Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация и вращение

    В жидкости ориентации молекул равновероятны и, следовательно, энергия диполь-дипольного взаимодействия протонов и квадрупольно-го - для дейтонов строго обращается в нуль. Наличие спектра свидетельствует о присутствии замороженных ориентаций вращения молекул, что характерно для твердых тел, в структуре которых имеются неоднородности, обеспечивающие возможность миграции атомов со скоростями до десятков тысяч в секунду. Такие высокие скорости движения могут быть достаточными для усреднения ядерных диполь-дипольных и квадрупольных взаимодействий, однако набор возможных положений молекул в твердых телах ограничен свойствами симметрии и структурой кристалла. Отличительной особенностью структурированных слоев воды также является наличие вьщеленных направлений для свободного вращения гидроксильных фрагментов молекул воды в межкристаллитном пространстве слоев, связанных водородными связями в плоскости, коллинеарной поверхности структуро-формирующего кристалла льда. [c.146]


    Объяснить причину возникновения изомерии только с помощью структурных формул Кекуле невозможно. Первый шаг в этом направлении был сделан в 1848 г. французским химиком Луи Пастером (1822—1895). Кристаллизуя из водного раствора винограднокислый натрий-аммоний при комнатной температуре, Пастер обнаружил, что образованные в этих условиях кристаллы асимметричны. Причем наблюдаются две формы кристаллов правая и левая (при одинаковой ориентации кристаллов небольшая характерная грань у одних кристаллов находилась слева, а у других — справа). Пастер сумел под увеличительным стеклом при помощи пинцета тщательно разделить оба типа кристаллов. Свойства растворов этих кристаллов оказались полностью идентичными исключение составляла только их оптическая активность — растворы обладали противоположным вращением. Превратив кристаллы, обладающие в растворе правым вращением, в кислоту, Пастер обнаружил, что получил известную ранее природную правовращающую винную кислоту, из кристаллов другого типа получался ее оптический изомер — ранее не известная левовращающая винная кислота. Отсюда Пастер сделал вывод, что в кристаллах виноградной кислоты содержится равное количество молекул право- и левовращающих винных кислот и именно поэтому виноградная кислота оптически неактивна. Соединения, подобные виноградной кислоте, стали называть рацемическими (от латинского названия виноградной кислоты). [c.87]

    Недостатком метода Кирквуда, отмеченным Я- И. Френкелем, является то обстоятельство, что нельзя совместить представление о вращении молекулы с ее жесткой связью с соседями. Поэтому при рассмотрении ориентации диполей в электрическом поле необходимо учитывать их заторможенность. Очевидно, что эта заторможенность существенно влияет на поляризацию сорбированных молекул, взаимодействующих с молекулами твердого сорбента, подвижность которых значительно меньше подвижности окружающих диполь молекул жидкости. [c.252]

    Полученные выражения применимы к любой ориентации молекулы относительно приложенного поля. Если исследуется монокристалл, кристаллографические и молекулярные оси которого не совпадают, определить все компоненты тензора СТВ можно так же, как и при расчете д-тен-зора. Система координат, которая приводит к диагональному виду д-тензор, не обязательно совпадает с той системой координат, которая приводит к диагональному виду тензор А, и ни одна из этих систем координат может не быть молекулярной системой координат [176]. Если молекула характеризуется полной симметрией (т. е. в систему включаются все лиганды), тал что у нее есть ось вращения и-норядка, то эта же ось будет диагональной для д и А и она должна совпадать с молекулярной осью z. [c.37]


    В напорных и дренажных каналах плоскокамерного модуля реализуется двумерное течение газа с односторонним или двусторонним отсосом или вдувом при этом канал может быть ориентирован горизонтально или вертикально. В рулонных модулях кривизна канала не слишком велика, и в первом приближении можно использовать модели двумерного течения, однако следует учесть меняющуюся ориентацию стенок канала относительно вектора силы, связанной с гравитацией. В трубчатых и половолоконных элементах внутренний канал обладает симметрией тела вращения, течение в них также двумерно. Внешняя цилиндрическая поверхность элемента омывается потоком газа, возникает задача массообмена на проницаемых поверхностях, образованных пучком трубок. Следует отметить, что свободноконвективное движение (возникающее при потере устойчивости двумерного вынужденного движения вследствие концентрационной неоднородности плотности среды) в общем случае усложняет течение газа, делает его трехмерным. [c.121]

    Свойство электрона до сих пор объясняется как способность электрона вращаться вокруг своей оси, однако все попытки экспериментально обнаружить такое вращение остались безуспешными. Согласно современному состоянию знаний, спин электрона нельзя свести к известным явлениям. Наглядное обозначение ориентации спина в занятой электронами орбитали  [c.32]

    Ориентацию, и некоторые координаты, характеризующие внутрен-нее движение, в частности процесс колебаний или внутреннее вращение. [c.26]

    Простой результат, полученный в приближении парной аддитивности энергии обмена первого порядка между атомами, легко обобщить на случай многоатомных молекул и получить информацию по зависимости энергии обмена от ориентации. В соответствии с идеально-парным приближением полная энергия взаимодействия получается в результате суммирования энергий взаимодействия между всеми парами атомов двух молекул. Тогда угловая зависимость полной энергии взаимодействия дается неявно в виде зависимости расстояния между атомами от относительной ориентации двух молекул при этом расстояние между центрами масс молекул остается фиксированным. Эта основная идея была предложена Эйрингом [88], который использовал ее для объяснения затрудненного вращения молекул в этане. [c.207]

    МПа, соответственно, расход воды 240-190 м7ч, вертикальная скорость 2-4 м/мин и частота вращения 4-9 мин . Важным фактором снижения энергоемкости процесса гидроудаления кокса из реакторов УЗК является внедрение гидравлических резаков с пространственной ориентацией сопел. [c.72]

    Для области вязкого течения диаметр лобового сопротивления может быть рассчитан теоретически для эллипсоидальных частиц. В каждом случае диаметр лобового сопротивления зависит от ориентации. Частицу можно представить в эллипсоидальном виде, движущейся по оси или под прямым углом к ее осям вращения, как показано на рис. IV-7. [c.220]

    В кристаллическом состоянии молекулы н-алканов располагаются параллельно. Установлено, что с повышением температуры и уменьшением энергии межмолекулярного взаимодействия расстояния между молекулярными цепями н-алканов увеличиваются, при этом сохраняется предпочтительная параллельная ориентация. В точке плавления расстояния между молекулярными цепями изменяются скачкообразно, при дальнейшем повышении температуры происходит активное раздвижение молекулярных цепей до тех пор, пока молекулы не обретут полную свободу вращения. Структурные исследования жидких н-алканов показывают, что при фиксированной температуре равновесное расстояние (0,56 нм) между ближайшими молекулами обнаруживает тенденцию к незначительному укорочению, что связано с усилением межмолекулярных связей по мере роста числа атомов углерода [44]. [c.25]

    На рис. 18 приведены аналитическое и графическое представления некоторых видов поляризации, получаемых в результате сложения соответствующих компонент и Еу. Показаны траектории во времени проекции конца светового вектора Е на плоскость хОу для наблюдателя, смотрящего навстречу световой волне. На рис. 18, а, д, и приведены линейно поляризованные волны с различной ориентацией плоскости поляризации на рис. 18, в — волны с левой круговой поляризацией (ЛКП) на рис. 18, ж — с правой круговой поляризацией (ПКП) на рис. 18, б, г, е, з — с эллиптической поляризацией с различными направлениями вращения вектора Е и различными ориентациями основных осей эллипса. [c.34]

    Поляризация флуоресценции. Важной характеристикой фотолюминесценции является поляризация флуоресценции. Каждую молекулу можно рассматривать как колебательный контур — элементарный осциллятор, который способен поглощать и испускать излучение не только вполне определенной частоты, но и с определенной плоскостью колебания. Если на вещество падает поляризованный свет, то он преимущественно возбуждает те молекулы, в которых направление колебания осциллирующих диполей совпадает с направлением электрического вектора возбуждающего светового пучка. Поэтому несмотря на то что молекулы в растворе ориентированы хаотично, возбуждению подвергаются лишь те из них, которые обладают соответствующей ориентацией. Если.время жизни возбужденного состояния велико по сравнению со временем, необходимым для дезориентации молекул вследствие вращения, этот процесс дезориентации происходит еще до того, как появится заметная флуоресценция. Если же скорость вращательного движения мала по сравнению со временем жизни возбужденного состояния, то свет флуоресценции испускается до завершения дезориентации. При этом осцилляторы, ответственные за флуоресцентное излучение, ориентированы в той же плоскости, в которой они были ориентированы в момент поглощения, так что флуоресцентное излучение оказывается частично поляризованным. В очень вязких растворителях даже малые молекулы могут сохранять ориентацию за время испускания флуоресценции. Крупные молекулы, такие, как белки, сохраняют свою ориентацию в течение периода времени, который достаточно велик по сравнению со временем испускания флуоресценции, поэтому их флуоресценция частично поляризована. Степень поляризации флуоресценции определяется по формуле [c.56]


    Гибкость макромолекул определяется возможностями взаимной ориентации связей, вдоль направления которых возможно вращение звеньев. [c.80]

    Если макромолекула построена из звеньев, вращение которых вокруг направления соединяющих их связей невозможно, а ориентация этих связей обусловлена ориентацией соседних связей (как, например, в случае лестничных полимеров), то ее характеризуют как предельно жесткую цепь, конформация которой моделируется жестким стержнем. [c.80]

    Если же полимерная цепь построена из звеньев, соединенных связями, вокруг направления которых возможно их вращение, а ориентация каждой такой связи не зависит от ориентации соседней, то такая макромолекула определяется как идеально гибкая. [c.80]

    Увеличение площади поверхности раздела и перераспределение ее элементов, обеспечивающие эффективное смешение, зависят от начальных условий от исходной ориентации поверхности раздела и исходного расположения ее элементов. При одноосном сдвиговом течении оптимальной является ориентация перпендикулярно направлению сдвига (см. разд. 7.9). Это хорошо видно на примере смесителя, состоящего из коаксиальных цилиндров, изображенного на рис. 11.3. В случае а частицы диспергируемой фазы не пересекают все линии тока и вся поверхность раздела параллельна направлению деформации сдвига. Смешения не происходит совсем, несмотря на наличие деформации, возникающей при вращении одного из цилиндров. В случае б частицы диспергируемой фазы пересекают все линии тока и поверхность раздела перпендикулярна направлению деформации сдвига. При этом может быть достигнута любая требуемая [c.372]

    На рис. 11-4 показано последовательное увеличение площади поверхности раздела в процессе сдвигового течения при оптимальной начальной ориентации поверхности раздела (б) и при ориентации элемента поверхности раздела под углом 45° к направлению сдвига (а). Из рисунка видно, что в случае б вращение отсутствует и после деформирования на 4 единицы сдвига отношение конечного значения площади поверхности раздела к ее начальному значению равно А А = (1 + 4 ) = = 4,1 [выражение (7.9-15)], а в случае а это отношение равно 6,1. После деформирования на 1 единицу сдвига поверхность раздела поворачивается и возвращается к исходной ориентации под углом 45°, Л/Ло = = 7,3 (выражение (11.3-4)]. Теоретически, если все время строго поддерживать угол 45° между поверхностью раздела и направлением сдвига, то отношение А будет равно 7,3. [c.375]

    Метод двойного лучепреломления в потоке с успехом применяется при изучении растворов полимеров, когда находится зависимость разности фаз А (и связанного с ней угла преимущественной ориентации частиц) от скорости вращения, которая определяет величину ориентирующего воздействия. Поскольку ориентация происходит на фоне постоянного разориентирующего влияния броуновского движения, А возрастает с увеличением угловой скорости. Из получаемых данных можно оценить длину макромолекул. [c.32]

    При экспериментальном исследовании сопротивления шара или частицы иной формы надо учитывать осложняющие факторы. Если частица обдувается в аэродинамической трубе, то обтекание может нарушаться держателем, который закрепляет ее в определенном положении. Кроме того, существенна и степень начальной турбулентности обдувающего потока. Так, при больших значениях критерия Re, рассчитанного на диаметр частицы, сильно турбулентный внешний поток может разрушить турбулентный след, образующийся за частицей, и изменить закон ее сопротивления. Незакрепленные и взвешенные в потоке частицы могут вращаться, изменять свою ориентацию по потоку и совершать сложное непрямолинейное движение. Подробный обзор исследований, посвященных влиянию турбулентности набегающего потока, вращения, шероховатости и формы частиц и других факторов на сопротивление, приведен в серии статей Торобина и Говэна [12]. [c.28]

    Постоянная а, входящая в это выражение, называется числом симметрии и представляет собой число эквивалентных ориентаций в пространстве, которое может принимать молекула п результате простого вращения как единого целого. Таким образом, оно является чнслом возможных самоналожений молекулы в результате одного только вращения. Для отдельных типов углеводородов число симметрии принимает следующие значения  [c.310]

    Для электрона характерно также вращение вокруг собственной оси, которое может пррисходить в двух взаимно противоположных направлениях. Возникающие при этом собственные магнитные моменты электрона имеют два значения в зависимости от того, совпадают они с ориентацией орбитального момента электрона или направлены в противоположную сторону. В связи с этим спиновоел ШЦОвое число т., может иметь значение + /2 или — /2- [c.40]

    Если молекула обладает неспаренным электроном, дипольный эффект передается через пространство и ощущается исследуемым ядром. Когда д-фактор изотропен, дипольные эффекты усредняются до нуля вследствие быстрого вращения молекулы в поле. Это явление рассматривалось в главе, посвященной ЭПР, где было показано, что этот же самый эффект приводит к дипольному вкладу в сверхтонкое взаимодействие, который усредняется до нуля в растворе. В тех случаях, когда д-фактор анизотропен, величина дипольного вклада в магнитное поле на интересующем нас ядре, обусловленная плотностью неспаренного электрона на металле, зависит от ориентации молекулы относительно поля. Поскольку для разных ориентаций д-фактор имеет различные значения, этот пространственный вклад не должен усредняться до нуля в результате быстрого вращения молекулы. Таким образом, те же самые эффекты, которые приводят к анизотропии д-фактора, дают и псевдокон-тактный вклад. Этот псевдоконтактный эффект, связанный с влиянием через пространство, можно сопоставить с анизотропным вкладом соседнего атома, рассмотренным в гл. 8. который, как было показано, зависит от разности в для различных ориентаций. То же самое справедливо для Применяя уравнение (12.8), мы рассматриваем систему, в которой Д% меняется симбатно Ад [2]. Часть гамильтониана, описывающая псевдоконтактный вклад, аналогична гамильтониану дипольного взаимодействия, рассмотренному в гл. 9. [c.171]

    Из рассмотренных вариантов регулирования подачи дающего воздуха наиболее эффективны в отношении устойчй вого значения 4ых варианты плавного бесступенчатого изменения производительности вентилятора, достигаемого регулированием угла поворота лопастей и оборотов двигателя. Расчеты и практика эксплуатации показывают, что при числе АВО в системе воздушного охлаждения больше четырех по экономической эффективности к бесступенчатому регулированию приближается ступенчатое регулирование частоты вращения двигателя и регулирование отключением вентиляторов и поверхностей теплообмена. Изменение расхода охлаждающего воздуха, создаваемое жалюзями, в сравнении с другими способами не дает заметного экономического эффекта, но достаточно эффективно может влиять на устойчивость температуры /вых. По точности регулирования вых этот способ близок к бесступенчатому. Для надежной работы конструкция жалюзи должна быть прочной с жесткими кинематическими связями привода и строгой ориентацией их по ходу охлаждающего воздуха. [c.115]

    В общем виде изменение энтропии в реакциях изомеризации суммируется 1) за счет изменения числа симметрии (б) молекул (число симметрии а равно числу эквивалентных пространственных ориентаций, которые может занимать молекула в результате простого вращения изменение энтропии численно выражается как —Д1пз) 2) из вклада, вносимого появлением -форм (рацематов или диастереомеров). При этом мезоформы имеют нулевой вклад а вклад -формы выражается значением Л1п2 и равен 1,38 э. е. 3) для углеводородов, имеющих гексаметиленовые кольца, обла-дающиеконформационной подвижностью, учитывается также вклад, возникающий от смешения двух неидентичных конформационных изомеров (например, ее ааж т. д. ). Расчет энергии этого вклада выполняется из соотношения—В(х 1п х- - у 1пу), где х ш у — молярные доли конформеров в равновесии при исследуемой температуре. Равновесие конформеров приближенно определяется на основании числа скошенных бутановых взаимодействий, характерных для каждой из конформаций. Обычно этот вклад невелик, так как чаще всего в конформационном равновесии значительно преобладает один устойчивый конформер. [c.139]

    Формирование ССЕ и изменение ее размеров вызывает не только изменение электрокинетического потенциала в НДС, но и ее электрофизических характеристик. Наряду с электрокине-тическими явлениями важную роль играют процессы диэлектрической поляризации, т. е. формирование индуцированных диполей у дисперсных частиц. С поляризацией НДС связаны ориентация и структурообразование, са.мопроизвольное вращение частиц дпсиерсной фазы, в основе которого лежит наведение прн [c.159]

    Выше мы отметили, что диэлектрически наблюдаемая реакция может быть вызвана только такими молекулярными процессами, которые при наложении внешнего электрического поля влияют на поляризацию диэлектрика. В жидких алканах такими процессами могут быть конформационные превращения молекул, реакции ризрыва, образования и переноса межмолекулярных водородных связей, вращения молекул, а также трансляционные перемещения молекул, существенно изменяющие их ориентацию или положение центра тяжести. [c.162]

    Соответствующая комиоиеита СТС наблюдается в поле Яо + + АЯ/, поэтому если молекулы АВ составляют монокристалл и все ориентировапы одинаково, то при вращении монокристалла величина АЯа изменяется от АЯ п до АЯмакс, а комиоиеита СТС наблюдается в зависимости от ориентации при различных величинах внешиего магнитного иоля. Фиксированная беспорядочная ориентация молекул (поликристалл, стеклообразное состояние) приведет к уширенню компонент СТС, так как величины АЯа будут соответ- [c.244]

    Минимальный объем текущей жидкости, который подвергается сдвиговому усилию, соответствует объему, необходимому для обеспечения сегментального движения макромолекулы. Улучшение термодинамических свойств растворителя (в концентрированных растворах полимеров), а также повышение температуры обусловливают увеличение подвижности макромолекул (или же способствуют уменьшению среднестатистических размеров кинетического сегмента). Так как под влиянием сдви-говьгх усилий происходит не только относительное смещение слоев жидкости, но и вращение ее элементарных объемов (см. рис. 3.3), то взаимное расположение кинетических сегментов полимерных цепей изменяется. При достаточно больших т происходят распрямление макромолекул в потоке, а также их преимущественная ориентация вдоль его оси. Прекращение действия внешних сил обусловливает возвращение системы в первоначальное изотропное состояние в результате релаксационных процессов. [c.184]

    Системы полимер - растворитель, концентрация полимера в которых такова, что взаимодействием между растворенными макромолекулами можно пренебречь, называются разбавленными растворами. Концентрационной границей является величина [ril i. Макромолекулы в разбавленном растворе представляют собой более или менее анизотропные по форме статистические клубки, способные удерживать в результате сольватации или иммобилизации некоторое количество молекул растворителя. Свободное движение таких молекулярных клубков может быть уподоблено движению сферической частицы, радиус которой соответствует большой полуоси гипотетического эллипсоида вращения, а объем ее равен объему статистического клубка. Вязкость таких растворов описывается уравнением Эйнштейна [см. уравнение (2.43)]. Однако асимметрия молекулярных клубков является причиной проявления аномалии вязкостных свойств даже в разбавленных растворах синтетических и природных полимеров вследствие ориентации таких частиц в потоке при достаточно больших т, а также из-за гидродинамического взаимодействия. При небольших и средних т разбавленные растворы полимеров являются ньтоновскими жидкостями. [c.194]

    С 1971 г. Делоншам развивал новую стереоэлектронную теорию, в которой точная конформация тетраэдрического интермедиата играет основную роль. Другими словами, стереохимия и ионное состояние тетраэдрического интермедиата, ориентация свободных электронных пар и относительные энергетические барьеры расщепления и молекулярного вращения являются ключевыми параметрами в стереоэлектронно-контролируемом расщеплении тетраэдрического интермедиата, образующегося при гидролизе амидов и эфиров. Постулировано, что точная конформация тетраэдрического интермедиата передается продукту реакции и что специфическое разложение такого интермедиата контролируется ориентацией свободных электронных пар гетероатомов. [c.244]

    Са—Сз-вращение дает эту новую ориентацию нирувата такое расположение постулируется для (R) -лактатспецифической дегидрогеназы [c.404]

    Довольно часто преимущественную ориентацию кристаллитов иэуча-чают по методу Нортона Г 8 ]. В качестве образцов применяются стержни длиной 10-15 мм и около 2 мм в диаметре. Цвлиндрические образцы крепятся на оси гониометра и вращаются. В связи с тем, что в этом случае нет изменения поглощения и скорости рассеивания по мере вращения образца, то нет необходнв<ости вводить поправки. [c.105]

    С целью получения цифрового описания преицуцественвой ориентации нефтяных коксов наш изготовлена приставка, подобная описанной в работе Гю ] (рис.Х), позволяпцая через небольшие интервалы углов при вращении образца получить суюну отраженных от образца и поступивших в счетчик рентгеновских 1свантов. [c.106]

    Выше отмечалось, что интенсивность света, рассеянного анизометрической частицей, сильно зависит от ее ориентации. Эффект ориентации наиболее отчетливо выражен в случае стержнеббразных частиц и менее заметен для частиц пластинчатой формы. Например, если стержнеобразная частица ориентирована перпендикулярно плоскости, образуемой падающим лучом и линией наблюдения, то рассеяние будет более интенсивным, чем в отсутствие ее ориентации (т. е. при хаотическом ее вращении). Если же такая частица ориентирована вдоль направления наблюдения, то интенсивность рассеяния света будет намного слабее, чем в отсутствие ее ориентации [см. (2.8) и (2.9) ]. При ориентации частиц возникает в какой-то мере упорядоченная структура, напоминающая кристаллическую. При этом даже если каждая частица, показатель пре ломления которой отличается от показателя преломления среды, в отдельности и не обладает собственной оптической анизотропией, система в целом становится анизотропной и проявляет двойное лучепреломление. Если же, кроме того, вещество частиц само обладает анизотропией, то вызванный этим эффект накладывается на предыдущий. [c.30]

    Электрическая ориентация. Мы уже говорили о том, что ориентация коллоидных частиц в электрическом и магнитном полях имеет то существенное преимущество перед ориентацией в потоке, что ориентирующее воздействие поля может быть наложено и прекращено практически мгновенно. Таким образом, имеется возможность изучать не только стационарные состояния ориентации, но и переходные состояния, прежде всего спонтанную разориентацию частиц под действием броуновского движения. При данной форме частиц броуновское движение однозначно связано с их размерами, которые и могут быть определены рассматриваемым методом. Так, Бенуа (1950 г.), изучая релаксацию при разориентации вируса табачной мозаики (ориентированного под действием электрического поля), вычислил длину вируса, которая оказалась близкой к величине, полученной из данных электронной микроскопии. Основной недостаток этого метода состоит в том, что его применимость ограничена частицами, обладающими специфической чувствительностью по отношению к электрическому или магнитному полю, а это свойство, к сожалению, не является универсальным. Приблизительные расчеты Стоилова для эллипсоида вращения показали, что диамагнитные частицы очень мало чувствительны к действию [c.32]

    Метод ЯМР заключается в следующем. Ядра некоторых атомов, в том числе и водорода (протона), обладают собственным моментом количества движения — ядерньш спином, который характеризуется спиновым квантовым числом /. При вращении заряженного ядра возникает магнитное поле, направленное по оси вращения. Другими словами, ядро ведет себя подобно маленькому магниту с магнитным моментом рц. Магнитный момент квантуется, т. е. ядро с ядерным спиновым числом / может ориентироваться во внешнем однородном магнитном поле На различными способами, число которых определяется магнитным квантовым числом т/. Каждой такой ориентации ядра соответствует определенное значение энергии. Ядра некоторых элементов, имеющих спиновое квантовое число I = = /а ( Н, зф), во внешнем магнитном [c.146]

    Полученное выражение отличается от формулы Эйнштейна (УП.26) числовым коэффициентом при ф. В данном случае он в 2,5 раза меньше, так как в слоистой структуре проявляется только эффект присутствия неде-формируемой фазы в жидкой среде и отсутствует э( )фект удлинения траекторий движения жидкости ири обтекании сферических частиц жидкостью. Последний увеличивает коэс1к зициснт на 1,5 при свободном вращении частиц и еще раз на 1,5 при их ориентации полем [формула (VII.30), где а == 41. [c.240]

    Неоднозначность конформационного параметра гибкости а требует более определенной характеристики. Очевидно, количественную меру равновесной гибкости уместно выразить в терминах ближней или дальней корреляции ориентаций звеньев. В самом деле, при абсолютно свободном вращении ориентации уже смежных звеньев могут быть любыми, тогда как ограничение разрешенного угла поворота ф ограничивает и возможные ориентации. Чем жестче цепь, тем дальше простираются эти ограничения, т, е. тем более далекой вдоль цепи становится корреляция ориентаций звеньев. Мерой дальности этой корреляции (или, что то же, жесткости) может быть статистический элемент (сегмент) Куна Ат или персийтентная длина а, равная Ат/2. Несмотря на это простое [c.35]


Смотреть страницы где упоминается термин Ориентация и вращение: [c.87]    [c.188]    [c.460]    [c.349]    [c.483]    [c.268]    [c.47]    [c.391]    [c.138]    [c.166]    [c.91]   
Смотреть главы в:

Катализ. Некоторые вопросы теории и технологии органических реакций -> Ориентация и вращение

Катализ новые физические методы исследования 1959 -> Ориентация и вращение




ПОИСК







© 2025 chem21.info Реклама на сайте