температуры паров Н28 04 можно было бы использовать вакуум но даже в вакууме вряд ли удалось бы найти условия существования моноэтилового эфира серной кислоты, так как в результате применения железа в качестве материала для реакционной аппаратуры можно ожидать понижения температуры разложения этилсерной кислоты, как и в присутствии Си, Ag, N1, когда распад этилсерной кислоты начинается уже при 100 °С. [c.28]


Смотреть страницы где упоминается термин Серная кислота фазах: [c.17]    [c.17]    [c.174]    [c.121]    [c.224]    [c.226]    [c.236]    [c.239]    [c.70]    [c.19]    [c.23]    [c.28]   
Инженерный справочник по технологии неорганических веществ Графики и номограммы Издание 2 (1975) -- [ c.303 ]




ПОИСК







© 2025 chem21.info Реклама на сайте