Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак осаждение вольфрама

    ПОЛНОГО разделения не происходит — холодный раствор соды вымывает до 20% рения [81 ]. Можно элюировать уголь и аммиаком — образуются растворы перрената аммония. Полученные растворы, содержащие 0,2—0,5 г/л Ке, можно концентрировать выпариванием или повторной адсорбцией на угле. Растворы после второй элюации уже не требуют упарки для осаждения перрената калия [7, с. 62 ]. Для выделения рения из очень бедных природных и промышленных вод предложена сорбция на активированном угле, насыщенном комп-лексообразователем — красителем метиленовым голубым [81]. Такой уголь селективно сорбирует рений из нейтральных или слабощелочных растворов (pH 6—8), содержащих Мо и Из кислых растворов (рН< 5) молибден и вольфрам сорбируются вместе с рением. [c.300]


    Синтез аммиака Железо — молибден — вольфрам (испарение и осаждение на холодной поверхности с одновременным применением газообразного стабилизующего агента также осаждающегося) Молибденовая, вольфрамовая или платиновая проволока 165 1 [c.541]

    Описанная обработка неприменима к минералам, состоящим в основном из фосфатов Для разложения таких минералов требуется однократное или многократное сплавление с карбонатом натрия, за исключением тех случаев, когда их исследуют на содержание одного лишь компонента (обычно тория). В водной вытяжке плава содержатся фосфор мышьяк, сурьма, олово и вольфрам, а также большая часть креМния, алюминия и урана. Остаток тщательно промывают разбавленным раствором карбоната натрия, а фильтрат выпаривают с азотной кислотой для переведения кремнекислоты в нерастворимое состояние (при этом частично выделяются также вольфрам и сурьма). После выпаривания и отделения кремнекислоты фильтрат насыщают сероводородом для удаления свинца, мышьяка и оставшейся в растворе части сурьмы. Удалив -сероводород и упарив раствор, осаждают фосфор молибденовой жидкостью (стр. 781) (которую предварительно проверяют на содержание алюминия и других осаждающихся аммиаком элементов) и заканчивают его определение, как указано в гл. Фосфор (стр. 784). Из фильтрата, выпаренного для удаления избытка азотной кислоты, выделяют алюминий двукратным осаждением аммиаком (стр. 565). Осадок промывают 2%-ным раствором нитрата аммония, прокаливают и взвешивают. [c.625]

    Вольфрам захватывается осадком фосфоромолибдата аммония и должен быть отделен перед осаждением, за исключением, быть может, тех случаев, когда содержание его невелико и определение проводят молибдатно-магнезиальным методом. Отделение вольфрама осуществляют нагреванием с азотной и соляной кислотами и последующим фильтрованием. Фильтрат следует затем выпарить с азотной кислотой для удаления большей части соляной кислоты, а вольфрамовую кислоту необходимо исследовать на содержание в ней фосфора, лучше всего растворением в аммиаке, содержащем цитрат аммония, и осаждением магнезиальной смесью из ледяного раствора, как описано на стр. 788. [c.783]

    Первая стадия — разложение — в распространенных схемах имеет целью перевести вольфрам в вольфрамат натрия, растворимый в воде, или в вольфрамовую кислоту, легко растворимую в растворе аммиака. При переходе в эти соединения вольфрам сразу отделяется от ряда примесей. В растворе возможна дальнейшая очистка вольфрама избирательным осаждением. Применяются и другие методы вскрытия минерала и очистка вольфрамовых соединений, основанные на использовании других свойств — летучести, адсорбции, комплексообразования. К ним относятся хлорирование, образование карбонилов, экстракция органическими растворителями, ионный обмен. Но эти методы не вышли за рамки лабораторных исследований (см. ниже). [c.579]


    Качественный анализ вольфрама очень слабо разработан. В основном используют осаждение малорастворимой вольфрамовой кислоты при действии на вольфраматы минеральных кислот вместе с вольфрамовой в этих условиях осаждается кремневая кислота. От последней вольфрам отделяют обработкой осадка аммиаком, а затем обнаруживают в фильтрате. Из неорганических реагентов чаще всего используют роданиды щелочных металлов и аммония в присутствии восстановителей [Ti(IH), Sn(II)], из органических — толуол-3,4-дитиол (дитиол). Вероятно, для обнаружения можно использовать реагенты, рекомендованные для фотометрического определения вольфрама они чувствительны и достаточно надежны, особенно после отделения вольфрама, например кислым гидролизом. Реагенты, рекомендованные для гравиметрического определения вольфрама, мало пригодны для его обнаружения, так как образуют нехарактерные осадки с вольфрамом. [c.47]

    Щелочные растворы применяют главным образом при нанесении покрытий на коррозионно-стойкую сталь, алюминий, титан, магний, различные неметаллы, а также при необходимости осаждения многокомпонентных покрытий (сплавов) на основе никеля или кобальта (например, никель-кобальт-фосфорных или кобальт-вольфрам-фосфорных и других покрытий). При корректировании щелочные растворы могут работать длительное время благодаря наличию в их составе комплексообразователей (таких как лимоннокислый натрий и аммиак). Но в результате регулярного добавления гипофосфита в ванне растет концентрация фосфитов. Добавка хлористого никеля и аммиака увеличивает концентрацию хлористого аммония, что нежелательно. Так, в растворе при pH 8—9 следующего состава (г/л) хлористый никель 45 гипофосфит натрия 20 хлористый аммоний 45 лимоннокислый натрий 45 максимальная [c.24]

    В присутствии больших количеств молибдена вольфрам может-быть осажден аммиаком с гидроокисью железа отфильтрованный осадок гидроокисей растворяют в соляной кислоте и затем обрабатывают избытком едкого натра — вольфрам переходит в щелочной фильтрат [c.323]

    Щелочные растворы применяют главным образом при нанесении покрытий на нержавеющую сталь, алюминий, титан, магний, различные неметаллы, а также при необходимости осаждения многокомпонентных покрытий (сплавов) на основе никеля или кобальта (например, никель-кобальт-фосфорных или кобальт-вольфрам-фос( юрных и других покрытий). Благодаря наличию в составе щелочных растворов таких комплексообразователей, как лимоннокислый натрий и аммиак, они могут при корректировании работать длительное время. Однако в результате регулярного добавления гипофосфита в ванне растет концентрация фосфитов добавка хлористого никеля и [c.28]

    Целесообразнее, однако, отделить фосфор выш,елачиванием плава водой, а нерастворимый остаток растворить в кислоте и раствор присоединить к фильтрату от кремнекислоты. В водной вытяжке карбонатного плава, помимо фосфора, могут находиться также и другие элементы, как, например, олово, вольфрам, ниобий, и поэтому ее следует тш,ательно исследовать. При обработке фильтрата от кремнекислоты аммиаком находящийся в растворе фосфор осаждается совместно с железом, алюминием и титаном. Когда содержание фосфора преобладает, он может вызвать также осаждение и щелочноземельных металлов, в исключительных случаях даже количественное. Если влияние фосфора не учитывается, то результаты определения алюминия могут получиться ошибочными. Если же при осаждении аммиаком происходит соосаждение щелочноземельных металлов, то результаты определения последних в фильтрате после осаждения аммиаком будут также неправильными. [c.711]

    Никель не осаждается электролизом из сильнокислых растворов. Осаждение в слабокислых растворах неполно, и для количественного анализа оно интересно лишь тем, что подчеркивает необходимость электролитического осаждения меди в сильнокислом растворе во избежание загрязнения осадка меди никелем и потери никеля. Из аммиачных растворов никель и кобальт осаждаются легко и количественно, если принять некоторые простые меры предосторожности. Электролиз рекомендуется проводить в сильноаммиачном растворе, содержащем сульфат никеля и в некотором избытке—сульфат аммония. Если присутствует кобальт, осажление облегчается прибавлением ацетата натрия или, лучше, сульфита натрия, хотя последний несколько загрязняет осадок серой. Электролиз можно проводить и в растворах, содержащих хлориды вместо сульфатов. Нитраты должны отсутствовать, хотя одному или двум экспериментаторам удалось получить осадки и в их присутствии. Соли калия не оказывают влияния, так же как и малые количества марганца и хрома в присутствии бисульфита натрия. Хотя малые количества осаждающихся гидроокисей таких элементов, как железо и др., не окклюдируются в значительной степени отложившимся на катоде никелем, лучше все же их предварительно удалять повторным осаждением аммиаком, если они присутствуют в малых количествах, и ацетатным методом, если количество их велико. Серебро, медь, мышьяк и цинк также осаждаются, следовательно сероводородную группу и цинк следует всегда предварительно удалять. Ванадий и вольфрам нежелательны ванадий, видимо, не мешает осаждению одного никеля или одного кобальта, но мешает их совместному осаждению вольфрам не мешает осаждению никеля, но препятствует осаждению кобальта или никеля и кобальта вместе. Соли железа (И), хроматы, тартраты и молибден очень мешают осаждению . Электролиз не должен быть слишком продолжительным вследствие некоторой тенденции анода растворяться с последующим осаждением платины на катоде. О полноте осаждения можно судить по пробе с тиокарбонатом калия. Осаждение никеля редко бывает полным, и при выполнении точных анализов требуется дополнительное выделение его из электролита. При однократном осаждении никеля из аммиачного раствора, содержащего сульфат аммония, получаемые осадки обычно весят на несколько десятых долей миллиграмма больше, чем это следовало бы, несмотря на неполноту осаждения никеля. [c.424]


    Железо отделяют от молибдена двукратным осаждением гидроокиси железа избытком аммиака [530]. Шестивалетный молибден можно количественно отделить от ряда сопутствующих элементов путем прибавления раствора хлоридов к концентрированному раствору КаОН [626, 1528]. Переосаждения не требуется. Щелочной фильтрат содержит, наряду с молибденом, весь вольфрам. [c.110]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Комнлексообразующее действие комплексона III успешно используется в аналитической практике для устранения-влияния посторонних элементов. Так, нанример, способность двух- и трехвалентных металлов образовывать прочные комплексные соединения с комплексоном III дает возможность осаждать уран и титан а также и бериллий (который в отличие от большинства двухвалентных металлов не образует комплексных соединений с комплексоном III) аммиаком в присутствии многих элементов, в том числе алюминия и железа, что имеет весьма важное практическое значение. Описано также применение комплексона III при определении вольфрама и молибдена осаждением оксихинолином в ацетатной среде. Установлено, что в этих условиях осаждаются только молибден, вольфрам, уран и ванадий (V) [c.158]

    Прекрасным методом предварительного отделгиия мышьяка, встречающегося в малых количествах во многих материалах, является осаждение его аммиаком в виде основного арсената железа. Этот метод применяется при анализе медных и молибденовых руд. В этих случаях разложение исходного материала ведут так, чтобы весь мышьяк получился в пятивалентной форме, затем прибавляют 0,1—0,2 г соли железа (III) (если последнее не присутствует уже в растворе в достаточном количестве) на каждые 10 мг мышьяка и осаждают, как указано в гл. Молибден (стр. 360). Ряд других элементов селен, теллур, фосфор, вольфрам, ванадий, олово и сурьма — также осаждается этим методом. Применение соли алюминия вместо соли железа (III) не дает таких удовлетворительных результатов. [c.308]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    К солянокислому раствору соли циркония прибавляют раствор аммиака до появления мути, после чего прибавляют 10 г-ацетата, аммония, 20 г нитрата аммония и 20—25 мл 80%-ной уксусной кислоты. Раствор нагревают до кипения и при перемешивании прибавляют 10%-ный раствор таннина в десятикратном избытке. После непродолжительного кипячения осаждение циркония заканчивается отстоявшийся осадок отфильтровывают и промывают горячим 10% -ным )аствором уксусной кислоты, к которой прибавлено немного нитрата аммония. 1осле высушивания при 110° С осадок озоляют и прокаливают. К остатку прибавляют несколько капель азотной кислоты и вновь прокаливают до постоянного веса Zr h. Мешают олово, медь, вольфрам, железо, ванадий, алюминий, торий, хром, галлий, молибден, ниобий и тантал. Цирконий хорошо определяется таннином при содержании более 0,6 мг 2гОг в 1 мл раствора. [c.55]

    Условия осаждения ионов уранила аммиаком аналогичны условиям для определения бериллия [75]. Комплексон не оказывает влияния на осаждение и количественное выделение диураната аммония. Аммиак не должен содержать карбоната аммония. Поэтому лучше получать раствор аммиака непосредственно в лаборатории пропусканием газа из баллона в дестиллированную прокипяченную воду и предохранять раствор по мере возможности от влияния углекислоты воздуха. Мешающее влияние комплексона, выражающееся в медленном выделении (МН4)2и20,, наблюдалось только при высоком содержании хлорида аммония. Сульфаты и нитраты не мешают. Определение урана можно проводить однократным или двукратным осаждением в присутствии почти всех элементов. Определению мешает присутствие титана и бериллия, затем ниобия, сурьмы и олова. Вольфраматы образуют с ионом уранила нерастворимый вольфрамат уранила иО.,Н4( У04)3-ЗВ. О. Однако небольшие количества вольфрама определению не мешают. Аналогично ведет себя и молибден. При повторном осаждении получаются удовлетворительные результаты. Из анионов мешают фосфат-, арсенит- и арсенат-ионы. При анализе руд и минералов большинство мешающих элементов удаляется в основных операциях хода анализа (олово, сурьма и вольфрам при выпаривании с кислотами, остальные выделяются сероводородом). Определение урана можно проводить в присутствии тория, лантана и остальных редкоземельных металлов. [c.96]

    Мешающие ионы. Анализируемый раствор не должен быть слишком кислым. Мышьяк (V) образует с применяемым реактивом аналогичный осадок. Если мышьяка (V) не слишком много и если осаждение проводят на холоду, то он не мешает. Кремнекислоту надо удалить предварительно оставшиеся малые ее количества не мешают. Вольфрам надо предварительно отделить, так как он образует осадок фосфоровольфрамата. Хлорид- и сульфат-ионы замедляют осаждение при высоком их содержании приходится вводить большой избыток реактива. Если не требуется очень большая точность, осаждение фосфоромолибдата можно проводить в 3 н. соляной кислоте или 1 н. серной кислоте. Перхлорат-ионы не мешают. Ионы калия могут войти в состав осадка вместо ионов аммония. Фторид-ионы образуют комплексные ионы с молибденом и потому мешают. Их надо отделить перед осаждением или (если их мало) связать в комплекс добавлением борной кислоты. Ванадий (V), образующий фосфорованадомолибдат, надо предварительно восстановить до ванадия (IV) прибавлением солянокислого гидразина. Ванадий (IV) не мешает, если осаждение проводят на холоду. Висмут, ниобий, тантал, титан и цирконий образуют малорастворимые в сильных кислотах фосфаты, которые осаждаются в небольших количествах вместе с фосфоромолибда-том. Однако при растворении полученного осадка в растворе едкого натра или аммиака указанные фосфаты остаются нерастворенными. При проведении точных анализов такой остаток надо сплавить с карбонатом натрия, плав обработать водой, [c.1083]

    Некоторые образцы металлического гафния, полученного йодидным аффинажем в виде проволоки или прутков, могут содержать вольфрам или молибден. В этом случае после растворения навески в плавиковой кислоте и упаривания до появления густых белых паров, остаток растворяют в 10— 15 мл воды, раствор переводят в центрифужную пробирку и осаждают гафний аммиаком, прибавляя его по каплям до полноты осаждения. Осадок центрифугируют, промываюн водой с несколькими каплями аммиака, растворяют в пробирке в 4н. соляной кислоте, раствор переносят в мерную колбу и далее анализируют, как описано выше. [c.20]

    Кодел [589] применял реагент для определения 0,05—0,5% W в титане. Вместе с вольфрамом осаждается молибден, поэтому после выделения оксиматов вольфрам отделяют обработкой осадка аммиаком, а в фильтрате осаждают его цинхонином в присутствии H IO4 и HNO3. Осаждению мешают фосфаты и фториды [674]. [c.94]

    При осаждении гидроокиси железа избытком аммиака из раствора, в котором присутствует вольфрам, последний велед-ствие раетворимости вольфрамата аммония должен был бы остаться в растворе. Однако вольфрам в подобных условиях оказывается в осадке гидроокиси и отделить егЬ от-железа с помощью аммиака Нельзя. [c.58]

Рис. 66. Кристаллы Анализ начинают с отделения катионов ольфрамата таллия подгруппы серебра четвертой аналитической (увеличение 130 раз), группы. При отделении катионов подгруппы серебра соляной кислотой вместе с нерастворимыми хлоридами (Ag l, Hg la и Pb lj) осаждается ион пятой аналитической группы—вольфрам. Осаждение вольфрама происходит в виде вольфрамовой кислоты. При дальнейшей обработке этого осадка аммиаком в раствор перейдут серебро в виде аммиаката и вольфрам в виде вольфрамата. Серебро и вольфрам можно разделить действием едкой щелочи. При этом серебро выпадет в осадок в виде окиси, а вольфрам останется в растворе, где может быть открыт. Рис. 66. <a href="/info/18812">Кристаллы Анализ</a> начинают с <a href="/info/14620">отделения катионов</a> ольфрамата таллия <a href="/info/646537">подгруппы серебра</a> <a href="/info/1491998">четвертой аналитической</a> (увеличение 130 раз), группы. При отделении <a href="/info/945750">катионов подгруппы серебра</a> <a href="/info/1816">соляной кислотой</a> вместе с <a href="/info/444240">нерастворимыми хлоридами</a> (Ag l, Hg la и Pb lj) осаждается ион <a href="/info/1488019">пятой аналитической группы</a>—вольфрам. Осаждение вольфрама происходит в виде <a href="/info/1762">вольфрамовой кислоты</a>. При <a href="/info/1549566">дальнейшей обработке</a> этого <a href="/info/442672">осадка аммиаком</a> в раствор перейдут серебро в <a href="/info/220448">виде аммиаката</a> и вольфрам в <a href="/info/1660607">виде вольфрамата</a>. Серебро и вольфрам <a href="/info/1520412">можно разделить</a> <a href="/info/518869">действием едкой щелочи</a>. При этом серебро выпадет в осадок в виде окиси, а вольфрам останется в растворе, где может быть открыт.
    Один из наиболее сгарых способов определения титана основан на осаждении его аммиаком, с последующим прокаливанием выделенного осадка до двуокиси. Определению мешают элементы, осаждаемые аммиаком, а также вольфрам, ванадий, мышьяк. Количество мешающих ионов может быть уменьшено путем варьирования pH среды /35-38/, применением слабых органических оснований -фенилгицразина /39/, пиридина /40-42/, уротропина /43,44/ и использованием комплексообразователей- салициловой, винной, лимонной, малоновой, этилендиаминотетрзуксусной кислот. [c.13]

    IV, V и VI. Представителем вольфрама(VI) является окись ШОз, растворяющаяся в щелочах с образованием вольфрамат-иона Нейтрализация или подкисление раствора приводит к образованию полимерных вольфрамовых кислот, выпадающих в осадок. Подобно молибдат-иону, вольфрамат-ион может также образовывать гетерополикислоты. Методы отделения (У1) от веществ, мешающих его определению, включают растворение в щелочах и соосаждение его окиси с Ре(ОН)з, А1 (ОН)з или арсе-натом свинца при нейтрализации аммиаком или гексаметилен-тетрамином. Различия в устойчивости тартратных комплексов молибдена и вольфрама позволяют отделять молибден от вольфрама осаждением МоЗз из кислых растворов. Подобно молибдену, вольфрам образует осадки с а-бензоиноксимом (экстрагирующийся хлороформом) и купферроном (экстрагирующийся изоамиловым спиртом). В разбавленных солянокислых растворах с вольфрамовой кислотой реагирует родамин В, причем окраска изменяется от желто-красной до фиолетовой. Эту реакцию можно также использовать в анализе, измеряя уменьшение интенсивности флуоресценции родамина В. Дитиол с Ш(У1) дает соединение, окрашенное в сине-зеленый цвет, которое экстрагируется органическими растворителями. При реакции образуется, вероятно, трис-комплекс. В растворах серной кислоты высокой концентрации между (У1) [а также Мо(У1) и Ti(IV)] и гидрохиноном идет реакция с образованием окрашенных веществ неизвестного строения. [c.318]

    Для отделения ниобия от больших количеств вольфрама А. И. Пономаревым и А. Я- Шескольской [66] разработан быстрый и точный метод осаждения ниобия купфероном в присутствии щавелевой кислоты, образующей прочный комплекс с вольфрамом, Бэкон и Мильнер [78] отделяют вольфрам и молибден обработкой купферонатов аммиаком, [c.245]

    Если от щелочных и щелочноземельных металлов аммиаком отделяется одно железо (III) или железо в сопровождении только титана и циркония и раствор не содержит фосфора в количестве, превышающем то, какое может быть связано железом, точная нейтрализация, необходимая для полного осаждения алюминия, значения не имеет. Не требуется также присутствия значительных количеств аммонийных солей, если только не приходится принимать во внимание наличия магния. Но если присутствует алюминий или требуется отделение железа от магния, цинка, марганца, никеля и кобальта, то нужно применить метод, описанный для отделения алюминия (стр. 517). Бумажную массу следует прибавлять при последнем из двух илн нескольких переосаждений железа. Она полезна тем, что делает осадок F jOg после прокаливания более тонко измельченным и легче растворимым. Следует помнить, что, кроме железа, аммиаком осаждаются многие другие элементы (см. стр. 95) и что осадок может захватить с собой вольфрам, ванадий, уран, мышьяк и фосфор. [c.400]

    Отделение вольфрама от ниобия и тантала обычно связано с большими затруднениями, >ыщелачивание смеси окислов, выделенных аммиа-К0Л1, сульфидом аммония или гидролизом из кислого раствора, или выщелачивание водой плава с карбонатом натрия и серой, так же как и кипячение щелочного раствора вольфрамата, ниобата и танталата, не дают удовлетворительных результатов Более того, ниобий и тантал препятствуют количественному осаждению вольфрама цинхонином (стр. 704). Для pa i-деления этих элементов можно использовать три метода , в зависимости от сопровождающих вольфрам элементов. Из них магнезиальный рекомендуется в тех случаях, когда требуется отделить вольфрам от титана, ниобия, тантала и циркония. Этот метод заключается в следующем. Смесь окислов (0,2—0,5 г) сплавляют с 4 г карбоната калия в платиновом тигле на сильном пламени в течение 10—15 мин. Сплавленную массу выщелачивают 200 мл горячей воды, следя за тем, чтобы полностью разложились комочки плава. Для этого нх разминают стеклянной палочкой, а раствор слабо кипятят. Горячий раствор обрабатывают свежеприготовленным реактивом (1 г кристаллического сульфата магния, 2 а хлорида аммония, 25 мл воды и 4 капли раствора аммиака). Покрывают часовым стеклом и оставляют стоять на закрытой водяной бане 1 час. Хлопьевидный осадок переносят на неплотный фильтр диаметром II см и промывают раствором хлорида аммония (насыщенный раствор NH l разбавляют в 4 раза водой). [c.619]

    В обычном ходе анализа горных пород вольфрам осаждается совместно с кремнекислотой, и его присутствие обнаруживается по желтой окраске выделившейся вольфрамовой кислоты. Это осаждение не количественное и может вовсе не произойти, если содержание вольфрама в пробе незначительно. Большая часть вольфрама, выделяюш,егося с кремнекислотой, теряется, если прокаливание остатка проводится, как обычно, при высокой температуре, так как вольфрамовая кислота начинает возгоняться при температуре около 800°. Значительная часть вольфрама (если не полностью), оставшегося в растворе после выделения кремнекислоты, попадает в осадок от аммиака даже после многократного переосаждения в виде соединений его с железом, алюминием и главным образом со щелочноземельными металлами. Осажденный таким образом вольфрам при прокаливании осадка от аммиака, по-видимому, не улетучивается и принимается за алюминий, если для определения железа проводится восстановление сероводородом или сернистым газом. В случае же восстановления железа цинком или хлоридом олова (II) ошибка распределяется между железом и алюминием (если не обращается внимания на посинение раствора, вызванное присутствием восстановленного вольфрама). [c.699]


Смотреть страницы где упоминается термин Аммиак осаждение вольфрама: [c.464]    [c.72]    [c.113]    [c.164]    [c.162]    [c.404]    [c.211]    [c.678]    [c.764]    [c.515]    [c.527]    [c.113]    [c.164]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.597 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам осаждение



© 2025 chem21.info Реклама на сайте