Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние электронных факторов на устойчивость

    Эффект образования связи обусловлен взаимодействиями иона металла с растворителем и лигандом. Суммарная энергия связи определяется как стерическими, так и электронными факторами. Очевидно, что чем более объемистым является лиганд, тем более вероятно возникновение стерических препятствий к координации этого лиганда со стороны других лигандов, присутствующих в системе, и, следовательно, тем ниже будет энтальпия образования комплекса. Электронные эффекты можно в общем разделить на энергию о- и я-связей и, в случае переходных металлов, на энергию кристаллического поля. Чем больше а-донорная способность лиганда (т. е. чем более основен лиганд), тем выше прочность а-связи металл — лиганд. Аналогично чем выше электроноакцепторная способность металла, тем более устойчивые комплексы он образует. Акцепторная способность тем выше, чем больше электроположительность, выше степень окисления, и для данного иона металла с данной степенью окисления тем выше, чем больше положительный заряд на центральном атоме комплекса. я-Дативное взаимодействие, обусловленное переходом электронов с заполненных орбиталей иона металла соответствующей симметрии на вакантные орбитали лиганда той же симметрии, также повышает энтальпию комплексообразования. Однако я-дативное взаимодействие не зависит от основности, так как под основностью подразумевается способность донора к взаимодействию с протонами, а поскольку у протонов нет заполненных р-орбиталей, то они и не могут участвовать в образовании я-связей. В случае переходных металлов следует также учесть влияние природы лиганда на энергии ( -орбиталей металла. Энергетические уровни пяти -орбиталей, равноценные в свободном ионе металла, в поле лиганда расщепляются. Рассмотрим приближение группы из шести отрицательно заряженных лигандов к иону металла при этом заряд лигандов равномерно распределяется по сферической поверхности, окружающей ион металла. Энергии всех -орбиталей повышаются в результате электростатического отталкивания между отрицательно заряженной сферой и отрицательно заряженными -электронами (рис. 14.2,а). Если затем эти шесть лигандов расположить по вершинам октаэдра в виде [c.250]


    Устойчивость молекулы определяется совокупным влиянием электронных и стерических факторов. В случае Ы-алкилзамещенных [c.20]

    VII. 2. ВЛИЯНИЕ ЭЛЕКТРОННЫХ ФАКТОРОВ НА УСТОЙЧИВОСТЬ [c.197]

    Если все места в энергетической зоне заселены электронами, перемещаться в ней (по коридору проводимости) электроны не могут (рис. 40, 3). Они движутся только в пределах своих МО. Если же в коридоре проводимости есть свободные места, электрон, ближайший по энергии к свободным МО в этой зоне, под влиянием энтропийного фактора устойчивости системы займет одну из свободных МО, его место займет соседний с ним электрон и т. д. В результате в пределах не полностью заселенного коридора проводимости электроны будут хаотично двигаться (рис. 40, 1а). Если к веществу с металлической решеткой, в которой есть не полностью заселенные энергетические зоны, приложить разность потенциалов, то электроны начнут упорядоченно перемещаться по коридору в направлении внешнего поля, создавая электрический ток (рис. 40, 16). Не полностью заселенные электронами энергетические зоны называются зонами проводимости. [c.214]

    Для объяснения стереохимической избирательности диенового синтеза с циклическими диенами некоторые авторы привлекали и другие электронные факторы (влияние индуктивных или электростатических сил, возникающих в результате переноса заряда между диеном и диенофилом), а также пространственные невалентные взаимодействия, которые могут существенно сказываться на устойчивости промежуточного эндо- или экзо-состояния, имеющего плотную упаковку (Вассерман). [c.30]

    Как видно из данных этой таблицы, заместители К и К оказывают и электронное, и пространственное влияние на устойчивость гидрата, однако преобладающим, видимо, следует считать электронный фактор. Например, хлоральгидрат - устойчивое соединение и перегоняется без разложения. [c.128]

    По-видимому, относительная устойчивость жирно-ароматических свободных радикалов (см. табл. 85) также в значительной мере обусловлена стерическим фактором. Вопрос о влиянии стерического фактора на относительную устойчивость свободных радикалов жирного Гряда что их неспаренный электрон может взаимодействовать с а-облаками соседних С—Н-связей. [c.845]

    Решающим фактором, определяющим направление электрофильного замещения, является влияние заместителя на устойчивость образующегося о-комплекса. Вообще говоря, замещение может идти в любое положение бензольного кольца, однако с различной скоростью, определяемой различной энергией активации. Энергия активации тем меньше (а скорость реакции тем больше), чем выше устойчивость о-комплекса, точнее, чем меньшая энергия требуется для возникновения соответствующего переходного состояния. Следовательно, качественный анализ ориентационного действия каждого заместителя сводится к анализу его влияния на устойчивость возникающего при реакции а-комплекса. А поскольку главным фактором стабильности соединений является сопряжение, в первую очередь анализируется возможность максимального сопряжения при образовании а-комплексов с участием различных атомов углерода бензольного кольца. Если сопряжение не позволяет решить вопрос об устойчивости а-комплексов, то анализируется характер распределения электронной плотности с учетом того, что размещение одноименных зарядов у рядом стоящих атомов требует затраты большой энергии и, следовательно, является дестабилизирующим фактором. [c.320]


    Роль структуры лиганда и конфигурации иона металла в комплексе в стабилизации промежуточных частиц уже рассматривалась ранее [74]. Как один из наиболее существенных факторов, определяющих влияние растворителя на устойчивость продуктов электронного переноса, многие авторы отмечают прежде всего сольватацию. Под термином сольватация следует понимать формиро- [c.144]

    В отдельных случаях возможно влияние особых факторов на силу кислот. Так, например, возможно, что, после того как протон удален, электронное строение кислотного радикала в некоторых случаях изменяется и приобретает другое расположение. Благодаря этому ион может оказаться более устойчивым, чем в отсутствии такого изменения конфигурации, а диссоциация станет более легкой. Как пример этого рассмотрим диссоциацию [c.430]

    Относительное влияние этих двух факторов при хлорировании толуола предсказать нельзя. Они, вероятно, почти одинаковы, причем дезактивация вследствие индуктивного эффекта и активация вследствие делокализации свободного электрона компенсируют друг друга. Однако совершенно ясно, что, несмотря на устойчивость образовавшегося свободного радикала, бензильные водороды не очень реакционноспособны в реакции хлорирования. [c.376]

    В докладе обобщены данные по изучению влияния химического состава и методов приготовления на свойства железных катализаторов синтеза аммиака в условиях, близких к промышленным (давление Р = 300 атм, объемная скорость W = 30 ООО час- , температура 350—550° С). Тщательность выбора сырья, точная дозировка добавок, разработка сравнительных методов определения активности и устойчивости катализатора позволили получить воспроизводимые количественные данные по влиянию изменения содержания промотирующих и примесных соединений на активность катализатора и его устойчивость при повышении температуры и отравлении кислородсодержащими ядами. Комплексные физико-химические исследования образцов различного химического состава дали возможность классифицировать все изученные добавки по характеру их преобладающего действия на структурные, электронные неблокирующие. В работе показано также, что специфичность действия катализатора определяется совокупностью структурных и электронных факторов. [c.328]

    Масс-спектры дают возможность исследовать устойчивость и энергетику многозарядных ионов фуллеренов. С этой целью в [16] использовался масс-спектрометр с двойной фокусировкой и энергией электронов в ионном источнике 200 эВ. В [17] методом высокотемпературной масс-спектрометрии определены давления насыщенного пара фуллерена С60 в интервале 637-846 К и рассмотрено влияние нескольких побочных факторов на измеряемое давление. [c.10]

    Переходя к следующему уровню организации, необходимо рассмотреть с и с т е м ы, состоящие из центрального ядра и частиц в поле ядра. Это — атомы, привлекающие внимание химиков в гораздо большей степени, чем частицы в ящиках. Однако и в атомах устойчивость есть следствие ограничений, налагаемых на движение частиц. Из элементарного курса химии известно, что энергетические уровни, отвечающие стационарным состояниям атомной системы, дискретны и переходы между ними связаны с излучением или поглощением кванта энергии. Атомы, следовательно, тоже защищены от случайных влияний. Это относится и к еще более организованным системам — молекул и твердых кристаллических тел. Но по мере усложнения систем появляются новые факторы, роль которых незаметна на низших уровнях. Обмен энергией или массой зависит от геометрического соответствия между реагирующими молекулами, от распределения электронной плотности в пределах молекулы, наличия экранирующих групп и т. п. Возникает вопрос, в какой мере можно распространить принцип защиты на сложные системы. Можно ли утверждать, что в таких системах любые, даже слабые внешние возмущения или химические влияния поведут к развитию процесса, итогом которого будет глубокая перестройка системы  [c.51]

    Для других реакций положение аналогично. Какие бы факторы ни отвечали за различия в устойчивости ряда переходных состояний (будет ли это либо делокализация неспаренного электрона, либо распределение положительного или отрицательного заряда, либо, возможно, изменение расположения атомов), влияние фактора будет больше, когда полнее достигается переходное состояние, т. е. когда реагент менее реакционноспособен. [c.128]

    Значительный экспериментальный материал, накопленный к настоящему времени о влиянии замещающих групп на степень диссоциации замещенных этанов, позволяет на основе представлений органической химии сделать выводы о факторах, облегчающих диссоциацию на свободные радикалы, и о причинах их устойчивости. Прежде чем перейти к обсуждению этих данных, следует рассмотреть вопрос о пространственной направленности валентных связей углеродного атома, имеющего формально один неспаренный электрон. [c.839]


    Влияние электронных факторов на скорость реакции хорошо видно на примере гидролиза гликозидов аминосахаров и 2-дезоксиальдоз. Так, высокая устойчивость к гидролизу гликозидов аминосахаров связана с тем, что на аминогруппе в кислой среде возникает положительный заряд, затрудняющий протонирование атома кислорода и дестабилизующий гликозил-катион X. В 2-дезоксиальдозах, напротив, отсутствует индукционный эффект гидроксильной группы при Сз, который снижает электронную плотность при гликозидном центре, затрудняет образование оксониевого иона и дестабилизует гликозил-катион. [c.209]

    Прочность комплексов этой подгруппы зависит от основности олефина. Уже на ранних этапарс исследования констант устойчивости комнлексов были получены сведения, указывающие на важность не только пространственных эффектов, но и основности олефинов [78, 82, 95, 97, 114, 132, 133, 149]. Но так как эти исследования проводились главным образом на примере ал-кнлзамещенных олефинов, то влияние электронных факторов не удалось отделить от пространственных. Более отчетливые сведения об электронных эффектах заместителей были получены при определении констант образования комплексов Ag(I) с замещенными этиленами [141] и замещенными в фениль-ное ядро стиролами [134] при использовании широкого набора полярных заместителей. Чтобы сравнить влияние электронных вкладов полярных заместителей на стабильность я-комнлексной связи, были измерены константы образования комплексов (табл. 5) нескольких замещенных этиленов в воде при 25° С распределительным методом [141]. [c.231]

    В К-фенилзамещенных-1,3-оксазолидинах стерическое напряжение возникает в случае цис-ориентации объемных заместителей в положениях 2 и 3, следовательно, устойчивой оказывается конфигурация с транс-ориентацией арильных заместителей. С учетом влияния электронных истерических факторов для 2,3-диарилзаме-щенных-5-хлорметил-1,3-оксазолидинов можно предположить предпочтительной конфигурацию цис-(2Я, 5К)-2-арил-3-арил-5-хлорме-тил-1,3-оксазолидин. [c.20]

    В тех случаях, когда устойчивость и инертность в поведении комплексных частиц совпадают, все факторы устойчивости являются и факторами инертности. Например, для октаэдрических комплексов большое влияние на энергию активации оказывает разрыв связи металл — лиганд. Поэтому больший положительный заряд центрального иона замедляет отрыв лиганда в ряду изо-электронной серии [А1Рб] >[51Рвр->[РРв]->5Рб, а также умень- [c.276]

    На основании литературных данных и спектров ЯМР Н синтезированных соединений доказана предпочтительность псевдоак-сиального положения группы СНгС . Устойчивость молекулы определяется совокупным влиянием электронных и стерических факторов. В случае М-алкилзамещенных 1,3-оксазолидинов сте-рическое напряжение незначительно, поэтому заместители в положениях 2 и 3 могут находиться как в цис-, так и в /иранс-ориента-ции по отношению друг к другу. Таким образом, изомерия [c.27]

    Превышение множителя А в выражении для равновесной константы над числом столкновений можно объяснить, во-первых, теми же факторами, которые определяют ее превышение над неравновесной константой, и, во-вторых, влиянием таких факторов, как врапхение молекулы [2146], наличие нескольких устойчивых электронных состояний [1067] и увеличение поперечника молекулы при возбуждении колебаний. [c.294]

    Химические свойства ионов карбония в значительной степени определяются их электронной структурой — электронным дефицитом во внешней электронной оболочке карбониевого углерода. Вместе с тем устойчивость и реакционноепособность ионов карбония зависят также от особенностей их строения и от влияния внешних факторов. [c.234]

    Как видно из приведенных примеров, клешневидные комплексные соединения характеризуются обычно медленным протеканием реакций. Особенно медленными являются реакции образования кохмплексов внутренне-орбитального типа (как, например, rY- и СоУ-), протекающие несравненно медленнее, чем внешнеорбитального FeY-, хотя константы устойчивости их почти одинаковы [80]. Однако у обоих типов соединений образование и распад комплексов с несколькими клешневидными циклами является существенным кинетическим фактором, равноценным влиянию электронной структуры. [c.99]

    Влияние стерических факторов на изомерию связи обнаруживается также у комплексов в твердом состоянии, при котором большой или малый противоион могут определять, какой изомер связи будет более устойчивым. В работе [97] описан ряд соединений (рис. 11.39), иллюстрирующий влияние стерических факторов на тип связывания лиганда N S в плоскоквадратных комплексах палладия(П). В щестичленном хелатном цикле 3 (см. рис. 11.39) валентный угол Р—Pd—Р ненапряженный (89,1°). Замещенный фосфин является л-лигандом и образуется ожидаемый N-изомер. Когда хелатный цикл становится пятичленным 2, а затем — четырехчленным 1, электронное окружение атома фосфора остается по существу неизменным, однако стерические трудности уменьшаются, что иллюстрируется понижением значения валентного угла Р—Pd—Р (85,1° и 76,2° соответственно). При этом сначала одна, а затем обе группы N S-изомеризуются по связи с атомом Pd, так как для атома серы предоставляется большее пространство вокруг Pd. Того же эффекта можно достигнуть при сохранении почти неизменной геометрии (комплекс 4), если одну из групп РРЬг заместить на меньщую по размерам группу NM 2 с донорным атомом азота, не образующим л-связи. Происходит изомеризация связи одного из лигандов N S . Важно, что этот лиганд находится [c.352]

    Как видно из предыдущего, основным видом взаимодействия между растворенным веществом и донорным или акцепторным растворителем (сольватация) является льюисовское донорно-акцепторное взаимодействие. Чем сильнее льюисовская кислота и льюисовское основание двух реагентов, тем в большей степени можно пренебречь влиянием других факторов при сольватации и рассматривать процесс как образование комплекса в классическом смысле, когда устойчивость сольвата определяется прочностью координационной связи между донором электронной пары и ее акцептором. [c.63]

    Решающую ро.тт. в о()иептации играют электронные факторы опи влияют па устойчивость переходных состояний, определяемую отрицательным индукционным эффектом атомов галогенов. Приведенные в табл. 7 [49] данные как раз и показыиают гаяра-ориентирующее влияние галогенбензолов. [c.17]

    Исследования относятся в основном к физ. химии. Совм. с П. Г. Меликишвили нашел (1889), что пероксидные неорг. соед. и надкисло-ты содержат группировку атомов кислорода, характерную для пероксида водорода, установил (1897) строение пероксидов металлов и показал (1902) зависимость устойчивости надкислот и их солей в пределах одной группы периодической системы от ат. м. образующих элем. Изучал (1903—1914) влияние р-рителя на константы равновесия и свободные энергии ионных р-ций. Установил (1905) правило постоянства предела произведения молярной электропроводности на вязкость, обнаружил (1912) зависимость термодинамики р-ций в р-рах от способности реагирующих в-в к образованию сольватов. Создал основы электронной теории окисл.-восстановит. р-ций. Предложил (1916) теорию гальванического элем., учитывающую термодинамическое равновесие между ионами и электронами в металле и между ионами в металле и их сольватами в р-ре и объяснившую происхождение электродных потенциалов и природу электролитической упругости р-рения металлов. Создал электронную теорию катализа. Ввел представление о роли электронов проводимости при взаимодействии кристалла тв. катализатора как единого целого с молекулой реагента. Изучил влияние различных факторов на каталитическую активность металлов. В учебнике Введение в химию (1926) впервые изложил весь материал химии с позиции электронной теории строения атомов и молекул. [c.348]

    Использование автоматических систем ввода жидкой пробы в хроматограф позволяет существенно снизить дисперсию величин удерживания на стадии ввода пробы. Отклонение величин удерживания, обусловленное несовершенством электроники системы программирования температуры термостата, чрезвычайно мало (мерее 0,005 мин) и нрактически постоянно. Таким образом, роль этого фактора пренебрежимо мала. Незначительна также и дисперсия величины удерживания за счет устройства вывода данных (электрометра, детектора, интегратора и т. д.). Таким обратом, основным источником погрешности при онределении времени удерживания является система управления. Наибольшее влияние на воспроизводимость хроматографических данных оказывают пневматическая часть системы управления и регулятор темнературы термостата. Неудачная конструкция пневматического регулятора может привести к изменению линейной скорости нотока через колонку. Наиболее устойчивая линейная скорость нотока через колонку достигается нри исиользовании регулятора с электронной обратной связью. [c.67]

    Задача 12.11. Дьюар (стр. 321) рассматривает делокализацию неспаренного электрона как основной фактор, стабилизующий свободные радикалы, такие, как аллильный, но считает гиперконъюгацию сомнительной. На основании его допущения о влвянии гибридизации на энергии связей, в частности, что влияние на углерод-углеродные связи больше, чем на углерод-водородные (разд. 10.18), объясните ряд устойчивости алкильных свободных радикалов. [c.381]

    Часто при выявлении сравнительной устойчивости минералов приходится дополнительно учитывать взаимное влияние целого ряда факторов, связанных с явлениями поляризации, а также с электронным строением атомов, их размерами, степенью экранирования заряда ядра. Это влияние можно рассмотреть на примере растворимости неорганических солей в воде (по Г. Б. Бокию). Различают четыре случая в зависимости от поляризующей способности катиона по отношению к аниону и воде (рис. 1). При легко-поляризуемых анионах и сильнополяризующих катионах (катионы малых размеров с большими зарядами или 18-электронной наружной оболочкой) соль А — энергия решетки — возрастает быстрее, чем энергия гидратации, и поэтому растворимость значитель- [c.13]

    Изменение константы в зависимости от энергии гидратации аниона наиболее значительно в слу чае экстракции третичными аминами. Для вторичных и особенно первичных аминов характер зависимости становится более пологим. Влияние строения амина на экстракцию кислот связано с двумя факторами изменением подвижности электронной пары атома азота (индукционный эффект заместителя) и проявлением стерических эффектов. При этом чем значительнее проявляется отрицательный индукционный эффект, тем меньше экстрагируемость кислоты. Так, константа экстракции в ряду вторичных аминов заметно снижается (на 3-5 порядков) при замене алкильной группы у атома азота на фенильную. Замена радикала у атома азота приводит не только к изменению подвижности электронной пары, но и к изменению стерических факторов, которые сильнее влияют на константу экстракции, чем электронные. Энергия связи в солях аминов между катионом и анионом в первом приближении определяется электростатическим притяжением. Рост числа углеводородных цепочек, их длины и степени разветвления способствует увеличению расстояния между катионом и анионом, т.е. снижению энергии связи и, следовательно, уменьшению константы экстракции. Поэтому, например, устойчивость солей аминов, образующихся по реакции кислотноосновного взаимодействия, изменяется в последовательности первичные > вторичные > третичные. [c.162]

    Положение о связи активности с d-электронной конфигурацией усиленно отстаивалось Дауденом [78]. Имеется много экспериментальных подтверждений этой точки зрения для области хемосорбции и катализа на металлах, и Дауден попытался распространить ее на окислы переходных металлов. Успешнее всего это можно было сделать для реакций с участием водорода, потому что для этого газа, в отличие от кислорода, хемосорбция не обязательно осуществляется путем простого переноса электрона. Мы уже упоминали (раздел IV, А), что хемосорбция водорода на окиси цинка и закиси никеля ниже 100° не оказывает влияния на электропроводность, и отсюда можно сделать вывод о том, что осуществляется слабая форма хемосорбции, возможно, путем ковалентной связи через ионы металла. Для построения ряда активности наиболее пригодной для исследования является реакция обмена Нг — Ог. Она была изучена Дауденом, Маккензи и Трепнеллом [79], которые указали, что нельзя согласиться с прежними предварительными выводами об rt-характере проводимости (например, в окиси цинка или в восстановленной окиси хрома) как об основном факторе, объясняющем высокую активность в реакциях с участием водорода [80]. Вместо этого, согласно интерпретации названных авторов, их результаты указывают на пример такого изменения свойств в ряду ионов переходных металлов, которое отличается наличием двух максимумов, причем низкая активность окиси железа характеризует устойчивость а -конфигурации. Имеются сомнения в надежности некоторых из их экспериментальных [c.345]

    Установленные закономерности в ряде случаев позволяют предвидеть стабильность намеченных к синтезу новых координационных соединений. Как известно, устойчивость комплексов в обшем зависит от природы металлоиона и природы лиганда, но за этим скрывается целый ряд факторов, оказывающих влияние на прочность образующегося соединения. Так, например, большое значение имеет электроно-донорная и электроноакцепторная характеристика составных частей комплекса и связанная с ней степень полярности связи. Решающая роль принадлежит также характеру образующейся координационной связи (ионная или ковалентная связь). Известно влияние на стабильность и образование соединения циклообразования, наличия кратных связей, стерических факторов и т. д. [c.5]

    Межатомные расстояния и валентные углы для различных пар атомов приведены в таблицах в Приложении к главе 1 (стр. 48 и 51). За небольшими исключениями, значения этих величин у высокомолекулярных веществ и простых молекул вполне аналогичны. У простой молекулы, такой, как этан, единственным фактором, оказывающим влияние на ее стереохимию, помимо межатомных расстояний и валентных углов, является затрудненное вращение около углерод-углеродной связи. Эта проблема была исследована методами электронной диффракции, раман- и инфракрасной спектроскопии и термодинамики. (Обзор этих работ см. Ingold, 1953.) Очевидно, что устойчивая конформация молекулы этана имеет вид, близкий к показанному на схеме 1, которая представляет собой изображение молекулы при наблюдении ее вдоль связи С С. Нижние С—Н-связи находятся в заторможенных положениях относительно- первых трех связей. У такой молекулы существуют три эквивалентные конформации с энергетическим барьером порядка 2,9 ккал-моль в промежуточных не - заторможенных положениях. [c.291]

    Вопросы устойчивости комплексов металлов сложны и разнообразны [3—8]. Влияние большого числа факторов, обусловленных видом и характером центрального ато1ма М и лиганда Ь, а также непостоянство температуры и других условий создает трудности при изучении устойчивости комплексов. Единственный приемлемый метод исследования устойчивости состоит в фиксировании наибольшего числа переменных с последующим изучением устойчивости в узкой области. С самого начала надо указать, что есть два разных вида устойчивости — термодинамическая устойчивость и кинетическая устойчивость. Поэтому вначале нужно установить, с какой точки зрения нам интересно рассматривать вопросы устойчивости с термодинамической или кинетической. В первом случае придется иметь дело с энергиями связи металл—лиганд, с константами устойчивости или с окислительновосстановительными потенциалами, которые характеризуют стабилизацию валентного состояния (см. гл. 8) во втором—для комплексных ионов в растворе — со скоростями и механизмами химических реакций (замещения, изомеризации, рацемизации и реакций с переносом электрона), а также с термодинамическими характеристиками, описывающими образование промежуточных частиц или активных комплексов. [c.449]

    О. Необходилю отметить, что. межэлектронные силы и изменения полного ядерного заряда существенно сказываются и на конфигурации ионов. Нельзя, например, считать, что поскольку 45-орби-тали заполняются предпочтительнее, чем З -орбитали, они всегда устойчивее последних. Если бы это было так, то следовало бы ожидать, что элементы первого ряда переходных элементов прн ионизации будут терять Зй-электроны. В действительности же ионизация этих атомов сопровождается потерей прежде всего 45-электронов. Таким образо.м, устойчивость электронной конфигурации является суммарным результатом действия нескольких факторов притяжения электронов к ядру, экранирования одного электрона другими, взаимного отталкивания электронов и обменного взаимодействия. Во многих случаях изменение заряда ядра и числа электронов влияют на совокупность указанных сил довольно сложным образом и это влияние нельзя описать какой-либо простой закономерностью. [c.17]


Смотреть страницы где упоминается термин Влияние электронных факторов на устойчивость: [c.395]    [c.735]    [c.191]    [c.124]    [c.141]    [c.191]    [c.95]    [c.533]    [c.199]    [c.79]   
Смотреть главы в:

Строение и свойства координационных соединений -> Влияние электронных факторов на устойчивость




ПОИСК





Смотрите так же термины и статьи:

Устойчивость фактор

Фактор фактор электрона



© 2025 chem21.info Реклама на сайте