Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация механическая звене

    Большой экспериментальный материал по молекулярной гидродинамике и оптике растворов полимеров позволяет разделять полимеры на гибкоцепные и жесткоцепные в зависимости от проявляемых ими гидродинамических и электрооптических свойств в разбавленных растворах [6, 7]. При этом основным критерием для такого разделения является величина равновесной жесткости, молекулярных цепей, которая характеризует среднюю конформацию макромолекулы — ее размеры и геометрическую форму, принимаемые в растворе в равновесном состоянии. Количественной мерой равновесной жесткости (гибкости) макромолекул может служить длина статистического сегмента Куна А [8] или числс мономерных звеньев в сегменте 5=Л/Я (где К — длина мономерного звена в направлении основной цепи), а также персистентная длина а=/4/2 червеобразной цепи [9], моделирующей макромолекулу. Для подавляющего большинства гибкоцепных полимеров-длина сегмента Куна лежит в интервале 15—30 А [10, 11]. Напротив, у жесткоцепных полимеров А может составлять сотни и тысячи ангстрем [12]. Многие важнейшие свойства полимерных материалов (такие, как возможность кристаллизации, температура стеклования, релаксация механических и электрических свойств и ряд других) существенно зависят не только от равновесной, но также и от кинетической жесткости полимерных молекул. Понятие кинетической гибкости не столь универсально, как равновесной. Кинетическая гибкость, характеризуя кинетику деформации и ориентацию макромолекулы под действием внешнего поля, определяется характером и продолжительностью действия приложенного поля и, следовательно, рассматриваемым физическим процессом. Сведения о кинетической гибкости получают путем исследования скорости протекания процессов, в которых макромолекула переходит из одной конформации в другую. Поэтому мерой кинетической жесткости макромолекулы может служить время, необходимое для изменения конформации цепи под дей ствием внешнего воздействия. Вопрос о соотношении равновесной и кинетической гибкости полимерной цепи является фундаментальной проблемой молекулярной физики полимеров. Количественные сведения о равновесной и кинетической (проявляющейся под действием электрического поля) гибкости цепных молекул могут быть получены при исследовании их электрооптических свойств в разбавленных растворах. [c.35]


    Для статических режимов характерны изменения во времени токов поляризации, аналогичные явления ползучести и релаксации напряжения при механических воздействиях. Для нх исследования применяют метод термостимулированной деполяризации, аналогичный методу термостимулированного сокращения предварительно деформированного полимера. При воздействии переменного электрического поля в полимерах возникает несколько типов релаксационных процессов низкотемпературные р- и у-переход и а-переход в области стеклования. Первые два относятся к так называемым дипольно-групповым, где кинетическими единицами являются боковые привески (V-переходы) или мелкомасштабные участки (звенья) главной цепи (р-переход). Процесс а-релаксации в электрических полях называют дипольно-сегментальными, так как кинетическими единицами этого процесса являются сегменты. [c.249]

    Ранее, в гл. 3, было показано, что термодинамические параметры полимеров хорошо описываются методом инкрементов. Рассмотрим теперь, как, исходя из метода инкрементов и полученных в гл. 3 значений энергий химической связи, ван-дер-ваальсового взаимодействия, можно определить упругие и неравновесные свойства полимеров. При описании механических свойств полимеров будет использована модель [44], состоящая из двух элементов Александрова — Лазуркина [45], соединенных под углом. Эта модель дает возможность хорошо описать экспериментальные данные как при больших, так и при малых деформациях. Найденный с помощью данной модели спектр времен релаксации позволяет установить связь между временами релаксации (или переходами), определяемыми из акустических экспериментов, и временами, определяемыми из экспериментов по статической релаксации напряжения или ползучести. Кроме того, будет установлена зависимость между энергиями химической и межмолекулярной связи и упругими параметрами модели. Полученные соотношения имеют простой физический смысл и дают возможность рассчитать упругие свойства полимеров по химическому строению повторяющегося звена. [c.151]

    Таким образолг, если условия ориентации способствуют протеканию процессов с большими временами релаксации, то ориентация сопровождается повышением плотности упаковки и снижением теплосодержания. При отсутствии таких условий ориентация приводит к разрыхлению упаковки полимера и повышению теплосодержания, несмотря на имеюш,ее место выпрямление цепей, приводящее к возникновению структурной и механической анизотропии . Поэтому процессы ориентации следует рассматривать как явления нарушения ближнего порядка в расположении звеньев (т. е. понижения плотности упаковки ценей при их выпрямлении) и последующего установления нового состояния порядка в расположении полимерных цепей. При благоприятных условиях в дальнейшем может установиться состояние равновесия, характеризуемое уменьшением расстояний между звеньями соседних цепей и повышением плотности упаковки. [c.102]


    В обеих совокупностях могут независимо происходить ориентация и дезориентация структурных элементов с соответствующими периодами релаксации. Поэтому для высокополимеров мы должны различать две группы периодов релаксации, относящиеся к распределению звеньев в цепи и к распределению цепей друг относительно друга. Обе группы процессов оказывают влияние па физические свойства высокополимеров. В зависимости от того, какая группа процессов является основной при проводимом измерении, мы получаем ту или иную характеристику изучаемого физического свойства высокополимера. Так, например, изучая механические свойства при очень быстрых деформациях, мы изменяем в процессе исследования лишь форму цепей, но не их взаимное расположение [8]. При этом, естественно, выпадают процессы, связанные с перемещением цепей как целого (т. е. процессы вязкого течения), период релаксации которых весьма велик по сравнению с временем деформации. Поведение материала в этом случае будет чисто упругое. [c.224]

    Известно, что повышение прочности искусственных целлюлозных волокон почти всегда сопровождается понижением из разрывных удлинений. Однако сущность этого факта пе была еще настолько ясна, чтобы предвидеть и объяснить возможные соотношения изменений между прочностью и разрывными удлинениями для волокон, упрочненных но различным механическим схемам при прочих равных условиях. Между тем упрочнение целлюлозного волокна разными методами при постоянстве всех других условий приводит при равных разрывных прочностях к разрывным удлинениям готовых волокон, отличающимся друг от друга в 2—3 раза, причем, что особенно интересно, такое резкое падение удлинений возможно даже при сравнительно более низких прочностях. Как это было показано в экспериментальных работах, обобщенных Каргиным и Слонимским [4] в единую теорию переходных состояний линейных полимеров, имеющих и ниже температуры химического распада, переход из вязкотекучего состояния в стеклообразное совершается через высокоэластическую область с исчезновением большого набора периодов релаксации и может осуществляться как за счет межмолекулярного, так и за счет внутримолекулярного взаимодействия звеньев цепи. Естественно предположить, что стеклование полимерных волокон связано с теми же причинами и что увеличение жесткости линейных молекул целлюлозы может совершаться под действием механического напряжения, приложенного извне. [c.270]

    Любое взаимное перемещение цепных молекул или их участков требует определенного времени. /У олекулы полимеров гибки и состоят из отдельных звеньев, обладающих известной независимостью. Поэтому полимеры отличаются от простых жидкостей широким набором времен установления механических равновесий (времен релаксации), вследствие чего механические свойства полимеров всегда зависят от продолжительности деформации. [c.37]

    В работе [62] исследовано деформационное поведение цепочек, расположенных на объемных решетках (трехмерный случай), методом решеточных моделей полимерной цепи [65, 66]. Анализ показывает, что наименьшая кинетическая единица (сегмент) состоит из пяти звеньев полимерной цепи (валентные углы практически не деформируются). Релаксационное поведение полимерной цепи в механических и диэлектрических полях различно. Так, времена релаксации электрической поляризации не зависят, а времена механической релаксации возрастают с увеличением молекулярной массы. Поэтому спектр во втором случае будет более широким. Несколько позднее эквивалентные модели были предложены Раузом [67] и Бикки [68]. [c.129]

    Релаксацией напряжения называют процесс перехода к состоянию равновесия при данной температуре и постоянной деформации. Если полимер подвергнуть воздействию механического поля, то макромолекулы будут изменять свои конформации. Движением отдельных звеньев, групп звеньев, боковых цепочек и других более крупных частей макромолекулы соответствуют свои времена релаксации, т. е. скорость изменения конформации макромолекулы в целом определяются спектром времен релаксации, которые измеряются методами релаксационной спектроскопии [19, с. 95]. [c.39]

    Релаксационные явления в полимерных пленках. Процессы, имеюшие место при механическом воздействии на полимерные материалы, протекают не мгновенно, а во времени. Скорость установления статистического равновесия (релаксации) связана с вероятностью перехода системы из одного состояния в другое. Наиболее легко релаксационные процессы протекают у полимеров в вязкотекучем и высокоэластическом состояниях (время релаксации 10 —10 с). Но релаксация напряжений на уровне звеньев, молекул и надмолекулярных образований медленно может протекать и в стеклообразном, и кристаллическом состоянии полимеров. Если растянуть пленку (рис. 4.1) на величину ео (приложить напряжение Оо), а потом снять нагрузку, то пленка начнет медленно [c.69]


    Если вследствие неравномерного распределения внутренних напряжений на каком-то участке макроцепи сконцентрируется достаточное количество энергии, произойдет механическое разрушение основных цепей с последующей релаксацией напряжения на обрывках макромолекул. В большей степени подвержены разрушению термодинамически наиболее слабые связи в цепи. Как будет подробно рассмотрено в разделе 3.6, прочность связей зависит от строения полимера. Низкие значения энергии активации механической деструкции объясняются существованием слабых звеньев в полимерной цепи [629, 895, 896]. Причинами их возникновения 1896, 962 ] могут быть тип инициатора полимеризации, а также такие условия полимеризации, которые приводят к включению в цепь атомов кислорода [972]. Слабые связи были обнаружены также при изучении термодеструкции полимеров [375]. [c.19]

    Вывод о корреляции совместимости полимеров с ОЭА и прочностных параметров полученных резин относится прежде всего к по-лифункциональпым олигомерам разветвленного строения и обусловлен следующими соображениями. Известно, что при блочной полимеризации ОЭА происходит образование весьма плотной сетки с перенапряженными (дефектными) участками. Возникновение микроскопических дефектов является одной из особенностей трехмерной полимеризации и связано с тем, что процессы релаксации механических напряжений при отверждении затруднены вследствие жесткой фиксации каждого звена в сетке с помощью химических связей, а не сил ван-дер-Ваальса, как в случае линейных полимеров. При структурировании СКН-26 полифункциональными ОЭА, хорошо с ним совместимыми, молекулы каучука оказывают пластифицирующее действие на жесткий отвержденный олигомер, в результате чего достигается высокая прочность таких систем. Для бутадиен-стироль-лого каучука, плохо совместимого с полярными олигоэфирами, раз- [c.250]

    Установлено, что данное выражение справедливо для ряда полимеров (ПВХ, ПК, ПММА, ПС, ацетата целлюлозы) в более или менее широких интервалах температур и скоростей деформации [154, 156, 158]. Значения у (зависящих от температуры) активационных объемов при комнатной температуре заключены в интервале 1,4 нм (ПММА) — 17 нм (ацетат целлюлозы). Это означает, что, согласно данному представлению, деформация полимеров при достижении предела вынужденной эластичности обусловлена термически-активированным смещением молекулярных доменов в объемах, размеры которых в 10 (ПММА) — 120 (ПВХ) раз больше длины мономерного звена. Ряд авторов указывал [155—158, 160], что приведенный выше критерий (8.29) соответствует критерию вынужденной эластичности Кулона To+ ip = onst. Коэффициент трения ц обратно пропорционален у. Анализируя свои экспериментальные данные по поликарбонату с учетом выражения (8.29), Бауэне— Кроует и др. [158] приходят к выводу о существовании двух процессов течения. Они связывают их с а-процессом (скачки сегментов основных цепей) и с механизмом механической -релаксации. [c.304]

    В соответствии с формулами (2.8) и (2.9) полная деформация смеси при механической обработке складывается из упругой, высокоэластической и пластической составляющих. Упругая (гуковская) часть деформации мгновенно восстанавливается после снятия нагрузок и не оказывает влияния на свойства заготовок. Пластическая составляющая обеспечивает течение И формование смеси. Высокоэластическая деформация косит релаксационный характер, присуща всем методам формования резиновых смесей, но, как следует из рис. 3.1, имеет особую важность в процессах каландрования, протекающих в области нестационарного режима деформирования смесей ( жЮ) После снятия внешних сил ориентированные макромолекулы ст ремятся вернуться в равновесное состояние под влиянием хаотического теплового движения молекулярных звеньев и молекулы каучука частично переходят к своей обычной клубкообразной форме. При этом наблюдается усадка, проявляющаяся в уменьшении ширины, длины и увеличении толщины заготовки без изменения ее объема. В соответствии с общими закономерностями релаксации наибольшая усадка происходит в первые минуты после формования и в основном заканчивается в момент выравнивания температуры смеси и окружающего воздуха. Величина усадки определяется каучуковой составляющей смеси она тем выше, чем большее количество каучука указано в рецепте. Каучуки и. смеси на их основе по склонности к усадке при шприцевании могут быть расположены в следующий ряд- НК + БСК> СКД>НК> БСК> СКИ--3> БК- Усадка снижается при применении в рецепте высокоструктурных и малоактивных видов технического углерода, при ведении процесса на повышенных температурах и увеличении времени формуюш,его воздействия на резиновую смесь. [c.71]

    Релаксационные явления в значительной степени определяют протекание физических и химических процессов в полимерах [7.1—7.9]. Полимеры — сложные многоуровневые системы, состоящие из структурных элементов (кинетических единиц) различной природы (атомов, боковых и концевых групп, звеньев макромолекул, свободных и связанных сегментов,- элементов надсегментальной и надмолекулярной структуры, физических и химических узлов сетки, частиц наполнителя и т. д.). Это приводит к большому разнообразию форм молекулярной подвижности и соответствующих им релаксационных процессов, которые наблюдаются при действии на полимер механических, электрических или магнитных полей. При этом наиболее универсальным воздействием, позволяющим получить полную информацию о молекулярной подвижности и процессах релаксации в полимерах, является механическое воздействие. Электрические и магнитные поля могут вызвать не все релаксационные переходы, так как электрическое поле действует только на элементы, обладающие дннольным моментом, а магнитное поле — на элементы, обладающие магнитным моментом. [c.195]

    Дщэлектрические свойства полиэтилена изучены Михайловым, Кабиным, Крыловой [562] и другими [563—567]. При сравнении диэлектрических потерь tgб на частотах 1,5 и 10 кгц в области температур от —120 до +100° полиэтилена низкого и высокого давления сделан вывод о том, что наблюдаемые потери относятся к высокочастотным потерям, обусловленным движением звеньев макромолекул, и к низкочастотным, обусловленным движением -частей молекул, которое определяется степенью кристалличности. Характерные для полиэтилена высокого давления потери среднечастотной релаксации, связанные с наличием аморфной фазы, отсутствуют у пoлиэtилeнa низкого давления. Измерение механических потерь ультразвуковым методом, в зависимости от температуры при частоте 2 Жгц, обнаружили только высокочастотную релаксацию. Наблюдаемые явления объясняются высокой степенью кристалличности полиэтилена низкого давления [561]. [c.235]

    Как правило, вулканизацию смесей на основе фторкаучу ков — сополимеров ВФ с ГФП, ТФЭ и ПФМВЭ — проводят в две стадии формование под давлением в прессе или автоклаве с острым паром довулканизация в термостате. На первой стадии происходит растекание резиновой смеси по форме и ее фиксация в результате сшивания, формирования первичной вулканизационной структуры. На второй стадии при термостатирова-нии происходит увеличение степени сшивания эластомера [2], изменение структуры вулканизационной сетки (предполагается [102], например, что возникают поперечные связи за счет протекания реакции Дильса—Альдера между соседними дегидрофто-рированными звеньями), удаление побочных летучих продуктов вулканизации (НС1 или HF, НгО и т. д.). Термостатирование значительно улучшает физико-механические свойства изделий и особенно стойкость к накоплению остаточной деформации сжатия при старении в напряженном состоянии, которая наряду со скоростью релаксации напряжения является одним из важнейших показателей, позволяющих оценивать долговечность изделий в качестве уплотнительных элементов [104]. [c.169]

    Переход от строения 1 к строению 3 сопровождается значительным понижением температуры стеклования и ударной вязкости с одновременным увеличением плотности и модуля упругости. Гомополимер на основе 1 обнаруживает способность к развитию больших деформаций вплоть до разрушения даже при —180 °С, сополимер 1 и 2 разрушается хрупко практически во всем интервале температур. Низкотемпературное старение иоли-ариленсульфонов (например, при 150 °С) приводит к существенному снижению ударной вязкости и возрастанию модуля упругости, плотность при этом также несколько увеличивается. Сопоставляя показатели механических свойств с плотностью полимеров, авторы [21] делают вывод, что решающим фактором в формировании свойств полиариленсульфонов при изменении изомерного состава звена, а также при старении полимеров данного типа является плотность упаковки макромолекул в монолитном теле. Возможно, что при формировании монолитного тела из полиариленсульфонов так же, как и из других теплостойких ароматических полимеров, макромолекулы принимают неравновесные мета-стабильные конформации. При отжиге вследствие релаксации внутренних напряжений конформации могут несколько изменяться, и макромолекулы упаковываются более плотно. [c.161]

    Поведение ряда синтетических и натуральных полиамидов в процессе релаксации было исследовано [634] методами динамико-механических измерений и ЯМР широких линий были изучены также четыре ароматических полиамида [635]. Распределение звеньев в некоторых ароматических сополиамидах исследовали методом ЭПР с использованием Ы,М-диметилацет-амида, содержащего хлорид лития [636]. При получении данных о конформациях полиамидов с жесткой структурой использовали [637] обработку лантанидными реагентами. [c.552]

    Если структура мономерного звена проявляется на температурном положении а-перехода, то такие молекулярные параметры полимерной цепи, как степень поперечного спшвания и молекулярная масса, сказываются при более высоких температурах. Для линейных полимеров динамические механические показатели являются функцией их молекулярной массы. Чем выше температура, тем больше дл1ша молекул или участков молекул, которые проявляют свою подвижность [76, 164]. На полимерах с бимодальным ММР нам удалось наблюдать в явном виде проявление подвиншости мо.чекул низкомолекулярной фракции как целого при наличии сетки зацеплений, создаваемой высокомолекулярной фракцией [94, 185]. Чем больше молекулярная масса низкомолекуляр-ной фракции, тем выше температура, при которой происходит этот релаксационный процесс, среднее время релаксации которого пропорционально молекулярной массе в степени 3,2 (рис. 95) [96]. [c.100]

    Релаксационные явления в полимерных пленках. Процессы, имеющие место при механическом воздействии на полимерные материалы, протекают не мгновенно, а во времени. Скорость установления статистического равновесия (релаксации) связана с вероятностью перехода системы из одного состояния в другое. Наиболее легко релаксационные процессы протекают у полимеров в вязкотекучем и высокоэластнческом состояниях (время релаксации 10 —10" с). Но релаксация напряжений на уровне звеньев, молекул и надмолекулярных образований медленно может протекать и в стеклообразном, и кристаллическом состоянии полимеров. Если растянуть пленку (рис. 4.1) на величину Бц (приложить напряжение Оо), а потом снять нагрузку, то пленка начнет медленно сокращаться, стремясь перейти в равновесное состояние е . Это проявление упругих свойств называется упругим последствием. Таким же образом в растянутом образце [c.67]


Смотреть страницы где упоминается термин Релаксация механическая звене: [c.108]    [c.108]    [c.122]    [c.119]    [c.42]   
Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.365 , c.383 , c.404 , c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Звенья

Релаксация механическая



© 2025 chem21.info Реклама на сайте