Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные факторы в кинетике реакций

    Важным фактором является влияние изменений работы выхода электрона на кинетику реакции такое влияние было экспериментально показано Л. Я- Марголис с сотрудниками [197, 253], что - отмечалось выше. [c.272]

    Электронные факторы в кинетике реакций [c.264]

    Хотя представления об электронных факторах в адсорбции и катализе широко развиваются, вопрос об их влиянии на кинетику реакций разработан весьма мало. Роль электронных факторов в катализе подвергалась многократному обсуждению , но лишь в немногих работах дается трактовка зависимости от них общих кинетических закономер- [c.264]


    Таким образом, влияние электронных факторов на скорость реакций в присутствии металлических катализаторов может быть различным, и в каждом отдельном случае следует учитывать механизм процесса, природу лимитирующей стадии и возможность их изменений при переходе от одного катализатора к другому. Разумеется, сравнение скорости реакции в ряду металлов с разными электронными свойствами возможно только при сохранении неизменными механизма и кинетики ( процесса. Без уверенности в этом сопоставление величин скорости реак-ции на разных катализаторах вообще теряет смысл. В некоторых слу- ( чаях роль,,(1 вакансий оказывается преувеличенной и опыты, как видно из изложенного, не всегда приводят к ожидаемым изменениям скорости реакции [587, 611]. [c.267]

    Количественная трактовка влияния электронных факторов на кинетику реакций в присутствии полупроводниковых катализаторов дана С. 3, Рогинским [29, 246] и Г. К. Боресковым [608]. Как отмечается в работе [29], в первом приближении неоднородность поверхности и заряжение поверхности катализатора (т. е. изменение, работы выхода электрона поверхности катализатора при взаимодействии реакционной системы с катализатором) могут рассматриваться как независимые факторы, требующие одновременного учета. При более точном рассмотрении необходимо также учитывать взаимное наложение и влияние обоих факторов. Аналогичным образом обстоит дело и в случае взаимодействия адсорбированных частиц. [c.268]

    В статье С. 3. Рогинского [29] рассматриваются также кинетика и механизм реакций окисления с точки зрения электронных факторов. Там же обсуждается и влияние заряжения на сложные многостадийные процессы, [c.269]

    Г. К. Боресков [608] рассматривает влияние изменения уровня Ферми в ходе процесса на кинетику реакции. При этом он исходит из влияния этого фактора на закономерности адсорбции [см. главу П1]. Поскольку изменения величин работы выхода электрона должны влиять на прочность возникающей адсорбционной связи [см. уравнение (П1.245)], направление этих изменений может существенно сказываться на скорости реакции [608]. При малой прочности адсорбционной связи увеличение ф должно ускорять реакцию, при достаточно прочной адсорбционной связи увеличение ф будет снижать скорость реакции. Это означает, что выгодны такие изменения величин ф, которые способствуют приближению энергии адсорбционной связи к оптимальной. [c.269]


    Итак, мы рассмотрели вопрос о влиянии электронных факторов на закономерности кинетики и скорости реакций. Поскольку представления U влиянии электронных факторов только начали развиваться, они (кроме приведенных примеров) в большинстве случаев еще не доводятся до анализа конкретных кинетических зависимостей, а часто сводятся лишь к общим соображениям. [c.273]

    Настоящая книга представляет собой труд, в котором кинетика и механизм химических реакций в твердой фазе излагаются, начиная от физических и физико-химических основ (теория дислокаций и ионных дефектов, образование и рост зародышей, действие света на твердые тела) и кончая подробным рассмотрением частных групп реакций, имеющих практическое значение (взрыв и детонация в твердых взрывчатых веществах, окисление металлов, фотографический процесс и др.). Специальные главы посвящены поверхности твердых тел, электронному фактору в хемосорбции и катализе и реакциям между твердыми телами. [c.4]

    Естественно, что стереоселективность является следствием действия таких различных факторов, как структура, распределение электронной плотности, кинетика, термодинамика реакций и т. д. Структура молекулы в сочетании с механизмом реакции, в которой она участвует, могут быть причиной 100%-ной стереоселективности. Теперь рассмотрим более подробно некоторые факторы, способствующие протеканию стереоселективных реакций. [c.78]

    На скорость ряда реакций Дильса—Альдера и одной ретродиеновой реакции (табл. 20) не влияет добавление веществ, которые, как известно, легко реагируют со свободными радикалами. Эти результаты опровергают предположение, что бирадикалы типа VI—X играют роль промежуточных соединений в реакции. Правда, можно было бы предположить, что достаточно сильное взаимодействие между неспаренными электронами приведет к образованию триплетного состояния и что поэтому соединения, реагирующие со свободными радикалами, не окажут влияния. Однако в этом случае на кинетику реакций Дильса— Альдера (а + Ь с) должна влиять ограниченная вероятность синглет-триплетного перехода [230], и в соответствии с принципом микроскопической обратимости тот же эффект должен проявляться и в случае ретродиеновых реакций (с->а-ЬЬ). Экспериментально показано, что величина кинетического фактора А ретродиеновых реакций не является ненормально низкой (табл. 19), из чего можно сделать вывод, что ограниченная вероятность электронных переходов также не оказывает существенного влияния на величину фак- [c.116]

    Кинетика реакции (42) была изучена [47] путем измерения количеств выделяющейся окиси углерода. Результаты этого исследования позволили сделать предположение о механизме реакции, но которому Со2(СО)д в промежуточной стадии взаимодействует с молекулой ацетилена, что приводит к выделению одной молекулы окиси углерода и образованию Соз(СО)7. Позднее [48] некоторые исследователи изучили влияние природы групп К и К на кинетику реакции (42). При этом оказалось возможным установить степень реакционной способности некоторых ацетиленовых соединений относительно гексина-1 как эталона. Однако в большинстве случаев эти экспериментальные данные нельзя было объяснить на основании электронных или пространственных факторов. [c.75]

    Изучение кинетики показывает, что реакция Дильса-Альдера обычно характеризуется очень низкими значениями / -факторов в выражении скорости (10 —10 ). Это было принято как доказательство в пользу механизма с образованием непарных электронов (радикальный), на самом же деле более вероятным является утверждение, что это говорит за потерю степеней свободы в весьма ограниченном переходном состоянии (ср. [30]). [c.181]

    Аналогия с механизмом 5, 2 налагает определенные требования на пространственное расположение реакционных центров при 1,2-перегруппировках насыщенных углеводородов, причем кинетика и механизм перегруппировок цикланов оказываются тесно связанными конформационными особенностями молекул. Существует два типа влияний, оказываемых конформацией на направление и скорость реакций. Первое из них обусловлено доступностью реакционного центра (стерические факторы) и не нуждается в особых пояснениях. Более сложным является второе, связанное со специфическим пространственным расположением образующихся и разрушающихся связей (стерео-электронные требования) [34]. [c.163]

    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]


    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]

    Как электронные, так и стерические факторы оказывают существенное влияние на кинетику радикальных реакций. Исследование процесса присоединения метильного радикала к ароматическим углеводородам привело к выводу, что скорость этого процесса зависит от энергии локализации радикалов. При вычислении энергии локализации, вслед за Уэландом, рассматривается такое переходное состояние системы, когда один я-электрон, подвергшийся атаке ароматической молекулы, выключен из системы сопряжения и вступает во взаимодействие с неспаренным электроном атакующего свободного радикала. Если в начальном состоянии системы энергия л-электронов равна Е, то в конечном состоянии она падает до значения Е г. Потеря энергии я-электронов в результате присоединения свободного радикала к молекуле и является энергией локализации Ь г = Е — Е г. [c.266]

    В предыдущей главе было рассмотрено влияние электронных и стерических факторов на реакционную способность различных соединений в данных условиях, а также типы реагентов, от которых можно было бы ожидать, что они будут легко атаковать определенные участки молекул этих соединений. При этом, однако, ничего не было сказано относительно того, каким образом влияние электронных и стерических факторов на направление реакции и на ее скорость могло бы быть охарактеризовано в терминах энергетики и кинетики. Очевидно, что такие характеристики могли бы существенно облегчить понимание деталей механизмов рассматриваемых реакций. [c.52]

    При обсуждении всех описанных выше химических методов автор обращал внимание на кинетику процессов, лежащих в основе этих методов. В главе, посвященной титриметрическому анализу, говорилось, что основная реакция должна быть быстрой. При обсуждении окислительно-восстановительных равновесий указывалось, что многие процессы переноса электрона идут настолько медленно, что их нельзя использовать в аналитических целях. В предыдущем разделе обсуждалось влияние кинетических факторов на природу осадков. [c.381]

    История подтвердила более высокую ступень той научной абстракции, предметом которой является изучение механизма химических реакций. Примерно три четверти века выдающиеся ученые многих стран интенсивно исследуют сущность химических процессов. Эти исследования протекают небезуспешно. Создана химическая кинетика определено влияние термодинамических факторов на ход реакций разработана цепная теория созданы теории кислотно-основного взаимодействия установлены многочисленные возможности использования физических факторов для выяснения вопросов о механизме реакций предложен ряд теорий (в том числе количественных), связывающих электронное строение молекул с их реакционной способностью развиты представления об определяющей роли строения [c.119]

    Результаты рассмотренных работ подтверждают правильность предположения о течении гидролиза эфиров через первичное присоединение ОН к карбонильной группе заключение о влиянии полярных факторов на скорость реакции гидролиза в жирном ряду сделать трудно. Для выяснения электронно-химического влияния замещающих групп наиболее удобно рассмотреть данные по кинетике гидролиза различных производных замещенных ароматических кислот. Если схемы правильны, то заместители, подающие электроны к группе С=0 и, следовательно, уменьшающие положительный заряд на ее углеродном атоме, должны уменьшать скорость взаимодействия с нуклеофильным реагентом, и, наоборот, заместители, оттягивающие электроны, должны увеличивать скорость взаимодействия по сравнению с незамещенным соединением. [c.443]

    Вследствие дефектности структуры окисной решетки кислород может превращаться в ионы 0 или на поверхности решетки, как это происходит в случае окисления ксилола на решетке га-типа или в случае окисления СО на решетке р-типа для УгОв и СиаО соответственно (см. стр. 233, 326). Окисный ион может затем диффундировать внутрь решетки через небольшое количество поверхностных слоев или через всю решетку катализатора. Симерд, Арнотт я Сейгел [13] дали описание диффузии кислорода в решетках V — О аналогичный процесс диффузии кислорода в N1 — О показан на рис. 8, стр. 331. Кинетическая картина усложняется тем фактором, что реакция состоит из стадий 1) адсорбции газообразного кислорода с образованием иона, которая вызывает передачу электрона я не сопровождается диффузией кислорода, и 2) сочетания (1) с процессом, диффузии кислорода. В общем случае могут получаться всевозможные комбинации (1) и (2), что усложняет изучение кинетики и механизма реакции. [c.368]

    В соответствии с общими соображениями, изложенными в начале книги, мы в основном делали упор на электростатические эффекты в кинетике реакций [41 ]. При этом в рассмотрение принимались такие переменные, как число осцилляторов s, координационное число с растворенного вещества, расстояние г,у между участвующими в реакции молекулами и изменение этих переменных в зависимости от температуры, давления и диэлектрической проницаемости. При этом остается еще обширная область исследований, направленных на установление внутримолекулярных факторов, влияющих на устойчивость активированной молекулы или комплекса. Важнейшим из этих факторов является, вероятно, распределение электронной плотности, как это показано, в частности, Коулсоном и Чандра [c.445]

    Книга Гайнца Беккера Введение в электронную теорию органических реакций представляет собой четкое и ясное изложение электронных представлений о механизмах наиболее распространенных и важных реакций органических веществ, без изложения которых не обходится ни один курс органической химии, ни практика исследователя. В отличие от других книг теоретического направления, обычно ограничивающихся при изложении механизма реакций лишь графикой электронных смещений, книга Беккера, помимо очень удачной графики этого рода, вскрывает физико-химические, термодинамические и электронно-структурные факторы движущих сил реакций. Она вооружает читателя глубокими знаниями и возможностью предвидения. Первые три главы излагают общие теоретические основы проблемы химической связи, распределения электронной плотности в органических молекулах и основные положения кинетики и термодинамики органических реакций с освещением теории переходного состояния и элементарного акта реакции. Первая из этих глав, посвященная квантовомеханическим основам теории химической связи, написана в форме, доступной для химиков-органиков, обычно плохо владеющих высшей математикой. В этой главе некоторым сокращениям подверглось изложение представлений о модели атома Бора, имеющих лишь исторический интерес. В этой же главе излагаются основы квантовой механики, где Беккер подходит к уравнению Шредингера, используя аналогию с волновым уравнением. Эта аналогия имела определенное эвристическое значение при создании волновой механики. Однако она, естественно, не отражает важнейших особенностей уравнения Шредингера и вряд ли облегчает его -восприятие. Поэтому взамен этой аналогии мы изложили основы квантовой мех-лники в доступной форме, аналогично тому, как это Сделается в основных современных курсах квантовой химии. / [c.5]

    К числу глав, где излагаются физические и физико-химические основы теории и рассматриваются новые экспериментальные методы работы, относятся также глава пятая — о полупроводимости и маг-нетохимии твердых тел и шестая — о теории образования зародышей кристаллизации в разных фазовых условиях. Из остальных девяти глав завершающая глава посвящена экспериментальным данным и теоретическим представлениям о роли электронных факторов в хемосорбции и катализе, четыре — общим вопросам кинетики химических реакций твердых тел и четыре — отдельным группам процессов. Выбранные группы (взрыв и детонация, разложение органических веществ, окисление металлов, фотографический про- [c.5]

    По мнению Ингольда, основным фактором, определяющим направление процесса распада этих соединений, является индуктивный эффект атомов или групп, находящихся у -углеродного атома по отношению к азоту, причем заместители, подающие электроны,-затрудняют отщепление водорода с образованием олефинового углеводорода (стр. 389) наоборот, группы или атомы, оттягивающие электроны, облегчают процесс [27]. Распад соединений, имеющих только алифатические радикалы, требует высокой температуры при наличии в В-положении фенильной группы разложение протекает уже в теплых растворах, а нитрофенильной—в момент образования [18, 28]. Однако и в последнем случае распад происходит не самопроизвольно (по типу Е1), а при обязательном участии воды, облегчающей отделение протона при добавке щелочи процесс ускоряется [29] (в мономолекулярных процессах добавка щелочей не сказывается на кинетике реакции). Наличие в р-положении атома хлора увеличивает протонизацию водорода у того же атома углерода, и при распаде процесс протекает преимущественно с отщеплением водорода от группы СНаС  [c.391]

    Холм и Кроссланд [51] изучили кинетику реакции хлорида трет-бутилмагния с бензофеноном и его замещенными в диэтиловом эфире. Состав продуктов реакции в эфире существенно зависит от стерических эффектов заместителей в бензофеноне. Однако стерические факторы не влияют на эффективную константу скорости. Корреляция констант скорости с константами заместителей Гаммета носит линейный характер (р = 3,0 г = 0,974). Был сделан вывод, что лимитирующей стадией реакции является перенос электрона с хлорида /герет-бутилмагния на бензофенон с Образованием радикальной пары анион-радикал бензофенона/ягрете-бутил. [c.75]

    Наиболее удивительный из известных до сих пор в литературе пример туннелирования атомов водорода относится к реакции в твердой фазе. При облучении твердого ацетонитрила у-квантами образуются свободные электроны, ранее связанные с молекулами матрицы. Под воздействием видимого света эти молекулы превращаются в метильные радикалы, которые затем взаимодействуют с измеримой скоростью с СНзСН по реакции СНзН-СНзСЫ—>-СН4- - СНгСЫ. Кинетику данного процесса можно изучать с помощью метода электронного спинового резонанса, измеряя либо скорость исчезновения метильных радикалов, либо скорость образования радикалов СНгСЫ. Детектирование соответствующих радикалов можно проводить как после, так и в процессе воздействия видимого света. Значения констант скорости, измеренные всеми этими методами, по существу совпадают между собой. Такая согласованность методик фактически создает уверенность в том, что наблюдаемые константы относятся к рассматриваемой реакции. Самые первые эксперименты [100] были проведены при температурах 77 и 87 К, а последующие [101] — при температурах 69, 100 и 112 К. Соответствующий аррениусовский график сильно искривлен, причем кажущаяся энергия активации изменялась от 1,2 до 2,8 ккал/моль. Между тем значение энергии активации этой реакции в газовой фазе [102] в температурном интервале 373—573 К составляет 10,0+0,5 ккал/моль. Авторы [101] дали количественное объяснение результатов этих экспериментов, рассчитав туннельное прохождение через одномерный барьер вычислительными методами [66], о которых речь шла выше. Они приняли, что высота истинного барьера в твердой фазе равна энергии активации высокотемпературной реакции в газовой фазе и что классический частотный фактор твердофазной реакции равен частоте валентного колебания связи С—Н в СНзСМ. Они подбирали форму и параметры энергетического барьера, который наилучшим образом описывает эксперимент. Авторы рассмотрели параболический барьер и барьер Эккарта [см. формулу (177)]. Однако лучшие результаты были получены с гауссовым барьером, V (х) = = ехр (—х а ), где а=0,636 А, что является физически объяснимым. Было найдено, что при таких низких температурах факт0 ры туннелирования исключительно велики и лежат в цн- [c.338]

    Квантовомеханическая теория элементарного акта процессов лереноса протона в полярной среде возникла в результате дальнейшего развития идей, лежаших в основе квантовой теории кинетики окислительно-восстановительных реакций. Одна из главных особенностей этой теории заключается в учете динамического влияния растворителя на кинетику реакций. Представление о динамической роли растворителя в кинетике реакций восходит к работе Либби [1], в которой впервые было указано на то, что тепловые флуктуации в растворителе являются важнейшим фактором, обеспечивающим возможность протекания электронного переноса . Идея о динамическом поведении растворителя получила впервые реальное воплощение в теории электронного переноса Маркуса [3]. Существенно, что подход Маркуса носил чисто классический характер. Аналогичные представления позднее развивал Хаш [4]. [c.350]

    Долгое время считалось, что магнитные поля не могут влиять на химические реакции в растворах, идущие через радикальный механизм. Опыты, свидетельствующие об этом, считались недостоверными. Тем более, что результаты их не были стабильными. Это объясняется тем, что, не зная механизма процесса, экспериментаторы не МОГЛИ учесть и стабилизировать все факторы, влияющие на реакцию. Подвергались сомнению такие важные, новые научные направления, как магнитобиология, маг-нитотерапия. Но открытие в 1967 г. явления химической поляризации ядер атомов стимулировало интерес ученых к механизму воздействия магнитных полей на некоторые жидкофазные реакции. Установлено, что при определенных радикальных реакциях магнитное поле влияет на переориентацию магнитных моментов в радикальных парах (электронные спины) и, через этот промежуточный механизм, на химические реакции. Изменяются кинетика процесса и соотношение продуктов, получаемых в результате реакции. Этот эффект может иметь большое практическое значение, например, в магнито-биологии, в реакциях радикальной полимеризации при получении пластмасс и др. [c.90]

    Так как сущность катализа связана с взаимной обусловленностью процессов инициирования, химической ориентации и матричной ориентации, то существующие теории кинетики и катализа должны отражать все эти факторы в целом, в их взаимосвязи, а не порознь, как это бывает нередко теперь. Поэтому, например, мультиплетная теория, впервые указавшая на многоточечный матричный эффект, и химическая концепция Рогинского, указывающая на ориентацию за счет субстанциональных свойств катализатора, должны дополнить друг друга и, используя электронную теорию, составить цельные представления о процессах ориентации реакций при каталитическом воздействии агентов. По тем же соображениям цепная теория должна считаться с возможностью матричного эффекта в развитии плоских депей. Кроме того, цепная теория не может не считаться с возможностями параллельного протекания цепных свободно-радикальных реакций и реакций между насыщенными молекулами, само инициирование которых осуществляется за счет наложения молекул на матрицы бертоллида, в результате чего открываются пути непрерывного перераспределения связей. [c.23]

    Поскольку сущность катализа связана с взаимной обусловленностью процессов инициирования, химической ориентации и матричной ориентации, а также, очевидно, и с эффектом аггравации, то существующие теории кинетики и катализа должны отражать все эти факторы в целом, в их взаимосвязи, а не порознь, как это бывает нередко теперь. Поэтому, например, мультиплетная теория, впервые указавшая на многоточечный матричный эффект и химическая концепция Рогинского, Боресг ова и др., указывающая на ориентацию за счет субстанциональных свойств катализатора, должны дополнить друг друга и, встав на рельсы электронной теории, составить цельные представления о процессах ориентации реакций при каталитическом воздействии агентов. [c.119]

    Трейбс [5], изучая кинетику присоединения реактива Гриньяра к сложным эфирам, пришел к выводу, что пространственные факторы играют более существенную роль, чем электронные, что подтверждается очень малым различием в скоростях реакций эфиров предельных и непредельных кислот, даже когда двойная связь находится у а-углеродного атома. Разветвление цепи у кислотной части, по крайней мере, поблизости от функциональной группы, замедляет реакцию. Реакционная способность бутиловых эфиров падает в ряду масляной, изомасляной и изовалериановой кислот. Для спиртовой части сложного эфира стерические факторы, вероятно, оказывают меньшее влияние, и энергетический фактор может играть более существенную роль. [c.182]

    В кинетическом плане отметим лекцию Темкина о кинетике стационарных сложных реакций и доклады Островского [15] и Иоффе [16] с сотрудниками, посвященные применениям электронных счетных машин к анализу кинетики каталитических процессов. Последнее направление завоевало заметное место в современных кинетических исследованиях и в прикладном катализе, несмотря на возражения скептиков, подчеркивающих недостаточность и ненадежность части информации, лежащей в основе расчетов. Напротив, энтузиасты этих методов ожидают от применения счетных машин, чрезвычайно ускоряющих математический анализ и конкретные расчеты, большой пользыдля выяснения стадийного механизма сложного катализа. В какой-то мере правы и те и другие. Математику (по образному сравнению нашего известного математика, покойного академика Крылова) можно уподобить жерновам, перерабатывающим тот материал, который закладывается в мельницу. Она не способна создавать того, что не заложено заранее в материале, подаваемом на помол. Поэтому повышение точности и диапазона измерений и более полный учет действующих факторов несомненно важен для повышения эффективности машинной обработки кинетических данных. Но, с другой стороны, выводы, получаемые из совокупности кинетических данных с помощью счетных машин, в принципе должны быть полнее и точнее результатов, получаемых при традиционной безмашинной обработке тех же данных. [c.8]


Смотреть страницы где упоминается термин Электронные факторы в кинетике реакций: [c.208]    [c.155]    [c.314]    [c.186]    [c.487]    [c.307]    [c.255]    [c.174]    [c.534]    [c.110]    [c.534]    [c.4]    [c.565]   
Смотреть главы в:

Введение в кинетику гетерогенных каталитических реакций -> Электронные факторы в кинетике реакций




ПОИСК





Смотрите так же термины и статьи:

Фактор фактор электрона



© 2024 chem21.info Реклама на сайте