Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние электронных факторов на механизм реакции

    Для того чтобы выяснить возможность перехода от одного механизма реакции к другому, необходимо рассмотреть влияние как электронных, так и стерических факторов на переходное состояние. В случае, если атака осуществляется по механизму 8 2, можно ожидать, что возрастание индуктивного эффекта по мере увеличения числа метильных групп должно приводить к постепенному уменьшению положительного заряда на атоме углерода, связанном с бромом, и, следовательно, к затруднению атаки этого атома ионом "ОН, Этот эффект выражен, вероятно, не очень сильно, вследствие чего наиболее важную роль должны играть стерические факторы. Этим можно объяснить тот факт, что по мере увеличения объема заместителей у атома углерода, связанного с бромом, возможность атаки этого атома углерода ионами "ОН существенно затрудняется. Кроме того, следует иметь в виду, что при атаке по механизму 5 у2 этот атом угле- [c.96]


    Электронный фактор в окисных катализаторах тесно связан с полупроводниковыми свойствами металлических окислов. Процесс хемосорбции газов на окислах был рассмотрен в предыдущем разделе на основе этих представлений. Они же, естественно, обусловили поиски связи между типом полупроводимости и каталитической активностью. Такая связь была сравнительно недавно установлена, и можно ожидать, что в результате дальнейших исследований в этой области удастся получать сведения о механизме реакции, определяя влияние, которое оказывает изменение электронной структуры катализатора на протекание реакции. В случае окисных катализаторов наряду с чисто электронными эффектами большое значение могут иметь и ионные явления это особенно существенно при более высоких температурах, когда основное значение, по-видимому, имеют такие факторы, как подвижность ионов и вакансий и удаление ионов кислорода с поверхности под действием газов-восстановителей. Более того, есть основания считать, что на катализаторе при соприкосновении с реагирующей смесью сначала протекает особый процесс адаптации (приспособления к реагирующей смеси), в результате чего его электронная структура приходит в равновесие с протекающими на поверхности адсорбционно-десорбционными процессами. Таким образом, строгое разграничение на катализаторы р-типа или п-типа является, по-видимому, менее важным, чем подразделение их по доле р-типа или п-типа, устанавливающейся и поддерживаемой во время определенного каталитического процесса при заданных условиях [101] эта характеристика катализатора может оставаться неизменной в течение данной каталитической реакции. Каталитическая стабильность смешанных окисных систем может быть частично обусловлена такого рода эффектом. [c.523]

    Влияние электронных факторов на механизм реакции [c.432]

    Как отмечает С. 3. Рогинский [29, 223], электронные факторы могут проявляться в определенном характере и механизме адсорбционных стадий, влияющем на кинетические закономерности, а также в возникновении новых стадий процесса, обусловленных электронными переходами, в изменении характера взаимодействия реакционной системы с катализатором и во влиянии заряжения поверхности (т. е. образования двойного электрического слоя) на механизм процессов. Влияние заряжения поверхности должно, в общем случае, выражаться в изменении свободной энергии процессов, связанных с электронными переходами, и в изменении реакционной способности адсорбированных частиц в результате ионизации и поляризации связей. Такой эффект может сказываться на характере кинетической зависимости, величинах констант скорости реакции, энергии активации, констант скорости адсорбции, десорбции и констант адсорбционного равновесия. [c.265]


    Таким образом, влияние электронных факторов на скорость реакций в присутствии металлических катализаторов может быть различным, и в каждом отдельном случае следует учитывать механизм процесса, природу лимитирующей стадии и возможность их изменений при переходе от одного катализатора к другому. Разумеется, сравнение скорости реакции в ряду металлов с разными электронными свойствами возможно только при сохранении неизменными механизма и кинетики ( процесса. Без уверенности в этом сопоставление величин скорости реак-ции на разных катализаторах вообще теряет смысл. В некоторых слу- ( чаях роль,,(1 вакансий оказывается преувеличенной и опыты, как видно из изложенного, не всегда приводят к ожидаемым изменениям скорости реакции [587, 611]. [c.267]

    В реакциях, идущих по механизму 5.у2, переходное состояние возникает тем легче, чем выше 6+ заряд на атоме углерода, являющемся реакционным центром. Поэтому заместители, уменьшающие электронную плотность на реакционном центре, т. е. проявляющие отрицательный индуктивный эффект и эффект сопряжения (—/, —С), способствуют этому типу замещения. Однако влияние элект ройных факторов в реакциях 5у2 сравнительно невелико. Большее влияние на течение реакций по механизму 5.у2 оказывают пространственные факторы, так как чем больше объем заместителей у реакционного центра, тем труднее реализуется переходное состояние, в котором центральный атом углерода находится в окружении пяти групп. [c.93]

    Таким образом, уменьшение к. а. с ростом ширины запреш енной зоны Д и является закономерностью, общей для большого числа реакций с гемолитическим механизмом (окисление, гидрирование, дегидрирование, разложение гидридов, нестойких кислородсодержаш,их соединений и др.). Разброс данных, вызываемый влиянием других факторов (тип решетки, электронная структура, примеси), в ряде случаев может искажать эту закономерность, однако изменение к, а. в зависимости от величины Д 7, как правило, больше изменений активности, обусловленных действием других факторов. [c.80]

    Радикальный механизм замещения. Инголд рассматривает не только ионный механизм замещения, но и радикальный. Так, если имеется радикал ОН (полученный в результате того, что при электролизе один электрон гидроксильного иона отбирается анодом) или нейтральный атом хлора, то стремление атомов кислорода или хлора пополнить их электронную оболочку до октета приводит к тому, что они атакуют первоначально отрицательно заряженные атомы углерода, а это возможно только в орто- и параположении, т. е. в соответствии с формулой I, а не И. Таким образом, можно принять как полярную, так и неполярную диссоциацию ароматических соединений, потому что определяющим фактором является электронная конституция реагента [там же, стр. 1316]. В этом подчеркивании модифицирующего влияния условий на электронный механизм реакций нельзя не видеть также развития первоначальной идеи Робинсона. [c.118]

    В предыдущей главе было рассмотрено влияние электронных и стерических факторов на реакционную способность различных соединений в данных условиях, а также типы реагентов, от которых можно было бы ожидать, что они будут легко атаковать определенные участки молекул этих соединений. При этом, однако, ничего не было сказано относительно того, каким образом влияние электронных и стерических факторов на направление реакции и на ее скорость могло бы быть охарактеризовано в терминах энергетики и кинетики. Очевидно, что такие характеристики могли бы существенно облегчить понимание деталей механизмов рассматриваемых реакций. [c.52]

    Для химико-технологических вузов подобного пособия в отечественной литературе нет. Пособие Задачи и упражнения по органической химии В. М. Альбицкой и В. И. Серковой под ред. чл.-корр. АН СССР А. А. Петрова отражает в основном фактический материал органической химии. Существенной особенностью данного пособия является то, что упражнения по фактическому материалу тесно увязаны с вопросами современной теории органической химии. Свойства каждого класса соединений рассматриваются на основе характеристики химических связей, электронного и пространственного строения молекул. Большое внимание уделяется условиям проведения органических реакций, их механизмам, влиянию структурных факторов на реакционную способность органических соединений. Важность физических методов исследования учтена включением в сборник задач на спектральные свойства (ИК-, УФ- и ЯМР-спектры) органических соединений по каждому классу соединений. [c.3]

    В статье С. 3. Рогинского [29] рассматриваются также кинетика и механизм реакций окисления с точки зрения электронных факторов. Там же обсуждается и влияние заряжения на сложные многостадийные процессы, [c.269]

    История подтвердила более высокую ступень той научной абстракции, предметом которой является изучение механизма химических реакций. Примерно три четверти века выдающиеся ученые многих стран интенсивно исследуют сущность химических процессов. Эти исследования протекают небезуспешно. Создана химическая кинетика определено влияние термодинамических факторов на ход реакций разработана цепная теория созданы теории кислотно-основного взаимодействия установлены многочисленные возможности использования физических факторов для выяснения вопросов о механизме реакций предложен ряд теорий (в том числе количественных), связывающих электронное строение молекул с их реакционной способностью развиты представления об определяющей роли строения [c.119]


    Обычно применение этих зависимостей несколько ограничено из-за необходимости получения значений всех потенциалов при одинаковых условиях и требованиях идентичности электродных механизмов при всех измерениях (одни и те же коэффициенты перехода а и число электронов и протонов). Если эти условия не выполнены, выводы являются лишь приблизительными. В полярографии азотсодержащих гетероциклов появляется кроме того другое осложнение [276], которое, по-видимому, не всегда учитывается. Фактически все азотсодержащие соединения сильно адсорбируются на поверхности капельного ртутного электрода. В таком состоянии они влияют на скорость электродной реакции, и это приводит либо к значительным сдвигам потенциалов полуволн, либо к изменениям высоты кинетических волн. Вследствие этого гетероциклические азотсодержащие соединения часто действуют одновременно и как поверхностно-активные вещества, и как деполяризаторы. Измененные таким образом потенциалы полуволн соединений не являются точной мерой факторов в уравнениях (27) и (42). Однако, картина, по-видимому, упрощается сходной адсорбционной способностью различных соединений, и таким образом в одной реакционной серии можно наблюдать нормальное влияние заместителей на скорости реакций у занятой поверхности электрода. [c.272]

    Сильные нуклеофильные агенты в условиях, значительно отличающихся от благоприятствующих диссоциативному механизму, способствуют бимолекулярному нуклеофильному замещению. Процессы образования и разрыва связи вносят вклад в энергетику переходного состояния, но так как энергетические эффекты их обычно противоположны, влияние других факторов, таких, как эффекты электронного смещения в других лигандах и прочность связи реакционного центра с уходящей группой, будет полностью определять характер конкретной реакции. Во всех случаях [c.47]

    Б предшествующих главах мы подробно рассмотрели механизм реакций полимеризации, протекающих под влиянием различных инициаторов. Те же процессы могут быть вызваны и без введения посторонних веществ, если для инициирования используются излучения с высокой энергией у лучи, рентгеновские лучи, быстрые электроны. Облучение мономера соответствующими источниками энергии вызывает появление активных частиц — ионов и свободных радикалов, которые возбуждают процесс нолимеризации. В этом смысле радиационное инициирование является универсальным методом в зависимости от условий эксперимента (температура, среда) и природы мономера полимеризация может протекать избирательно по радикальному, катионному или анионному механизму. Возможно также параллельное течение радикальных и ионных реакций. В настоящей главе мы остановимся на факторах, определяющих механизм полимеризации при радиационном ишщиирований, и сосредоточимся главным образом на полимеризации в твердом теле. Эти процессы, представляющие большой интерес, реализуются главным образом при применении радиационного инициирования. [c.443]

    В предыдущей главе много говорилось о влиянии различных типов кристаллических дефектов на каталитическую активность твердого тела. Однако тем, кто ранее хотя бы имел представление о гетерогенном катализе, теперь, вероятно, было бы интересно узнать, что же стало с такими представлениями, как геометрический и электронный факторы, применявшимися ранее для объяснения или предсказания каталитической активности. В конце концов, идея о важности геометрии атомов, составляющих поверхность катализатора, наряду с их электронной конфигурацией многократно обсуждалась в последние десятилетия. Следовательно, наша цель заключается в том, чтобы обобщить в данной главе современные представления об этих явлениях. Мы увидим, между прочим, что надежды, высказывавшиеся пятнадцать лет назад, когда казалось весьма вероятным, что гетерогенный катализ будет развиваться в логических рамках электронной теории твердых тел, все еще не оправдались. Всякий раз, когда это окажется возможным, мы будем отмечать закономерности и интерпретации, которые имеют, вероятно, достаточно общий характер. Однако, как это станет более ясным в конце этой главы, таких общих закономерностей очень немного. Когда мы говорим о механизме катализа, то это означает, что мы ограничиваем наше внимание рассмотрением очень немногих (а часто одной) систем. Поэтому гл. 8 целиком посвящается обсуждению механизмов некоторых специфических каталитических реакций. [c.260]

    Влияние заместителя X на реакцию обозначим символом s, умноженным на фактор а, в котором учтены механизм передачи влияния (индукционный, мезомерный) и чувствительность реакционного центра к электронным влияниям. [c.85]

    Сборник содержит систематически подобранные вопросы и задачи по курсу современной органической химии. Задачи и вопросы тесно увязаны с современной теорией органической химии. Свойства каждого класса органических соединений рассматриваются на основе характеристики химических связей, электронного и пространственного строения молекул. Большое внимание уделено условиям проведения реакций органических соединений, их механизмам, влиянию структурных факторов на реакционную способность органических соединений. В сборник включены задачи по ИК-, УФ- и ЯМР-спектроскопии. [c.231]

    Последнее обстоятельство, по-видимому, является очень важным, так как оно в конечном счете связывает воедино структурный (геометрический) и электронный факторы в катализе. Ведь одноточечная промежуточная адсорбция (вполне вероятная и доказанная) не объясняет влияния константы решетки на катализ, а это влияние весьма велико. Таким образом, подходя с разных сторон к механизму реакций, как в школе Баландина, так и в школе Рогинского приходят к обш,им выводам. А. А. Баландин давно отметил и доказал роль геометрии решетки катализатора в катализе. С. 3. Рогинский показал, что изменения геометрии решетки путем модифицирования определяются электронным строением кристалла (как и вся структура решетки, по Юм-Розери, определяется электронным фактором). О. В. Крылов в лаборатории С. 3. Рогинского пришел к выводу о влиянии расстояния Ме—X катализатора на ход катализа, что указывает на двухточечную промежуточную хемосорбцию. Это еще один факт, указывающий на общие выводы разных советских школ по вопросу о механизме гетерогенного катализа. [c.103]

    Характер углеродного скелета — индуктивный, резонансный и сте-ричеекий эффекты. Реакция замещения протекает по 8 1-механизму только в случае т х соединений, которые могут давать достаточно стабильные катионы Как правило, триалкилметильные или резонансно стабилизированные катионы обеспечивают преимущественное протекание реакции типа по сравнению с Зц2-8амещением. Влияние числа алкильных заместителей на относительные скорости сравниваемых реакций проиллюстрировано в табл. 5-4. Из данных таблицы видно, что увеличение числа алкильных заместителей облегчает реакцию 8 1 и затрудняет 8м2-реакцию. Это отражает то обстоятельство, что 8ц2-реакция наиболее чувствительна к стерическим факторам, а реакция 8 1 — к электронным факторам. Увеличение числа алкильных заместителей экранирует атом углерода, связанный с уходящей группой, и это, конечно, затрудняет 8м2-процесс. Однако те же заместители стабилизируют положительный заряд на атоме углерода, несущем уходящую группу, и это благоприятствует процессу 8ц 1. [c.200]

    Кинетика реакции (42) была изучена [47] путем измерения количеств выделяющейся окиси углерода. Результаты этого исследования позволили сделать предположение о механизме реакции, но которому Со2(СО)д в промежуточной стадии взаимодействует с молекулой ацетилена, что приводит к выделению одной молекулы окиси углерода и образованию Соз(СО)7. Позднее [48] некоторые исследователи изучили влияние природы групп К и К на кинетику реакции (42). При этом оказалось возможным установить степень реакционной способности некоторых ацетиленовых соединений относительно гексина-1 как эталона. Однако в большинстве случаев эти экспериментальные данные нельзя было объяснить на основании электронных или пространственных факторов. [c.75]

    Хотя в данных об адсорбции и каталитических реакциях на неметаллах, имеющих дефекты в кристаллической решетке, недостатка нет, систематических данных, полученных при изучении какой-либо одной реакции (механизм которой был бы надежно установлен), катализируемой несколькими родственными неметаллами с дефектами в кристаллических решетках, явно нехватает. Только для реакций разложения закиси азота 2МгО 2Na -f О2 и окисления окиси углерода 2С0 + О2 2С0г была сделана реальная попытка собрать исчерпывающие данные, которые позволили бы установить корреляцию между каталитической активностью и точечными дефектами. Вся эта работа была выполнена с полупроводниковыми окислами [89], так что в этом разделе мы будем рассматривать исключительно неметаллы такого тина. При этом следует вспомнить основные сведения, приведенные в разд. 5.2.4.1. Что же касается значения для катализа дефектов в полупроводниках, то мы будем рассматривать этот вопрос в целом как влияние электронного фактора в катализе полупроводниками [33, 90, 91] (см. разд. 6.3). [c.235]

    В то же время Л. А. Яновская полагает, что сильное влияние электронных факторов на реакционную способность ацеталей в реакциях с виниловыми эфирами связано несомненно с механизмом этой реакции, который, по ее мнению, протекает как циклический электронный перенос с четырьмя центрами (см. выше, стр. 159)  [c.170]

    Рассмотренные данные позволяют сделать вывод, что каталитическая активность окислов в отношении реакции обмена водорода с дейтерием определяется в первую очередь электронной конфигурацией металлического иона, причем условием высокой активности является наличие у этого иона некоторого, но не слишком большого числа неспаренных -электронов. Пики на кривой активности связаны тогда с благоприятными конфигурациями 3 (Сг20з), вероятно, Зй (Соз04) и 3 (КЮ). Однако интерпретация этого условия в приложении к механизму обмена оказывается нелегкой задачей, особенно вследствие недостаточности данных о реакционноспособной хемосорбции водорода на окислах. Тем не менее соображения, приводимые ниже, могут дать некоторые представления о влиянии электронного фактора. [c.83]

    Около 80 лет назад проф. Н. А. Меншуткиным были выполнены первые замечательные исследования злиянмя среды. а скорость химических реакций, С тех пор в этой области накоплен богатый экспериментальный материал и сделаны многочисленные попытки теоретической интерпретации совокупности полученных данных. При этом выяснилось, что среда, в первую очередь природа растворителя, может не только самым существенным образом изменять скорость химической реакции, но и ее механизм и направление. Неспецифическая и специфическая сольватация, образование водородных связей, промежуточных комплексов и т. п. являются часто не менее важными факторами, чем, например, электронные влияния заместителей на скорость реакции. [c.5]

    Основные усилия органиков направлены на подробное исследование физических свойств молекул и способов их взаимодействия. Эти сслвдо вания можно разделить на три тесно примыкающие общие группы. Во-первых, это изучение структуры молекул их формы и размера, направления и напряжения связей, электронных и спектральных эффектов, присутствия или отсутствия резонанса и эффекта стабилизации резонансом. Во-вторых,. это изучение кинетики скоростей взаимодействия молекул и влияния на них структурных факторов и внешнего окружения. В-третьих, это исследование механизмов реакций — область, в значительной степени охватывающая две предыдущие. Во всех описанных в этой главе сложных превращениях — окислении спиртов, образовании амидов, ангидридов и сложных эфиров, а также при всех реакциях, представленных ка рис. 21.27, должно происходить определенное число сложных атомных перегруппировок при переходе одних соединений в другие. Важная задача органической химии состоит в разработке теорий, позволяющих понять детали многостадийных процессов, посредством которых молекулы сталкиваются и взаимодействуют с образованием новых веществ. Мы рассмотрим некоторые из них в гл. 22 и 23. [c.168]

    Цуда полагал, что растворитель может влиять на механизм полимеризации, увеличивая диэлектрическую проницаемость среды, а также подвергаясь радиолизу с образованием катализатора типа Фриделя — Крафтса. Так, хлористый метилен может разлагаться с выделением НС1, который затем будет инициировать катионную полимеризацию, чем объясняется наличие хлора в цепи полимера. Другие алкилгалогеииды могут распадаться аналогично, но давать более слабые кислоты, являющиеся менее эффективными катализаторами Фриделя — Крафтса. Имеется указание на то, что акрилонитрил захватывает электроны с образованием анионов, снижая, таким образом, скорость катионной реакции при высоком содержании акрилонитрила. Цуда [66[ заключил, что главным фактором, определяющим механизм полимеризации, является ионная реакционная способность мономера, а растворители только влияют на скорость роста уже образовавшихся ионов. Очевидно, для определения влияния среды на механизм полимеризации необходимы дополнительные исследования. [c.539]

    Различия в характере связей между разными гетероатомами можно, как мы видели, охарактеризовать а) формой возникающей молекулярной орбитали, б) способностью неподеленных пар электронов участвовать в образовании связей, в) вкладом а -орбиталей, г) наличием л-связей и д) ионным характером связей. Эти факторы влияют не только на структуру и физические свойства гетероатомной молекулы, но и на химические свойства каждого класса соединений. Можно просле.дить влияние одного или нескольких свойств связей, рассмотренных выше, на реакционную способность, механизмы реакций, устойчивость и даже на способы получения соединений. Действительно, свойства связей — единственная рациональная основа для сравнения химических свойств различных гетероатомных систем. Это станет еще яснее при чтении следующих глав. [c.47]

    В случае реакций внешнесферного переноса электрона воздействие лиганда на скорость процесса не ограничивается изменением степени перекрывания орбиталей реагирующих частиц. Не менее существенное влияние на скорость этих реакций лиганд может оказывать также через изменение свободной энергии образования активированного комплекса [21]. По этой причине целесообразно сначала сопоставить данные о распределении спиновых плотностей со скоростями процессов спинового обмена и тушения позитрония по механизму орто-пара-конверсии, для которых энергетические факторы не должны играть существенную роль. [c.182]

    I. Полярное влияние заместителей в субстрате. Согласно ионно-парному механизму углеродный атом, при котором происходит замещение, приобретает в процессе активации,отчетливые электрофильные свойства, особенно сильные в случав первичных субстратов. Поскольку взаимодействие противо-иона с карбкатионным центром не носит ковалентного характера, этот центр должен стабилизироваться внутренними электронными факторами, а именно донорными эффектами заместителей. Следовательно, все реакции нуклеофильного замещения, в том числе и 8 2, должны ускоряться при однозначном увеличении донорных свойств заместителя при углеродном атоме субстрата. Величина <5удет иметь достаточно большое отрицательное значение, сравнимое (если не превышающее) с величиной для /-реакций, так как для субстратов, особенно первичных, промежуточные ионные пары крайне нестабильны, вследствие чего их чувствительность к полярным эффектам заместителей велика. Однако такой вывод не согласуется с многими экспериментальными данными [ХбЗ, которые показывают, что в реакциях Sf 2 наблюдается ускорение электроакцепторными заместителями, как это предсказывается классическим 3, 2 рассмотрением нуклеофильного. замещения [1 . Величина для изученных в литературе серий бимолекулярного замещения существ енно меньше, чем в [c.124]

    Р. Пирсон и сотр. [383] расширили картину, данную Чаттом и Оргелом для механизма реакции систем, содержащих трансак-тивные группы, на основе изучения влияния природы вступающего реагента. Авторы отметили, что в тригональной плоскости бипирамиды должны находиться две d-орбитали, принадлежащие атому платины и каждая заполненная двумя электронами. Это dx.2 и -орбитали, которые вместе с тремя лигандами X, Y и L лежат в тригональной плоскости xz тригонально-бинирами-дального интермедиата PtAaLXY. Поэтому, как заключили авторы, любая из этих двух орбиталей может образовывать я-связи с любым из лигандов данной плоскости. Кроме того, если входящая группа также может образовывать я-связь, то это будет дополнительным фактором, стабилизирующим переходное состояние и, следовательно, вызывающим увеличение скорости реакции замещения. [c.148]


Смотреть страницы где упоминается термин Влияние электронных факторов на механизм реакции: [c.155]    [c.57]    [c.261]    [c.273]    [c.1580]    [c.456]    [c.511]    [c.234]    [c.10]    [c.366]    [c.286]    [c.4]    [c.577]    [c.636]   
Смотреть главы в:

Современные проблемы электрохимии  -> Влияние электронных факторов на механизм реакции




ПОИСК





Смотрите так же термины и статьи:

Фактор фактор электрона

Электронные механизмы реакций



© 2025 chem21.info Реклама на сайте