Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поведение отклонения

    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]


    Реальные растворы в своем поведении проявляют значительные отклонения от свойств идеального раствора и, в частности, от свойства линейной зависимости парциального давления компонента от его мольной доли в жидкой фазе. При этом отклонения, проявляемые неидеальными растворами, могут быть и в ту и в другую сторону от значения парциального давления, рассчитанного по закону Рауля. [c.16]

    Конечно, если нас более подробно интересует поведение отклонения по х, не следует исследовать его при больших значениях к. Эти отклонения могут рассматриваться как фиктивные возмущения, вызванные ошибками в процессе вычисления. Нас не интересует процесс, при котором эти возмущения сглаживаются. Наличие фиктивных возмущений ограничивает величину к, которую мы можем использовать. [c.230]

    Физико-химические методы, используемые для определения молекулярного веса белков, основаны на различных принципах и иногда дают сильно отличающиеся друг от друга результаты, толкование которых часто затруднительно и даже не всегда возможно. Это связано с тем, что результаты измерений зависят не только от величины и массы белковых молекул, но также и от их электрического заряда и формы. Последний фактор, в частности, имеет существенное значение в тех случаях, когда определяют скорость движения молекул, например скорость диффузии или скорость оседания в гравитационном поле. В то время как шарообразные молекулы в подобного рода опытах ведут себя закономерно, удлиненные нитевидные молекулы фибриллярных белков обнаруживают аномальное поведение. Отклонение от шарообразной формы приводит к увеличению коэффициента трения и соответственно — к снижению скорости диффузии. При определениях в концентрированных растворах, содержащих нитевидные молекулы, возникают и другие осложнения, зависящие от взаимных столкновений и временных связей молекул друг с другом. На результаты, полученные динамическими методами, влияет также гидратация частиц, поскольку движение молекул через растворитель будет замедлено, если поперечник их увеличится за счет гидратации. [c.48]

    Интересно изучить влияние природы и концентрации как спнрта, так и апротонного компонента на поведение отклонений химических сдвигов от их аддитивных значений. [c.58]

    В задачи этой книги не входит подробное исследование термостатики и термодинамики химических реакций, цель ее — выявить принципы, лежащие в основе анализа и проектирования химических реакторов поэтому нам следует избегать излишних усложнений. Конечно, на практике может возникнуть много трудных проблем, связанных с неидеальным поведением реагирующих смесей, однако расчеты, учитывающие отклонения от идеальности, проводятся с помощью тех же методов, что и более простые расчеты, излагаемые в настоящей главе. Поскольку имеется сравнительно большое количество термодинамических данных, всегда нужно следить за тем, чтобы не превысить точность, вводя мелкие поправки в расчет, использующий приблизительные и в большинстве случаев неполные кинетические данные. Другая причина, но которой мы не будем вдаваться в детали — это обилие, если не избыток, книг по термодинамике. Некоторые из них упомянуты в конце главы, но мы не пытаемся ни сделать критический обзор имеющейся литературы, ни даже составить полный список рекомендуемых руководств. [c.39]


    Эмпирические уравнения состояния. В расчетах процессов перегонки и ректификации для описания поведения реальных газовых систем широко используются два эмпирических уравнения состояния. Первое содержит коэффициент сжимаемости г, учитываюш ий отклонение объема V одного моля реального газа от значения отвечающего уравнению состояния идеального газа [c.14]

    Двухкомпонентные растворы реальных веществ, отклоняющиеся в своем поведении от идеального и относящиеся к первому виду растворов, т. е. к растворам компонентов, смешивающихся во всех отношениях, различаются между собой по характеру их отклонения, положительному или отрицательному, от идеального линейного закона, выражающего суммарную упругость пара раствора в функции мольного состава жидкой фазы. [c.11]

    Вириальные коэффициенты (характеризующие отклонения поведения реального газа от тех закономерностей, которым подчиняется идеальный газ) являются функцией только температуры. По Гиршфельдеру, в случае газа с неполярными молекулами эти-коэффициенты можно рассчитать, используя следующие формулы  [c.72]

    Идеальная растворимость встречается редко. В большинстве систем природа растворителя значительно влияет на растворимость. Причину отклонений растворимости веществ А и В следует искать прежде всего в различной прочности связей А—А, В—В и А—В. Если силы притяжения почти одинаковы, то растворимость веществ будет велика, что приближает раствор к идеальному. Такое поведение присуще веществам, молекулы которых лишены дипольного момента (неполярны), при растворении в растворителях такого же характера. Если сред.чяя величина сил притяжения А—А и В—В больше, чем сил А—В, то растворимость будет невелика (положительные отклонения от закона Рауля). В этом случае по крайней мере одно из веществ обладает большим дипольным моментом и склонностью к ассоциации. Наконец, если притяжение А—В сильное и оба вещества стремятся к образованию друг с другом сольватов и химических соединений, то растворимость становится особенно большой (отрицательные отклонения от закона Рауля). [c.12]

    Величина кц характеризует отклонение в поведении смеси от идеального раствора из-за взаимодействия между -м и /-м компонентами, Таким образом, кц = О, если 1 = /, и кц ->0, если пары компонентов являются почти идеальными растворами. Если пары компонентов образуют неидеальные растворы, то величина кц может значительно отличаться от нуля. Основой для определения кц являются главным образом данные по фазовому равновесию бинарной смеси. [c.47]

    Коллоидно-химические представления об образовании ассоциа-тов, различного рода комплексов и надмолекулярных структур со временем, очевидно, позволят создать теоретические основы компаундирования и объяснить имеющиеся отклонения от аддитивности по многим показателям. В настоящее время разработка рецептур смешения высокооктановых бензинов почти лишена научной базы. В расчетах часто используют не фактические свойства тех или иных компонентов, а условные характеристики смешения, учитывающие поведение данного компонента в конкретном базовом бензине. Основные законы, определяющие характеристики смешения, не выяснены, поэтому при компаундировании прибегают к эмпирическим методам расчета. [c.160]

    Степень отклонения поведения. струи от движения идеального жидкостного стержня зависит от формы сопла или отверстия, у которого она образуется. Необходимо иметь в виду три различных фактора сужение струи после ее вытекания из сопла или отверстия различие скоростей по поперечному сечению струи образование пограничного слоя в жидкости, проходящей через сопло или отверстие, в результате чего скорость поверхности в начальный момент вытекания струи равна нулю. [c.84]

    В принципе можно рассчитать из известных значений дх, как показано на с. 23. Для грубой оценки можно считать, что относительные константы экстракции для различных катионов и неполярных растворителей очень близки между собой. Это справедливо лишь в редких случаях только как первое приближение и является слишком большим упрощением в других случаях. Часто реагент или одна из ионных пар, участвующих в истинной реакции, присутствуют в концентрации, близкой к насыщению. Тогда следует ожидать отклонений от идеального поведения. Более того, полярность и способность растворителя к образованию водородных связей по-разному влияет на различные анионы. Известны константы селективности /Сх— для конкурентной экстракции хлорида по отношению к бромиду, иодиду и перхлорату из воды в 11 растворителях [121] и для хлорида относительно цианида в 8 растворителях [122]. Как ожидалось, /Сс1—>ск изменяется незначительно, причем максимальный интервал изменения от 0,9 (вода/г ыс-1,2-дихлорэтан) до 3,1 (вода/бензонитрил). Специфичное влияние растворителя более ярко выражено для серий анионов, сильно различающихся по липофильности [121]. Следует особо отметить, что гидроксилсодержащие растворители выравнивают различия  [c.34]


    Таким образом, описанная выше элементарная молекулярно-кинетическая теория дает правильное объяснение свойств идеальных газов. Она убеждает в подлинности существования молекул и позволяет надеяться, что модификации этой простой теории, учитывающие свойства молекул реальных газов, дадут возможность объяснить отклонения в их поведении от предсказываемых для идеального газа. [c.150]

    Молекулярно-кинетическая теория газов позволяет успешно объяснить свойства идеального газа на основе минимального числа исходных предположений, а также дает возможность понять причину отклонений свойств реальных газов от идеального поведения. В своей простейшей форме молекулярно-кинетическая теория исходит из предположений, что газ состоит из невзаимодействующих молекул, которые могут рассматриваться как точечные массы и находятся в состоянии постоянного движения, прерываемого лишь упругими столкновениями друг с другом и со стенками сосуда. Когда мы хотим распространить эту теорию на реальные газы, приходится учитывать, что молекулы имеют конечный объем и что между ними действуют силы взаимного притяжения. [c.156]

    Всякое воздействие со стороны окружающей среды на ФХС с феноменологической точки зрения есть нарушение равновесия или отклонение от установившегося стационарного состояния (химического, теплового, механического, электромагнитного). Возникшие неравновесности или отклонения от стационарности порождают соответствующие и движущие силы, которые, в свою очередь, приводят к появлению потоков субстанций. Потоки субстанций изменяют физико-химические характеристики системы так, чтобы достичь равновесия или стационарности (если это возможно) при новых условиях взаимодействия с окружающей средой. Эта цепь причинно-следственных отношений между явления ми лежит в основе поведения всякой ФХС. При формализации ФХС весьма эффективным приемом является причинный анализ, согласно которому построение теоретических представлений системы связывается с графическим отображением взаимовлияний между элементами системы в виде диаграмм, отражающих характерные особенности и формы функционирования системы. Принципы и методы построения таких диаграмм могут быть различными [20, 21]. [c.32]

    Описанные выше явления относятся к идеальной системе и никогда не наблюдаются на практике, причем отклонения от идеальности дают представление о факторах, влияющих на поведение слоя. Рассмотрим основные отклонения. [c.39]

    Классь Поведение связей активного водорода Отклонения от закона Рауля [c.14]

    При моделировании определяются и запоминаются длительности состояний ХТС и элементов, отказы которых вызвали отказ системы, а также число отказов каждого элемента независимо от их влияния на поведение системы. В результате каждого моделируемого испытания по длительности состояний системы рассчитывается и запоминается величина коэффициента Кг. После достижения заданного числа моделируемых испытаний дают статистическую оценку результатам моделирования. Оценивают эмпирические средние величины длительностей отдельных состояний системы и для оценки точности задаются их эмпирическими средними квадратическими отклонениями. Аналогично рассчитывают величины среднего квадратического отклонения для коэффициентов готовности системы. [c.191]

    В химической технологии уравнения состояния применяются только для паровой фазы (например, вириальное уравнение), а жидкая и твердая фазы рассчитываются в терминах отклонения от идеального поведения с учетом реальных условий смешения и теории растворов (для жидкостей). [c.98]

    Прежде чем приступить к проверке и установлению адекватности, необходимо выработать критерий, который позволил бы сделать заключение о соответствии модели и объекта. При моделировании можно говорить о качественном и количественном соответствии. Можно, например, нанести значения переменных, полученных на модели, и экспериментальные значения этих же переменных на график и найти их средневзвешенные отклонения. Разумеется, что полученные числовые значения не отражают степени соответствия модели и процесса, а позволяют сделать лишь заключение о характере поведения модели, ее качественном соответствии. [c.43]

    Мольно-аддитивная модификация оптической плотности. Так же, как и в случае показателя преломления, возможность применения мольно-аддитивной модификации оптической плотности Р = Од в физико-химическом анализе зависит от особенностей поведения отклонений этого свойства от аддитивности. [c.83]

    Представление об ассоциации и комплексообразонапки в растворах электролитов. как о возможной причине отклонения их поведения от нормального , было выдвинуто впервые в 1891 г. В. П, Пацковым и получило дальнейшее развитие, н ко.чнчествеииое оформление в трудах А. Н. Саханова, В. К. Семенченко, Бьеррума, Фуосса п Крауса, а также ряда других ученых. [c.96]

    Для описания поведения реальных смесей и отклонения их от иде альности с использованием понятия коэффициента активности жидкой фазы, фугитивности паровой фазы, описаны методы расчёта этих коэффициентов для углеводородов и их смесей по уравнениям Ли-Кислера [138], Редлиха-Квонга [141], модифицированному уравнению Редлиха-Квонга [132], методу Соава [174], Пенга-Робинсона [156], Чао-Сидера [121]. [c.86]

    Однако реализовать кислородный электрод, поведение которого описывалось бы выведенными уравнениями, иа практике весьма трудно. Это обусловлено особенностями, отличающими все газовые электроды, и, кроме того, способностью кислорода (особенно во влажной атмосфере) окислять металлы. На основную электродную реакцию накладывается поэтому реакция, отвечающая метал-локсидному электроду второго рода. Даже на платине могут образовываться оксидные пленки, и поведение кислородного электрода не будет отвечать теоретическим ургвнениям эти отклонения проявляются, папример, в характере изменения потенциала с давлением кислорода. Кроме того, имеются основання полагать, что реакция иа кислородном электроде да ке в отсутствие поверхностных оксидов отличается от той, на которой основан вывод уравнения для потенциала кислородного электрода. По данным Берла (1943), подтвержденным и другими исследователями, часть кислорода восстанавливается на электроде не до воды, а до ионов пероксида водорода  [c.167]

    Недостаток места не позволяет нам провести исследование реакторов с кипящим слоем. Исследование всех типов реакторов ведется по одному принципу, хотя объем каждой части исследования варьируется от одного тина реактора к другому. Прежде всего ставится модель реактора, выводятся описывающие ее уравнения, и тогда становится ясным характер задач расчета реактора. Там, где это возможно, рассматриваются вопросы оптимального проектирования реактора. Часто случается, что провести оптимальный расчет не сложнее, чем обыкновенный. Даже еслп найденное оптимальное решение неосуществимо на практике, оно всегда дает напвысшие возможные показатели процесса, к которым надо стремиться при реальном проектировании реактора. Расчет реактора связан, в первую очередь, с решением стационарных уравнений. В то же время важно изучить поведение реактора в нестационарном (переходном) режиме, так как найденный стационарный режим может быть неустойчивым. В последнем случае необходимо либо отказаться от проведения процесса в этом режиме, либо стабилизировать его с помощью надлежащего регулирующего устройства. В конце каждой главы мы возвращаемся к анализу допущений, сделанных нри постановке модели реактора, и исследуем влияние отклонений от идеализированной модели на характеристики процесса. [c.10]

    Отклонения от идеального поведения обусловлены эффектами на входе (профиль скорости в выпускном отверстии не ровный), гравитационными эффектами (вертикальная струя ускоряется и сокращает- о Профиль ся действием силы тяжести) и эффек- скоростей тами на выходе (рябь и поверхностная < щ. в застойность, вызванные расширением струи). Первые два эффекта были изучены теоретически Скривеном и Пигфордом [4], а также Биком [5]. Последний эффект во многих случаях незначителен, но иногда может быть значительным [6]. [c.93]

    Уравнение Ван-дер-Ваальса дает достаточно точные результаты для всех газов даже в области их критических температур и давлений. Однако при высоких давлениях, когда плотность газа велика или когда газ находится вблизи точки сжижения, это уравнение дает значительные отклонения от действительного поведения газа (ср. приведенные выше примеры 2 н 3). Отклонения объясняются тем, что при большой плотности газа иа его давление оказывают влияние не только силы взаимного притяжения, но также и силы взаимного отталкивания частиц, обусловленные внешними электронными оболочками этих частиц. Кроме того, здесь на реальное поведение газа в значительной мере также оказывают влияние неупругие столкновения его частиц и другие факторы. В связи с этим, кроме уравнения Ван-дер-Ваальса, был предложен ряд других, более сложных уравнений для реального состояния газов, на которых мы здесь останавливаться не будем, так как они для ггракгики технологических расчетов интереса не представляют. Уравнением Ван-дер-Ваальса в производственных расчетах также пользуются довольно редко наиболее удобными и более точными для этого являются энтропийные диаграммы (глава IV, стр. 103). [c.57]

    Если же неравномерности потока обусловливают продольное перемешивание, то для эксиериментальной оценки его интенсивности пригодны лишь методы, основанные на анализе отклика потока прн выходе его из аппарата на возмущение, внесенное перед его входом в аппарат. Наиболее простым является импульсный метод. Для того, чтобы исключить влияние неидеальности ввода возмущающего сигнала в поток, а так> е трудноучитываемых отклонений поведения потока у граничных сечений аппарата, регистрацию отклика следует проводить одновременно в нескольких сечениях. При этом можно также установить интенсивность продольного перемешивания на различных участках аппарата. [c.252]

    Элемент с двумя водородными электродами ири разных давлениях водорода, с ПОМОЩЬЕО которого можно изучать отклонения поведения Нг от законов идеальных газов, а также определять концентрацию водорода в сложной газово1 смесп, уже рассматривался [гл. XXI, 2, уравнение (XXI, 4), ст ). 564]. [c.583]

    Если бы газы обладали идеальными свойствамп, откошснис РУ/КТ для 1 моля любого газа всегда было бы равно единице. Однако поведение всех реальных газов в той или иной степени отличается от идеального, и мерой этого отклонения может служить величина Z = РУ/КТ, называемая коэффициентом сжимаемости. На рис. 3-15 показаны графики зависи- [c.150]

    Трудно определить надежность экспериментальных рекомендаций. Однако для реакции 15 весьма информативным и эффективным является систематический численный анализ поведения системы при вариациях /г] . В низкотемпературной области стационарного процесса доля реакций с участием радикала НО2 необычно высока— 2и 25, 30 (0,75 — 0,80), причем большая часть этой величины обусловлена дхй. Таким образом, процесс оказался весьма чувствительным к вариациям /е 5. Двукратное пз .генение nts приводило к отклонениям НО2 = = НОгСО, выходящим за коридор ошпбок в эксперименте [51]. (Авторы [51] не приводят оценки возможной ошибки. Анализ [51 ] позволяет предположить, что ошибка определения НОз не должна превышать 10%.) Поэтому ошибка 100% есть нижняя оценка. Она дол/кна быть увеличена по крайней мере в 2—2,5 раза, поскольку в системе реакций Г - по, (/ = 10—19, 21, 25, 30) величина [c.282]

    Из рисункбв У-26 следует, что результаты изучения конверсии в псевдоожиженном слое диаметром 460 мм даже при средних скоростях газа (например, около 10 м/с) можно объяснить, анализируя поведение пузырей в соответствии с теорией поршневого режима — уравнения (У,58), (У,59) и (У,60). Значительное отклонение экспериментальных данных от этой теории наблюдалось только в случае использования перфорированной решетки с 14-тью отверстиями при скорости Г/10 см/с (рис. У-26, а и б). Однако такая решетка при данной скорости газа отличается плохим газораспределением, причем в нижней части слоя могут возникнуть каналы. При увеличении скорости I/ до 20—30 см/с возрастает перепад давления в распределительной решетке и, видимо, улутахается газораспределение в этом случае экспериментальные данные по конверсии озона удовлетворительно согласуются с теорией поршневого режима. [c.213]

    Наиболее характерной чертой растворимости альбита в паре в указанных условиях оказалась нестехиометричность состава растворов составу исходного образца, а также различия в поведении Si, Na и А1. Степень и характер отклонения от стехио-метричности изменялись с температурой и давлением. Анализ исходного ллагиоклаза и продукта, оставшегося после растворения, показал, что компоненты альбита ушли в раствор, так как в твердой фазе остался только стехиометричный анортит. Полученные растворы были прозрачны и бесцветны и обнаруживали большую стойкость при хранении их при комнатной температуре без доступа воздуха. Максимальное количество компонентов альбита, найденное в растворах, соответствовало 2% по весу. Величина pH растворов показывала, что Na в них находится в основном в ионной форме, СаО в растворах не был обнаружен. Этот факт подтверждает ранее сделанные качественные наблюдения [ urrie К. L., 1968] о том, что натрий предпочтительно вымывается из плагиоклаза надкритическим водяным паром. [c.85]

    Существующ 1е при высокой температуре в газоном фазе молекулы ВеГо линейны. Их структура объясняется sp-гиб-рпдизацией валентных орбита-лей атома Ве. Можно было ожидать, что молекулы ЭГа аналогов бериллия имеют ту же конфигурацию. Так считали до 1963 г., когда было обнаружено, что некоторые молекулы ЭГг изогнуты. Эго установили ио поведению пучка молекул ЭГ2 в неоднородном электрическом иоле. Оказалось, что иучки молекул кекоторых ЭГ1 испытывают отклонение, следовательно, дипольный момент ЭТИХ молекул не равен нулю, что может быть обусловлено только их угловой формой. [c.317]

    Итак, неидеальное поведение паровой фазы обусловлено межмоле-кулярным взаимодействием. Рассмотренные соотношения не дают исчерпывающего ответа при изменении параметров в широком диапазоне. Практика расчетов неидеальных систем показывает, что отклонения системы от идеальрюй проявляются в том, что а) при постоянном составе и температуре увеличение давления уменьшает коэффициент летучести б) при постоянном давлении и составе увеличение температуры приводит к тому, что коэффициент летучести стремится к единице в) при постоянном давлении и температуре влияние состава на коэффициент летучести более значительно при малых концентрациях компонентов. [c.25]

    Рассматривая поведение процесса при малых отклонениях от стационарного состояния, коэффициенты в уравнениях математической модели могут быть приняты постоянными. Дальнейшее упрощение дости1 ается за счет усреднения движущей силы процесса по высоте колонны. Тогда исходная система уравнений с частными производными превращается в систему обыкновенных дифференциальных уравнений. [c.416]


Смотреть страницы где упоминается термин Поведение отклонения: [c.494]    [c.91]    [c.84]    [c.49]    [c.247]    [c.223]    [c.374]    [c.160]    [c.151]    [c.336]    [c.85]    [c.330]   
Генетика человека Т.3 (1990) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Отклонения



© 2025 chem21.info Реклама на сайте