Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Монокристаллы строение

    Поверхность твердого тела. Твердое тело обладает жесткостью и способно сопротивляться приложенному к нему давлению. Поверхность твердых тел имеет весьма сложное строение. Поскольку возможны самые разнообразные типы расположения и связи поверхностных атомов, то на разных участках поверхности деталей двигателей и механизмов могут быть и разные химические свойства. С другой стороны, даже на монокристаллах различные грани, ребра и углы обладают разными свойствами. Все это предопределяет различие во взаимодействии разнородных фаз на отдельных участках поверхности. [c.179]


    Дайте структурное объяснение тому факту, что кварц образует прочные монокристаллы, асбест имеет волокнистое строение, а слюда-чешуйчатое. [c.643]

    Монокристаллическое состояние веществ в природе встречается довольно редко. Сейчас разработаны методы получения монокристаллов многих веществ, особенно металлов и оксидов. Их строение отличается дальним порядком, заключающимся в строго определенном расположении атомов или молекул по всему монокристаллу. Регулярное строение часто обусловливает наличие в кристаллах плоскостей спайности (между гранями с наименьшей поверхностной энергией), в которых действуют значительно меньшие [c.382]

    При поликристаллическом строении (мелкозернистое) плоскости спайности не совпадают в разных зернах, вследствие чего пределы упругости и прочности поликристаллической структуры значительно выше, чем у монокристалла. Чем больше размер зерен, тем сильнее сказываются особенности монокристаллов. С ростом дисперсности зерен уменьшается вероятность совпадения плоскостей спайности и прочность материала возрастает. [c.383]

    Теоретические значения прочности металла, рассчитываемые по величине энергии, затрачиваемой на образование двух новых поверхностей при преодолении межатомных связей в идеальной решетке монокристалла, во много раз выше значений технической прочности, получаемых при испытании реальных образцов того же металла. Эго расхождение объясняется наличием различного рода дефектов — несовершенств строения кристаллического тела. К таким дефектам — несовершенствам тонкой структуры — относят, прежде всего, дислокации. [c.71]

    Отличие в строении двух типов монокристаллов определяется разными условиями их роста и охлаждения. Ил. 4 Табл. 2. Список лит. 9 назв. [c.262]

    Важной характеристикой макромолекулы является величина отношения площади ее поверхности к размеру (массе). Молекулы, разумеется, не имеют поверхности. Таким образом, макромолекулами данного твердого вещества являются твердые тела одного и того же состава, строения и молекулярной массы не менее некоторой критической величины. Монокристаллы алмаза, граната, цеолитов представляют собой макромолекулы. Кусок каменного или древесного угля, стекла или других некристаллических твердых тел — тоже макромолекула соответствующего твердого вещества. [c.16]

    Состав и строение монокристаллов, а следовательно, свойства веществ, которые из них образуются, воспроизводятся, однако, с довольно высокой точностью. [c.43]


    Электронную структуру монокристалла изучают квантовомеханическим методом, исходя из представлений о твердом теле периодической структуры как о квантовой системе, электроны которой не различимы и каждый из них взаимодействует сразу со всей системой в Целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. [c.99]

    Для современных работ в области электрохимической кинетики характерен переход от традиционного ртутного электрода к твердым электродам. Строение двойного слоя и кинетика электрохимических реакций на твердых электродах зависят от ориентации граней кристалла на поверхности и от предварительной механической и термической обработки металла. Поэтому все больший интерес вызывают электрохимические исследования на разных гранях монокристаллов [c.389]

    Для современных работ в области электрохимической кинетики характерен переход от традиционного ртутного электрода к твердым электродам. Строение двойного слоя и кинетика электрохимических реакций на твердых электродах зависят от ориентации граней кристалла на поверхности и от предварительной механической и термической обработки металла. Поэтому все больший интерес вызывают электрохимические исследования на разных гранях монокристаллов и на электродах, подвергнутых разнообразным механическим, термическим и т. п. воздействиям. Монокристаллические электроды удобны для теоретического исследования. Так как на практике используются поликристаллические электроды, то предстоит выяснить и изучить закономерности, возникающие при переходе от монокристаллов к поликристаллам. [c.404]

Рис. VI. 5. Схема строения пластинчатого монокристалла полиэтилена. Рис. VI. 5. <a href="/info/325342">Схема строения</a> <a href="/info/718085">пластинчатого монокристалла</a> полиэтилена.
    Таким образом, изотермическая кристаллизация полимеров при температурах значительно ниже температуры плавления приводит к образованию неравновесных (метастабильных) кристаллов, средний размер которых вдоль оси макромолекулы зависит от температуры кристаллизации, возрастая с ее повышением. Монокристаллы полимеров, полученные как из растворов, так и из расплавов, неоднородны по строению. Участки макромолекул, находящиеся внутри кристаллов, образуют кристаллическую ре- [c.174]

    При кристаллизации низкомолекулярных жидкостей также возможно образование надмолекулярных структур различного типа, в том числе отдельных монокристаллов и их сферолитных сростков. Однако у кристаллических полимеров надмолекулярный полиморфизм проявляется значительно отчетливее и характеризуется значительно большим разнообразием фиксируемых промежуточных форм, большими вариациями во взаимном расположении конструкционных элементов надмолекулярной структуры, которые гораздо более чувствительны к изменениям условий кристаллизации, чем в случае низкомолекулярных веществ. Последняя особенность обусловлена длинноцепным строением полимерных молекул. Благодаря гибкости макромолекулы отдельные ее участки могут относительно независимо участвовать в процессе кристаллизации, диффундируя и подстраиваясь к растущим кристаллам, как самостоятельные кинетические единицы. Но эта независимость. [c.177]

    Рассеяние рентгеновского излучения изотропными средами (газами, жидкостями, аморфными веществами, стеклами, растворами) позволяет получить некоторые сведения об их строении, хотя экспериментальное изучение такого рассеяния является обычно более трудной задачей, а интерпретация результатов значительно менее однозначной, чем при исследовании монокристаллов и даже поликристаллов. [c.245]

    Прочность кристаллов при растяжении и сжатии изменяется не только от их строения, но и от размера с уменьшением размера она возрастает. Увеличение прочности кристаллов с уменьшением их диаметра (или поперечного сечения) обусловлено повышением степени совершенства их строения и снижением концентрации опасных дефектов дислокаций, пор, трещин и т. п. Вместе с тем полученная при опытах прочность монокристаллов далека от их теоретической прочности, что свидетельствует о высокой степени дефектности их физической структуры. Дефекты кристалла (трещины, царапины, поры, включения) являются местом концентрации напряжений и зоной начала его разрушения при нагрузке. [c.341]

    Кристаллы окружают нас повсюду. Камни, металлы, сахар, соль, лекарства, снег и т. д. — все это кристаллы. Всякое кристаллическое вещество состоит из зерен, которые имеют различную форму и размеры от долей миллиметра до одного метра. Большинство окружающих нас тел имеет поликристаллическое строение и состоит из многих мелких кристалликов. Однако для изготовления полупроводниковых приборов обычно используют только монокристаллы, т. е. материапы, весь объем которых состоит из одного кристалла. [c.83]


    Металлы имеют кристаллическое строение. Они кристаллизуются не только при застывании из расплава, но и при электролитическом выделении при температурах на тысячу градусов ниже их температуры плавления. В сплошном куске металла кристаллы его расположены случайным образом, их очертания имеют неправильную форму (кристаллиты, друзы), но путем медленного выращивания из расплавленного металла можно получить крупный кристалл (монокристалл). Первоначально их получали для легкоплавких металлов (свинца, олова), в настоящее время их получают и для многих других металлов, таких, как медь, вольфрам и др. Такой монокристалл отличается мягкостью, но для разрыва его нужно приложить большие усилия, чем для разрыва стержня такого же диаметра, изготовленного из обыкновенного металла при этом кристалл заметно вытягивается. [c.217]

    Метод вращения. Этот метод является основным инструментом рентгеноструктурного анализа кристаллов. Главное его преимущество заключается в относительной легкости определения параметров решетки и индицирования рентгенограмм (или, альтернативно,— установки кристалла и счетчика в отражающие положения в случае дифрактометрической регистрации лучей). Существенно, конечно, и то обстоятельство, что все дифракционные лучи имеют одну и ту же длину волны, что позволяет воспользоваться наиболее интенсивной Ка-линией линейчатого спектра. Основной недостаток метода— необходимость монокристаллического образца исследуемого вещества. К сожалению, этот недостаток непреодолим, и весь современный структурный анализ — определение атомного расположения в элементарной ячейке и решение других, более тонких задач строения (см. гл. V, 4)—основан на исследовании монокристаллов. Поэтому, в частности, получение достаточно крупных кристаллов в процессе синтеза (кристаллов миллиметрового размера) становится одной из насущных задач химического синтеза. [c.69]

    При понижении температуры плотность жидкостей растет, молекулы сближаются и возрастает энергия межмолекулярного взаимо- действия при вполне определенном значении температуры (температура кристаллизации или плавления) вещество переходит в твердое состояние, которое характеризуется упорядоченным расположением частиц в пространстве — кристаллическим строением. Для зарождения кристаллов необходимы некоторые условия переохлаждение жидкости ниже температуры плавления (доли градусов), появление субмикроскопических центров кристаллизации — зародышей выше критических размеров, которые, постепенно увеличиваясь, превращают жидкость в кристаллическую массу (центрами кристаллизации могут явиться и твердые частицы примесей). Кристаллизация протекает с выделением энергии, но менее значительным, чем при конденсации. Процессом кристаллизации можно управлять, и этим. пользуются в технологии, получая мелкокристаллические или крупнокристаллические структуры, а также выращивая монокристаллы. При очень большом переохлаждении жидкости с большой вязкостью (кремнезем, силикаты и алюмосиликаты) могут перейти в стекловидное состояние, в котором сохраняется неупорядоченная структура. Этим, например, пользуются при изготовлении стекол или ситаллов (частично закристаллизованное стекло)  [c.94]

    Под структурой тела следует понимать не только строение кристаллической решетки монокристалла, но и дисперсную структуру обычного поликристаллического тела, представляющую собой сросток отдельных более или менее беспорядочно расположенных [c.7]

    Структурное исиользование рефрактометрического метода будет демонстрироваться на примере таких объектов, где дифракционные пли спектроскопические методы по разным причинам ие могут дать исчерпывающей информации о строении вещества. Причины эти могут быть как методического характера, например отсутствие подходящих монокристаллов, трудность определения местоположения легких атомов в присутствии тяжелых, сложность получения или расшифровки колебательных спектров и т. п., так и чисто химического свойства — взаимное влияние атомов непосредственно проявляется в электронных характеристиках вещества и, следовательно, измерение электронно поляризуемости молекулы или кристалла является наиболее подходящим методом решения такой задачи. [c.165]

    В практике добычи нефти активные компоненты адсорбируются и на металле. Экспериментальные и теоретические исследования были посвящены изучению строения и свойств адсорбционных слоев на границах раздела металл — масло с различными присадками. Наиболее подробно структура и свойства этих слоев описаны в монографии А. С. Ахматова [3]. Им отмечается, что структурно-механические свойства цепных молекул и кристаллов углеводородов, составляющих граничные слои, изучены еще очень мало. Граничные слои по своему строению подобны монокристаллу, образованному цепными полярными молекулами углеводорода в объеме. Однако на строение и свойства этого граничного кристалла существенно влияет силовое поле твердой фазы. Действие этого поля распространяется на расстояние в сотни и тысячи ангстрем от твердой поверхности [3, 29, 44]. Впервые эти силы были измерены Б. В. Дерягиным и И. И. Абрикосовой [44, 41, 49, 61]. Расстояние, на которое распространяется их действие, оценено ими в 0,04 мк [42, 43]. [c.45]

    Проведенные подсчеты [151 показали хорошее совпадение вычисленных величин с экспериментальными значениями энергии активации процессов пластического течения монокристаллов и ползучести различных металлов (в частности, железа), что прямо указывает на связь несовершенств кристаллического строения типа дислокаций с очагами локального плавления. [c.28]

    Выдвинуты модели формирования субструктуры и формы монокристаллов в процессе их роста. Отличие в строении двух типов монокристаллов определяется разными усл-бвия ми йх роста й охлаЩени  [c.96]

    Наряду с прочностью связи в твердых соединениях большую роль в процессе протекания твердофазных химических реакций играют кристаллическая структура и строение поверхности реагирующих веществ, а также соответствующие дефекты строения этих веществ. В некоторых реакциях этот эффект настолько усиливается, что направление реакции начинает меняться в зависимости от участков кристаллической структуры. Такие реакции называют топохимилескими. При кинетических исследованиях газофазных реакций на медном монокристалле было, например, установлено, что различные кристаллические плоскости имеют разную каталитическую активность и избирательность, что может служить методом избирательного получения продуктов реакции. [c.439]

    Аппарат ДАРМ-2,0. Автоматический рентгеновский дифрактометр используется для исследования монокристаллов всех сингоний размером 0,01—0,1 мм по программе, рассчитанной на ЭВМ. Результаты анализа выдаются в форме, пригодной для непосредственного введения в ЭВМ. Другой аппарат подобного типа ДАР-УМБ, оснащенный гониометром с блоком строенных детекторов, можно непосредственно стыковать с ЭВМ. [c.76]

    Наиболее быстро прогрессирующим разделом электрохимии в настоящее время является учение о кинетике и механизме электрохимических процессов. Развитие квантовой электрохимии позволило существенно прояснить проблему природы элементарного акта переноса заряда и подойти с единой точки зрения к реакциям переноса заряда в объеме раствора и на границе фаз. Своеобразие электрохимических процессов на границе электрод — раствор определяется их реализацией в области пространственного разделения зарядов, условно называемой двойным электрическим слоем. Теоретические и экспериментальные исследования строения двойного слоя составляют важный раздел современной электрохимии, новый этап в развитии которого ознаменован разработкой молекулярных моделей двойного слоя, применением прямых оптических методов in situ и мощных современных физических методов изучения поверхности ех situ (дифракция медленных электронов, рентгеновская фотоэлектронная спектроскопия, Оже-спектроскопия и др.), использованием в качестве электродов граней монокристаллов. [c.285]

    Метод Лауэ получил наибольшее распространение для определения ориентации монокристаллов, изучения их симметрии и степени совершенства их кристаллического строения, однако с его помощью успешно решаются и другие задачи структурной кристаллографии. В гл. VIII показано, как с помощью лауэграмм определяется симметрия кристаллов. [c.114]

    Химические превращения твердых веществ, зависящие от химического состава и строения последних, отражают их реакционную способность — склонность вступать с большей или меньшей скоростью в различные реакции. Эти превращения позволяют судить, во-первых, о природе твердых веществ и их свойствах во-вторых, о путях направленного синтеза твердых веществ и материалов на их основе, обладающих заданными свойствами в-третьих, об областях практического использования твердых тел различной природы (полупроводники, диэлектрики, металлы) и структуры (монокристаллы, поликристалл1-ь ческие и аморфные), а также композиционных материалов. [c.5]

    Наиболее полные и точные результаты, включая сведения о длинах связей и валентных углах, дает рентгеноструктурный анализ. Однако часто его применять не удается, так как либо не выращен монокристалл вещества, либо речь идет об изучении частицы, присутствующей в растворе и вдобавок в микроконцентрациях. В таких случаях обычно применяют совокупность других методов, результаты которых взаимно дополняют друг друга. Так, молекулярная электрическая проводимость аддукта РС15-КеС15 в ацетонитриле (выбран неводный растворитель во избежание гидролиза) соответствует электрической проводимости двух однозарядных ионов. На этом основании для данного соединения была предложена формула [Р С14]+ [КеС1б] , а ИК-спектр соединения дал добавочные сведения, говорящие в пользу такого строения. [c.27]

    Сущность химического взаимодействия между атомами, согласно квантовой теории, сводится к взаимодействию между валентными электронами (которые, переходя с атомных орбит на общемолекулярные, создают единый электронный заряд) и положительно заряженными ядрами. Так как всякие элементарные частицы проявляют корпускулярные и волновые свойства, то в молекуле (а равно в комплексе, монокристалле) валентные электроны находятся не в определенных дискретных точках пространства, а образуют сплошность —непрерывное волновое поле с большей или меньшей электронной плотностью в различных его частях в зависимости от положительных зарядов и структуры ядер. Как раз перераспределение электронной плотности в результате взаимного влияния ядер и обеспечивает тот в высшей степени важный эффект энергетической неравноценности связей, который был зафиксирован еще бутлеровской теорией химического строения. [c.92]

    Пожалуй, наиболее перспективным и важным направлением исследований неорганических веществ на структурном уровне является изучение закономерностей, обусловливающих специфику химических связей в монокристалле при различных способах заполнения и уплотнения узлов кристаллической решетки. Значение этих исследований в конечном счете определяется необходимостью получения твердых тел, свойства которых были бы обусловлены не столько характером связей между монокристаллами в поликристаллите, сколько химическим строением гигантского монолита — монокристалла с любым заданным заполнением и уплотнением узлов кристаллической решетки вплоть до идеального кристалла как единой замкнутой квантово-механической системы с минимумом свободных валентностей на поверхности. Идеал — всегда есть цель, к которой приближается реальность. И ничего нет фантастического в том, что касается создания макромолекул, полностью идентичных обычным молекулам с полным внутренним взаимным насыщением валентностей. Но это — только одна задача она диктуется требованиями создания тел с особой механической, жаро- и противокоррозионной прочностью. Сотни других задач связаны с получением тел с заданным числом и характером дефектов решетки решение этих задач позволит получать твердые тела с нужными химическими и физическими свойствами. [c.274]

    Кристаллизация из газовой фазы дает возможность (подвергая, например, исходное твердое вещество сублимации с последующим осаждением) получать материал высокой степени чистоты, заданной структуры и с заданными свойствами. Метод кристаллизации из газовой фазы используют для получения тонкодисперсных порошков — пигментов и усиливающих наполнителей, в частности для получения оксидов (AI2O3, TiOa и др.) путем гидролиза газообразных хлоридов или путем их высокотемпературного окисления. Осаждение из газовой фазы применяют для покрытия подложек тугоплавкими соединениями или оксидными пленками либо для металлизации. Этот метод, заключающийся в эпитаксиальном росте кристаллов, т. е. в наращивании одного вещества на другое, базируется на сходстве строения срастающихся граней. Кристаллизацией из газовой фазы получают монокристаллы и монокристаллические пленки, в частности для лазеров и приборов микроэлектротехники. Возможно прямое осаждение из газов готовых твердых изделий, например, деталей полупроводников и других деталей сложной формы. Возможно также получение гранулятов физическим или химическим осаждением вещества из газа в кипящем слое. Свойства получаемых твердых фаз зависят от условий пересыщения газовой фазы, от температуры подложки и др. [c.262]

    Выше (гл. II, 7) уже отмечалось, что для уточнения структурных параметров можно использовать и данные порошковой дифрактометрии (особенно при полнопрофильном анализе дифрактограммы). Этот метод имеет и некоторые преимушества перед монокристальным точнее (и проще) учитывается поглощение лучей в исследуемом образце, исчезает необходимость вводить поправку на экстинкцию. Однако возможности и точность полнопрофильного анализа порошковой дифрактограммы тем ниже, чем сложнее структура (чем больше наложений линий на дифрактограмме). Поэтому этот метод наиболее перспективен для сильнопоглощающих соединений с не слишком большими параметрами решетки (а также, естественно, для веществ, не дающих монокристаллов вообще, при условии, что их атомное строение в принципе известно на основе изоструктурности). [c.159]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    Кинетика и механизм диффузионных процессов представляют огромный интерес для полупроводниковой электроники, техники квантовых оптических генераторов, процессов изготовления микроминиатюрных устройств, твердых и пленочных схем. Изготовление активных элементов, полупроводниковых схем п р— -переходов основано на диффузии легирующих примесей в полупроводниковый монокристалл из газа или расплава. Этот процесс сводится к налетанию молекул (атомов) из газовой фазьг и к диффузии их внутрь кристалла. Второй процесс медленнее первого. А так как диффузия примесей протекает по уравнениям первого порядка, то весь процесс псевдо-мономолекулярный. Таков же характер процесса травления полупроводника, если диффузионная стадия самая медленная. В этих случаях особую роль играет закош анизотропии кристалов, так как диффузия в кристаллах идет с разной скоростью в разных направлениях. Скорость роста кристаллов, скорость окисления кислородом,, скорость травления зависят от того, какая грань подвергается воздействию. Например, доказано, что различные грани кристаллов вольфрама обладают неодинаковой активностью по отношению к кислороду и разной способностью эмитировать электроны при нагревании между этими свойствами наблюдается коррелятивная зависи.мость. Медь быстрее всего окисляется в направлениях, перпендикулярных граням кубических кристаллов. Обнаружено,, что внутреннее строение пленки СигО определенным образом ориентировано по отношению к поверхности кристаллов меди, что называется явлением эпитаксии. [c.61]


Смотреть страницы где упоминается термин Монокристаллы строение: [c.197]    [c.35]    [c.258]    [c.127]    [c.208]    [c.166]    [c.8]    [c.10]    [c.40]    [c.106]    [c.26]   
Кристаллизация полимеров (1968) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Монокристалл



© 2025 chem21.info Реклама на сайте