Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение и скорость диффузии

    Вследствие этих особенностей растворы высокомолекулярных веществ в ряде случаев ведут себя как коллоидные растворы (малая скорость диффузии, высокая вязкость, явление набухания и др.). В соответствии с этим такие растворы считались раньше коллоидными растворами. Однако в противоположность коллоидным растворам они термодинамически устойчивы и поэтому являются истинными молекулярными растворами. Следует отметить, что при растворении в некоторых растворителях высокомолекулярные вещества дают также коллоидные растворы. Так, натуральный каучук в бензоле дает истинный (молекулярный) раствор, а в воде—коллоидный (латекс). Растворы нитрата целлюлозы в ацетоне и растворы желатина в воде являются молекулярными растворами, а растворы нитрата целлюлозы в воде и растворы желатина в спирте—коллоидными растворами. [c.254]


    Существуют следующие мембранные методы микрофильтра-цня — процесс разделения коллоидных растворов и взвесей под действием давления ультрафильтрация — разделение жидких смесей под действием давления обратный осмос — разделение жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление диализ — разделение в результате различия скоростей диффузии веществ через мембрану, проходящее при наличии градиента концентрации электродиализ — процесс прохождения ионов растворенного вещества через мембрану под действием электрического ноля. [c.106]

    Рассмотрим факторы, влияющие на набухание и растворение полимеров. Температура и давление влияют на эти процессы в соответствии с принципом Ле Шателье. Если набухание (растворение) сопровождается выделением теплоты, то с повышением температуры степень набухания (растворимость) уменьшатся. Однако скорость набухания (растворения) растет в соответствии с увеличением скорости диффузии. Так как объем системы при набухании уменьшается, то с ростом давления степень набухания повышается. [c.318]

    Течение описанных процессов, схематически изо-брал<енных на рис. 14, связано, очевидно, с диффузией растворенного вещества от мелких кристаллов к крупным. Диффузия же происходит при комнатной температуре очень медленно. Повышение температуры вызывает увеличение скорости диффузии, а также повышает растворимость, и поэтому ускоряется процесс созревания осадка. Точно так >се действует и перемешивание раствора. Следовательно, указан- ый процесс выгодно вести, поместив стакан с осадком в теплое место (например, на кипящую водяную баню) и время от времени перемешивая содержимое его. [c.104]

    Раствор фосфорной кислоты, полученный после отделения фосфогипса фильтрацией, загрязнен перешедшими в раствор примесями фосфата кремнеземом, сульфатами и фосфатами железа и алюминия и т. п. Оптимальные условия экстракции определяются стремлением получить возможно более высокую концентрацию кислоты, крупные, хорошо фильтрующиеся кристаллы фосфогипса и ускорить процесс экстракции. Скорость растворения фосфата лимитируется скоростью диффузии ионов водорода к поверхности частиц фосфата или ионов кальция из пограничного слоя в объем раствора. При высоких концентрациях возрастает вязкость растворов фосфорной кислоты, что замедляет скорость диффузии и снижает скорость растворения. Крупные кристаллы гипса получаются при 70—80°С и невысокой концентрации серной кислоты. Для получения более концентрированной фосфорной кислоты и ускорения процесса применяют 75%-ную серную кислоту и более высокую температуру в начале экстракции. Скорость экстракции [c.150]


    С макроскопической точки зрения явления роста (растворения) кристаллов, диффузии молекул растворенного вещества к грани кристалла (или от нее), выделение скрытой теплоты кристаллизации (растворения) и переноса тепла в жидкой и твердой фазах, формирование полей концентраций, температур, скоростей в окрестности отдельного кристалла можно отнести к классу детерминированных систем. Однако системам присущи и явления стохастического характера зародышеобразование, агломерация и [c.3]

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]

    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]

    Температура. С повышением температуры уменьшается вязкость нефти, что ускоряет как столкновение и слияние, так и осаждение капель воды. Стабильность пленки, защищающей каплю, также снижается при повышении температуры, во-пер-вых, за счет увеличения растворения и скорости диффузии естественных эмульгаторов в нефти и, во-вторых, за счет снижения вязкости и когезии, т. е. сцепления пленки. С увеличением температуры снижается и расход деэмульгатора. [c.14]

    Диффузионным потенциалом называется разность потенциалов, возникающая на поверхности раздела между двумя растворами, различающимися или по виду растворенного вещества, или по его концентрации. Эти скачки потенциала невелики они обычно не превышают 0,03 в и могут уменьшаться до нуля. Причиной их служит различие в подвижностях и, следовательно, в скоростях диффузии ионов различного вида. Рассмотрим только простейший случай, когда соприкасающиеся растворы содержат один и тот же электролит и различаются только по его концентрации. Обратимся к цепи (ХП1, 26). [c.438]

    Диффузия в коллоидных системах. Диффузией в растворах называется естественный процесс, ведущий к равномерному распределению растворенного вещества по всему объему раствора. Растворенное вещество всегда стремится двигаться от мест с большей концентрацией к местам с меньшей концентрацией. Это явление свойственно как истинным, так и коллоидным растворам. Однако скорость этого процесса (скорость диффузии) в коллоидных растворах во много раз меньше, чем в молекулярно-дисперсных растворах. [c.511]

    В этом уравнении k — коэффициент скорости физического растворения, зависящий от скоростей диффузии и разрушения кристаллической решетки, который иногда выражают следующим образом [c.162]

    Присутствие растворенного газа снижает перегрев, необходимый для поддержания пузыря радиусом г в неустойчивом равновесии. На практике определение парциального давления может быть осложнено наличием температурных градиентов и конечностью скоростей диффузии газа через жидкость. [c.366]


    НАСЫЩЕННАЯ ВОЗДУХОМ ВОДА. При нормальных температурах в воде с нейтральной, а также слабокислой или слабощелочной реакцией заметная коррозия железа имеет место только в присутствии растворенного кислорода. В насыщенной воздухом воде начальная скорость коррозии может достигать 10 г/(м -сут). Эта скорость через несколько дней снижается вследствие образования пленки оксида железа, которая действует как барьер для диффузии кислорода. Стационарная скорость корро-. зии может быть 1,0—2,5 г/(м -сут) и возрастает с увеличением скорости потока. Так как скорость диффузии в стационарном состоянии пропорциональна концентрации Ог, из уравнения (2) следует, что и скорость коррозии железа пропорциональна концентрации Ог- Типичные данные показаны на рис. 6.1, а. В отсутствие растворенного кислорода скорость коррозии как чистого железа, так и стали при комнатной температуре незначительна. [c.101]

    Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже [c.310]

    Разделить полимер на химически индивидуальные соединения ПС представляется возможным. Отдельные полимергомологи так мало отличаются по физическим и химическим свойствам, что при помощи существующих методов разделения удается лишь разделить полимер на несколько фракций, каждая из которых значительно менее полидисперсна, чем исходный полимер. Для фракционирования используют методы дробного растворения и дробного осаждения полимера, разделение ультрацентрифугированием, исследование скорости диффузии, которая различна для макромолекул разной величины. [c.74]

    Мы уже отмечали, что скорость адсорбции сама по себе велика, однако в случае молекулярной адсорбции на твердом адсорбенте она ограничивается скоростью диффузии молекул растворенного вещества. Установление адсорбционного равновесия еще более затягивается в случае тонкодисперсных материалов, таких как глины. Поэтому на практике для ускорения установления адсорбционного равновесия прибегают к интенсивному перемешиванию и встряхиванию. [c.49]

    Вследствие теплового движения макромолекул в растворе происходит перемещение (диффузия) растворенного вещества в направлении от большей концентрации к меньшей. Если осторожно наслоить на поверхность раствора полимера с концентрацией С[ растворитель (Со), то постепенно граница раздела А-А будет размываться (рис. 1.11). Молекулы растворителя будут диффундировать в направлении х в раствор, а макромолекулы - в противоположном направлении, в слой растворителя. Изменение концентрации на отрезке dx называется градиентом концентрации. Скорость изменения концентрации в результате диффузии (скорость диффузии) описывается соотношением [c.38]

    Некоторые защитные пленки поглощают и пропускают достаточно большое количество воды, кислорода, газов, и, если оценивать их защитные свойства исходя только из скорости проникновения этих веществ, продолжительность их защитного действия была бы меньше того времени, которое наблюдается на практике. Механизм защиты металлической поверхности в сильно агрессивных жидкостях является барьерным, т. е. скорость растворения металла прямо пропорциональна скорости диффузии агрессивного компонента к металлической поверхности. [c.22]

    Большое значение имеет то, что скорость диффузии растворенных атомов в металлах часто бывает велика по сравнению со скоростью растворения газов в металлах или со скоростью десорбции с поверхности металла. Температурный коэффициент диффузии водорода через никель или платину полностью определяется теплотой десорбции с поверхности этих металлов водорода [169], выделяющегося в виде молекул. [c.107]

    Предполагают, что пассивная пленка в углублениях устойчивее и толще, чем на выступах, вследствие чего последние быстрее растворяются. Меньшая степень пассивирования выступов объясняется их повышенной химической активностью и более интенсивным растворением окисной пленки на них за счет большей скорости диффузии в глубь электролита продуктов анодного растворения — на выступах слой тоньше и градиент концентрации выше, чем в углублениях. Повышенная растворимость окисных пленок на выступах связана также с большей пористостью их на острых пиках. [c.459]

    Уравнение (88) позволяет рассчитать константу скорости растворения или гетерогенной химической реакции для случая, когда скорость реакции определяется скоростью диффузии. Не- [c.148]

    Растворение ВМС протекает в течение длительного времени, так как скорость диффузии макромолекул очень мала. [c.195]

    Рассмотрим в качестве примера процесс растворения металла кислотой. Если путем интенсивного перемешивания обеспечить некоторую постоянную конвекцию, то растворение металла определяется скоростью диффузии ионов водорода в диффузионном слое и может быть количественно рассчитано на основе законов диффузии. Обратимся к рис. Б. 12 (где с — концентрация ионов водорода в глубине раствора, со — концентрация ионов водорода на поверхности металла, б — толщина диффузионного слоя). Согласно Нернсту, градиент концентрации (дс/дх) [c.186]

    Коэффициент диффузии. Гетерогенную реакцию можно разбить на несколько стадий 1) подход вещества к поверхности, 2) адсорбция, 3) реакция, 4) удаление продуктов. Любая из этих стадий может определять скорость реакции. Если лимитирующими является первая и четвертая стадии процесса, то скорость этого процесса зависит от диффузии поэтому кинетические процессы такого типа называются ди4х )у ионными процессами. Большое значение имеют диффузионные я леиия в таких процессах, как испарение жидкостей на воздухе или в среде других газов, растворение вещества в разных растворителях и т. п. Скорость этих процессов определяется скоростью диффузии. [c.422]

    VI-1-3. Быстрые реакции. Когда реакция, в которую вступает растворенный газ, медленна (в том смысле, который обсуждался в предыдущем разделе), скорость диффузии непро-реагировавшего газа из пленки в массу жидкости практически такая же, как и скорость его диффузии в пленку от поверхности жидкости. Профиль концентрации А в пленке выражается прямой линией (пунктирная прямая ВС на рис. VI- ). Если реакция достаточно быстра, чтобы количество абсорбируемого газа, реагирующего в пленке, было сопоставимо с тем, что переносится в непрореагировавщем виде в массу [c.161]

    Выбор оптимального режима СФЭ определяется природой лимитирующих стадий. Если скорость экстракции лимитируется скоростью диффузии извлекаемых компонентов из глубины матрицы к ее периферии, то частицы пробы должны иметь малый размер, а температура должна быть по возможности высокой, но не вызывающей деструкции экстрагируемых веществ. Однако не следует применять слишком мелкие частицы, поскольку могут возникнуть проблемы с распределением растворителя в объеме образца. Необходимо также конфолировать вязкость флюида, чем она меньше, тем выше скорость экстракции. При высокой скорости диффузии растворенного вещества скорость экстракции прямо пропорциональна площади поверхности фаницы раздела фаз. [c.219]

    Экспериментально установлено [17], что изотермы сорбции ЗОг в указанных полимерах нелинейны и удовлетворительно описаны формулой изотермы двойной сорбции. Сродство сорба-та и полимера в процессах абсорбции и адсорбции характеризуется параметрами и К . Величины о " и не имеют устойчивой корреляции с изменением разности —1, рднако большему сродству в процессе абсорбции соответствует большее сродство при адсорбции на поверхности дисперсной фазы в полимере. Чем ниже и, тем выше подвижность молекул ЗОг в полимере, хотя концентрация растворенного газа при этом падает. Наименьшие значения о , /С и о отмечены для поливинилтриметилсилана (ПВТМС). Высокие значения коэффициента проницаемости в этом полимере обеспечены за счет большей скорости диффузии ЗОз. [c.82]

    Скорость диффузии растворенного вещества с большой молекулярной массой (>500) в раствор низка и значительно меньше скорости диффузии электролита. Поэтому влияние концентрационной поляризации на процесс ультрафильтрации намного сильнее, чем на процесс обратного осмоса. Концентрация у поверхности мембраны при ультрафильтрации может достигнуть такого значения, что на мембране может образоваться слой геля, который резко снижает скорость процесса. Для того чтобы повысить скорость ультрафнльтрации, приходится интенсивно перемешивать раствор или прокачивать его с большой скоростью (до 3—5 м/с) над мембраной. Однако в ряде случаев такой путь оказывается непригодным, так как приводит к резкому повышению расхода энергии на циркуляцию раствора, недопустимому повышению температуры раствора, разрушению структуры некоторых биополимеров и т. п. В этих случаях более рациональным может оказаться применение турбулизирующих вставок. [c.174]

    Согласно положениям Периста при растворепии твердых тел в жидкостях на границе основной массы жидкости и твердого тела существует насыщенный раствор данного вещества в жидкости. Скорость растворения твердого вещества определяется скоростью диффузии вещества из насыщенного раствора в основную массу жидкости. [c.236]

    Зародышеобразование в растворах. Предэкспоненциальный множитель в выражении для скорости образования зародышей в растворе пропорционален квадрату плотности растворенного вещества п и потоку частиц на поверхности кристаллического зародыша, площадь которого пропорциональна Ала . В случае раствора этот поток определяется скоростями диффузии и пристройки частиц к зародыщу. Пристройка частиц требует разрывов их связей с растворителем, т. е. преодоления потенциального барьера. Этот процесс изучен очень плохо. Имеющиеся данные позволяют лишь оценить энергию активации для полного процесса доставки частиц в решетку макроскопического кристалла. Так, для роста грани [c.279]

    Частицы коллоида обладают значительно большими размерами и значительно большей массой, чем молекулы растворенного вещества в истинном растворе. Вследствие этого скорости теплового движения частиц коллоида и вызываемого этим движением процесса диффузии соответственно во много раз меньше, чем в истинных растворах. Чем крупнее частицы и чем соответственно меньше скорость их движения, тем меньше и скорость их диффузии. Это относится не только к коллоидным, но и к истинным растворам, н при сопоставлении различных кристаллоидов в истинных растворах также легко установить обрать1ую зависимость между величиной молекулы и скоростью диффузии (табл. 57). [c.512]

    Неокисленные битумы имеют более высокое содержание ароматических углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов. Неокисленные битумы и полимеры СБС имеют большое сродство и поэтому в большей степени совместимы. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что в составе окисленных битумов содержится 30-31% мелких коллоидных частиц размером до 16 А и 69-70% крупных коллоидных образований с размерами до 440 А. Такой битум, представленный в основном грубодисперсными частицами, можно отнести к системам типа золь-гель . Неокисленный битум содержит 85-86% частиц с размерами 9-10 А и лишь 12-13% частиц с размерами до 405 А. Такую коллоидную систему можно отнести к типу золь . В мелкодисперсной системе заметно выше скорости диффузии растворителя в полимер, процессы набухания проходят быстрее, растворение более полное. [c.39]

    Реакция оксиэтилирования является каталитической гетерогенной реакцией, протекающей в две стадии 1-я — диффузия и растворение газообразной окиси этилена в расплавленном оксиэтилируембм соединении, 2-я — сам акт присоединения окиси этилена к этому соединению. Скорость первой стадии определяется скоростью диффузии (1-й закон Фика). [c.166]

    Скорость растворения фосфатов в растворах фосфорной кислоты, не насыщенных продуктами реакции, лимитируется скоростью диффузии ионов кальция Са от частиц фосфата в жидкую фазу. Поэтому, высокая степень разложения фосфата на первой стадии может быть достигнута лишь при определенной концентрации фосфорной кислоты, равной 30—40% Р2О5. На второй стадии, которая является определяющей для процесса разложения фосфата в целом, наибольшая скорость разложения достигается в растворах, содержащих около 45% Р2О5. С учетом этих требований выбирается технологический режим производства суперфосфата. [c.293]

    Набухание полимеров. Процесс растворения полимеров, как указывалось, проходит через стадию их набухания. Внешне процесс набухания выражается в изменении объема и веса образца вследствие поглощения полимером растворителя. Набухание можно рассматривать как одностороннее смешение, т. е. только как проникание растворителя в полимер. Подвижность макромолекул слишком мала, а силы когезин велики, поэтому вначале макромолекулы полимера пе диь 1фуиднруют в растворитель. Молекулы растворителя, диффундируя в полимер, вначале заполняют в нем межмолекулярные пространства, а затем, по мере увеличения объема растворителя в полимере, начинают раздвигать макромолекулы. Скорость диффузии растворителя в полимер мавпсит от свойств растворителя и структуры полимера, С увеличением количества продиффундировавшего в полимер растворителя расстояние между макромолекулами постепенно возрастает, что приводит к пропорциональному увеличению размеров набухающего образца. Таким образом, набуханием называют проникание молекул растворителя между макромолекулами 1[олимера, вследствие чего увеличиваются расстояния между 01-дельными сегментами, а затем и цепями полимера. [c.63]

    Укрупнение частиц может происходить по нескольким причинам. Как известно, мелкие капельки и кристаллики имеют повышенное давление пара и соответственно повышенную растворимость. Увеличение давления пара или растворимости связано с линейными размерами частиц уравнением Гиббса—Томсона. Согласно этому уравнению, эффект должен быть заметен даже для частиц коллоидных размеров, поэтому в гетерогенной системе с достаточно высокой степенью дисперсности большие частицы растут за счет меньших. Так как скорость этого процесса определяется скоростью диффузии растворенного вещества от одной частицы к другой, то он наблюдается только в золях достаточно растворимых веществ. Известно, что Ag l и Ва304, которые сравнительно хорошо растворимы в воде, образуют не очень устойчивые золи. При добавлении спирта растворимость Ва804 понижается, а устойчивость золя повышается. Процессы рекристаллизационного укрупнения играют важную роль в весовом анализе и во многих других случаях. Этим же процессам приписывают, например, рост частиц галогенидов серебра при приготовлении фотоэмульсий.  [c.192]

    Рекристаллизацию можно считать методом самоочистки юсадка. Скорость рекристаллизации увеличивается с ростом температуры (увеличивается растворимость и скорость диффузии в адгезионный слой). Кроме того, сильное влияние оказывают растворитель и вид растворенных и адсорбированных ионов. Особенно прочно адсорбируемые ионы и молекулы, например органических красителей, могут подавить рекристаллизацию. [c.207]

    В гальванических элементах не только на границах раздела металл — раствор его соли, но и на границах между растворами, отличающимися концентрацией (активностью) или природой растворенного вещества, возникают потенциалы. Последние получили название диффузионных потенциалов. Причины их возникновения заключаются в неодинаковой подвижиости ионов в растворе, а также в неодинаковой скорости диффузии ионов (О пыт 58). При демонстрации этого опыта необходимо остановиться на способах устранения диффузионных [c.121]


Смотреть страницы где упоминается термин Растворение и скорость диффузии: [c.233]    [c.426]    [c.87]    [c.144]    [c.407]    [c.377]    [c.77]    [c.33]    [c.66]    [c.295]   
Основы общей химии Т 1 (1965) -- [ c.162 ]

Основы общей химии том №1 (1965) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия при растворении

Диффузия скорость диффузии

Скорость диффузии



© 2025 chem21.info Реклама на сайте